
1Scientific Data |          (2023) 10:616  | https://doi.org/10.1038/s41597-023-02493-5

www.nature.com/scientificdata

Comparison of miRNa 
transcriptome of exosomes  
in three categories of somatic  
cells with derived iPSCs
Chunlai Yu  1,7, Mei Zhang2,7, Yucui Xiong3, Qizheng Wang3, Yuanhua Wang3, Shaoling Wu4, 
Sajjad Hussain3,5, Yan Wang3, Zhizhong Zhang3, Nini Rao1 ✉, Sheng Zhang  3 ✉  
& Xiao Zhang  3,6 ✉

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) through epigenetic 
manipulation. While the essential role of miRNA in reprogramming and maintaining pluripotency is well 
studied, little is known about the functions of miRNA from exosomes in this context. To fill this research 
gap,we comprehensively obtained the 17 sets of cellular mRNA transcriptomic data with 3.93 × 1010 bp 
raw reads and 18 sets of exosomal miRNA transcriptomic data with 2.83 × 107 bp raw reads from three 
categories of human somatic cells: peripheral blood mononuclear cells (PBMCs), skin fibroblasts(SFs) 
and urine cells (UCs), along with their derived iPSCs. Additionally, differentially expressed molecules 
of each category were identified and used to perform gene set enrichment analysis. Our study provides 
sets of comparative transcriptomic data of cellular mRNa and exosomal miRNa from three categories 
of human tissue with three individual biological controls in studies of iPSCs generation, which will 
contribute to a better understanding of donor cell variation in functional epigenetic regulation and 
differentiation bias in iPSCs.

Background & Summary
Somatic reprogramming is a common method to manipulate cell lineage through epigenetic modification and 
induce somatic cells into a close embryonic stage triggered by various pluripotency master transcription fac-
tors, such as OCT4, SOX2, KLF4, c-Myc, or NANOG1–4. This somatic epigenetic manipulation has resulted in 
the generation of personalised induced pluripotent stem cells (iPSCs), which provide tremendous implications 
in regenerative medicine. During iPSCs generation, epigenetic regulation leads to differential patterns of gene 
expression through alterations in chromatin structure and modifications of the DNA while still sharing the same 
genomic sequence as its somatic cells5–7. Moreover, iPSCs retain epigenetic marks from their somatic source, 
known as “epigenetic memory”, which affects their downstream differentiation ability and inclines the differen-
tiation to their original source8–11.

MiRNAs, a group of small non-coding RNAs with ~22-nt in length, were reported with solid evidence to 
maintain or manipulate cell lineage, which may be attributed to their ability to control factors involved in cell 
fate determination or epigenetic regulation12–16. For instance, miR-302 has been identified as a well-known gene 
silencer in reprogramming somatic cells into iPSCs. The miRNA function induces global DNA demethylation by 
repressing the expression of multiple key epigenetic regulators, such as DNMT1, MECP1/2, and HDAC2/412,17,18. 
The miR-290 family, called embryonic stem (ES) cell-specific cell cycle regulating miRNAs, was validated to 
maintain the rapid proliferative state of ES cells by regulating the G1-S phase transition. Moreover, miR-9 and 
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miR-124a, which are predominantly expressed in neurons, have been demonstrated to regulate the formation 
and proliferation of the neural lineage derived from ES cells based on control of STAT3 phosphorylation19. 
Interestingly, miRNAs can be regulated by various epigenetic modifications, including DNA methylation, RNA 
modification, and histone modifications, which further exerts extensive influence on gene expression profile20–24. 
Dysregulation of the miRNA-epigenetic feedback loop has been validated to interfere with the physiological and 
pathological processes, but its specific role in cell fate determination of iPSCs remains poor understood.

Exosomes, one of the smallest extracellular vesicles (EVs) secreted in various cell types, act as bioactive 
vesicles in cell-to-cell communication by carrying proteins, miRNAs and other factors25,26. In the cell microen-
vironment, exosomal miRNA can be taken up by neighbour cells or distant cells and subsequently regulate the 
epigenetics of recipient cells. It was reported that exosomal miRNAs contribute significantly to the maintenance 
of pluripotency or other specific cell fate in their niche27–30. Notably, it was unveiled that about 70% of the miR-
NAs identified in iPSCs were also present in iPSC- EVs28, which indicates miRNAs were efficiently transferred 
from iPSCs to EVs for regulating pluripotent signalling. While the variate of exosomal miRNAs during repro-
gramming was limited to investigation, their roles in regulating cell fate need to be further studied.

To further understand the differentiation bias originating from somatic cells and the role of exosomal 
miRNA in regulating epigenetic heterogeneity during the generation of human iPSCs (hiPSCs), we simultane-
ously collected transcriptome data sets from the three most common somatic cell sources: skin fibroblasts (SFs), 
peripheral blood mononuclear cells (PBMCs), and urine cells (UCs), along with their derived iPSCs (Fig. 1).  
In order to minimise the biological variation, we recruited three healthy male donors within a similar age group 
(25–30 years old) and from the same genetic population (southern Han nationality represents about half of the 
Chinese population, approximately 10% of the world’s population31,32). Comparative data were generated before 
and after reprogramming, resulting in 17 sets of cellular RNA-Seq data and 18 sets of exosome-derived small 
RNA sequencing data. Subsequently, an in-house developed workflow was implemented to analyse the compar-
ative transcriptomics data, including quality validation, differential expression analysis and gene set enrichment 
analysis. Our work provides a valuable resource for future investigations into donor cell variation in functional 
epigenetic regulation and differentiation bias in regenerative medicine.

Methods
Ethical approval. All samples were collected following the guidelines established by the Human Subject 
Research Ethics Committee at Guangzhou Institute of Biomedicine and Health (GIBH), the Chinese Academy 
of Sciences (CAS). The experiments were approved by the ethical committee under the approval number GIBH-
IRB07-2015083. Prior to sample donation, all volunteers who donated skin, urine or blood samples had been 
thoroughly informed about the content, purposes, possible risks, and benefits of the experiment through a con-
sent form, and provided their permission for genetic material data to be shared.

Collecting and culturing the human primary somatic cells. PBMCs, SFs and UCs were isolated from 
three healthy males aged from 25 to 30 and satisfied specific criteria. These criteria included having a normal 
BMI value, no family history of genetic disease and major surgery, and not smoking and alcohol consumption. 
Additionally, the annual health examination reports of all three volunteers had been thoroughly reviewed, indi-
cating their physical well-being: no chronic illnesses or infectious diseases, with the standard range for blood 
pressure, heart rate, standard levels for blood chemistry, including cholesterol, glucose, liver function, kidney 
function, and absence of any medical conditions that significantly affect bodily functions or absence of diagnosed 
mental disorders. Notably, all three volunteers belonged to the southern Han nationality, representing approxi-
mately half of the Chinese national population and around 10% of the global population. The cell culture condi-
tions were referred to in the previous publications33,34.

establishment of hiPSCs from different sources. HiPSCs derived from SFs and UCs were generated 
based on the method described in the previous study33. The reprogramming procedure of UCs can be found in 
our previous protocol34. Reprogramming of human PBMCs was conducted with minor modification based on a 
published study35. Precisely, co-transfection of two episomal plasmids (pEP4-EO2SET2K and pEP4-M2L) and 
a vector containing hmiR302 cluster was performed in human PBMCs using AmaxaTM Basic NucleofectorTM 
Kit (Lonza), then these PBMCs were seeded on 6-well cell culture plate.

Characterisation of the hiPSCs. The karyotypes of hiPSCs derived from three types of somatic cell sources 
were detected using G band techniques. The presence of inserted genes from the reprogramming plasmids were 
demonstrated by PCR and gel-imaging system, as described in our previous research33. The protocols of immu-
nofluorescence and quantitative real-time PCR analysis were referred to our previous studies33,34. Approximately 
1 × 106 iPSCs were suspended in 100 μl Matrigel (diluted by DMEM/F12 1:1) and subcutaneously injected into 
the back of NOD/SCID mice. After teratoma formation, tumours were stained with haematoxylin-eosin and 
observed using an Olympus IX73 microscope.

RNA extraction, library construction, and illumina sequencing. Total RNA was isolated using 
TRIzol reagent (Thermo Fisher) following its standard protocols. RNA qualification, library construction and 
sequencing were performed as our previous publications33,34.

exosomal miRNA extraction, library construction, and illumina sequencing. Exosomes were iso-
lated from the cell culture medium using exoRNeasy Serum/Plasma Maxi Kit (Qiagen) following the provided 
instructions. HiPSCs with passage numbers ranging from 21 to 28 were used to isolate the exosomes in our 
experiments. Exosomal miRNA was extracted utilizing the exoRNeasy Mini Kit (Qiagen). After quantifying and 
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qualifying the RNA, 3 μg of total RNA was used for the construction of sequencing libraries through NEBNext 
Multiplex Small RNA Library Prep Set for Illumina (NEB, USA). The quality of each library was assessed by the 
Agilent Bioanalyzer 2100 system, and sequencing was done on an Illumina Hiseq 2500/2000 platform.

Preprocessing of RNA sequencing data. Raw sequencing data were processed by fastp v0.20.136 with 
default parameters to remove adapter sequences, low-quality reads and short-length sequences. The result-
ing clean reads were then mapped to the human genome hg38 to quantify global gene expression using the 
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Fig. 1 Schematic workflow of this investigation. (a) Exosome miRNA and total mRNA were collected from 
three categories of somatic cell and their derived iPSCs, along with identifying hiPSCs characteristics. (b) An 
overview of the analysis flow of miRNA and mRNA data.
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Fig. 2 Characteristics of hiPSCs. (a) The karyotype of hiPSCs derived from three somatic cell types with three 
samples. (b) The presence of exogenous episomal DNA in hiPSC was identified by agarose gel electrophoresis. 
Somatic cells transfected by episomal DNA served as the positive control, while the H1 cell line and somatic 
cells served as the negative controls; GAPDH served as the internal reference. B: PBMCs, F: SFs, U: UCs, i: 
hiPSCs. The specimens Fi1, Bi2 and Ui3 were chosen to show the results. (c) The expression levels of NANOG 
OCT4, and SOX2 in somatic cells, their derived hiPSCs and H1 cells were evaluated by qRT-PCR. The gene 
expression level in each sample was detected triple times, and its mean expression was used as its expression 
value. Each point represents a sample value. The P-value was calculated by Student’s t-test. *P < 0.05, **P < 0.01, 
***P < 0.001. (d) The detection of OCT4, SOX2, SSEA4, TRA-1-60 and TRA-1-81 by immunostaining. scale 
bar: 200 um. (e) The histology of teratomas induced from hiPSCs derived from different somatic cells. The 
hiPSCs generated from sample 2 were chosen to show as an example. Teratomas were stained with H&E.
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expectation-Maximization method implemented in RSEM v1.2.22. Gene count and transcripts per million (TPM) 
matrix information was obtained for each sample. After filtering low-expression genes with an average expres-
sion less than 1, the log2(CPM + 1) values of each sample were used for the principal component analysis (PCA) 
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Fig. 3 Gene expression among somatic cells and hiPSCs. (a) Principal components analysis of different  
somatic cells and their derived hiPSCs. (b) Correltion analysis of different somatic cells and their derived 
hiPSCs. (c) The mRNA expression levels of the pluripotency and differentiation related genes. (d) Venn plot  
of DEGs among the three groups. Bips_B: PBMCs-derived hiPSCs Vs. PBMCs, Fips_F: SFs-derived hiPSCs Vs. 
SFs, Uips_U: UCs-derived hiPSCs Vs. UCs. (e,f) Gene set enrichment analysis of DEGs based on biological 
process GO and KEGG databases, respectively. The top 20 enriched pathways of each group were displayed.

https://doi.org/10.1038/s41597-023-02493-5


6Scientific Data |          (2023) 10:616  | https://doi.org/10.1038/s41597-023-02493-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

and the correlation coefficient calculation. Differentially expressed genes (DEGs) between somatic cells and their 
derived hiPSCs were determined by DESeq 2 v1.30.137. DEGs were identified with an adjusted P-value < 0.05 and 

sampleid

before_filtering after_filtering

total_reads total_bases q20_rate q30_rate GC_content total_reads total_bases q20_rate q30_rate
read1_mean 
length

read2_mean 
length GC_content

Bi1 167,085,244 25,062,786,600 0.97 0.92 0.5 165,215,442 24,690,424,461 0.97 0.92 149 149 0.5

Bi2 198,213,630 29,732,044,500 0.98 0.95 0.51 197,135,992 29,346,669,242 0.98 0.95 148 148 0.51

Bi3 154,626,132 23,193,919,800 0.98 0.95 0.5 153,744,964 22,943,020,341 0.98 0.95 149 149 0.5

Bs1 158,272,448 23,740,867,200 0.97 0.92 0.51 156,522,756 23,370,081,320 0.97 0.92 149 149 0.51

Bs2 125,392,896 18,808,934,400 0.97 0.91 0.51 124,162,240 18,543,921,985 0.97 0.92 149 149 0.51

Bs3 148,912,774 22,336,916,100 0.98 0.95 0.5 148,124,384 22,093,629,684 0.98 0.95 149 149 0.5

Fi1 147,477,168 22,121,575,200 0.97 0.92 0.5 145,817,296 21,774,630,298 0.97 0.92 149 149 0.5

Fi2 148,209,424 22,231,413,600 0.97 0.92 0.5 146,779,778 21,894,281,882 0.97 0.92 149 149 0.5

Fs1 167,903,624 25,185,543,600 0.97 0.92 0.51 166,251,896 24,812,269,267 0.97 0.93 149 149 0.51

Fs2 119,458,608 17,918,791,200 0.97 0.91 0.52 118,244,480 17,658,677,928 0.97 0.92 149 149 0.52

Fs3 136,870,536 20,530,580,400 0.96 0.91 0.52 135,223,114 20,174,078,894 0.97 0.91 149 149 0.52

Ui1 142,213,316 21,331,997,400 0.97 0.92 0.5 140,645,662 20,993,560,343 0.97 0.92 149 149 0.5

Ui2 182,961,012 27,444,151,800 0.98 0.95 0.5 181,910,786 27,106,815,710 0.98 0.95 149 149 0.5

Ui3 167,475,322 25,121,298,300 0.98 0.95 0.5 166,480,576 24,826,805,145 0.98 0.95 149 149 0.5

Us1 157,850,182 23,677,527,300 0.97 0.92 0.5 155,991,542 23,306,041,752 0.97 0.93 149 149 0.5

Us2 145,830,832 21,874,624,800 0.97 0.91 0.51 144,310,566 21,554,165,472 0.97 0.92 149 149 0.51

Us3 150,623,110 22,593,466,500 0.96 0.9 0.49 148,564,170 22,139,867,523 0.97 0.91 149 149 0.49

Table 1. RNA-seq data quality summary. Q20/30 means the average quality value of nucleotide in reads above 
20/30. B: PBMCs, F: skin fibroblasts, U: urine cells, i: iPSCs, s: somatic cells, 1: sample1, 2: sample2, 3: sample3.

sampleid paired_reads failed uniq_align mul_align %failed %uniq_align %mul_align %overall_align

Bs1 78,261,378 15,565,359 13,876,533 48,819,486 19.89 17.73 62.38 80.11

Fs1 83,125,948 15,145,147 16,124,951 51,855,850 18.22 19.40 62.38 81.78

Us1 77,995,771 15,521,232 14,698,685 47,775,854 19.90 18.85 61.25 80.10

Bi1 82,607,721 18,152,362 15,432,257 49,023,102 21.97 18.68 59.34 78.03

Fi1 72,908,648 16,418,354 13,467,377 43,022,917 22.52 18.47 59.01 77.48

Ui1 70,322,831 14,608,891 12,916,551 42,797,389 20.77 18.37 60.86 79.23

Bi3 76,872,482 17,838,929 14,025,668 45,007,885 23.21 18.25 58.55 76.79

Bs3 74,062,192 15,404,209 13,775,641 44,882,342 20.08 18.60 60.60 79.20

Us3 74,282,085 24,942,273 11,654,384 37,685,428 33.58 15.69 50.73 66.42

Ui3 83,240,288 18,751,705 15,045,643 49,442,940 22.53 18.07 59.40 77.47

Fs3 67,611,557 8,837,005 14,370,893 44,403,659 13.07 21.26 65.67 86.93

Bs2 62,081,120 13,230,579 11,020,800 37,829,741 21.31 17.75 60.94 78.69

Bi2 98,567,996 24,434,449 17,722,144 56,411,403 24.79 17.98 57.23 75.21

Fi2 73,389,889 15,725,880 13,506,663 44,157,346 21.43 18.40 60.17 78.57

Us2 72,155,283 14,419,793 13,421,532 44,313,958 19.98 18.60 61.41 80.02

Ui2 90,955,393 21,742,248 16,399,825 52,813,320 23.90 18.03 58.07 76.10

Fs2 59,122,240 7,432,055 12,316,937 39,373,248 12.57 20.83 66.60 87.43

Table 2. Summary of RNA-seq reads mapping results. uniq_align: unique alignment, mul_align: multiple 
alignment, overall_align: overall alignment.

hiPSCs somactic cells up_DEGs down_DEGs sum

BiPS PBMCs 5991 4212 10203

FiPS SFs 5356 4670 10026

UiPS UCs 4815 4515 9330

Table 3. The number of differently expressed genes (DEGs) between hiPSCs and somatic cells. BiPS: PBMCs-
derived hiPSCs, FiPS:SFs-derived hiPSCs, UiPS: UCs-derived hiPSCs. The genes with |log2FoldChange 
(FC)| ≥ 1, and an adjusted P-value < 0.05 were determined as DEGs.
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the absolute value of log2FoldChange > 1. While TPM matrix information was used to evaluate the expression 
levels of differentiation and pluripotency related genes. Gene set enrichment analysis was conducted by clus-
terProfiler v4.4.438 based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
databases.

Preprocessing of small RNA sequencing data. FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) was utilized to verify the sequence quality by assessing parameters such as Q20, Q30, 
GC-content and adapter sequences. The raw data were mapped to the human genome hg38 and human miRNA 
sequences from miRBase39 v22 to predict novel miRNAs and evaluate the expression levels of known miRNAs by 
miRDeep40 v2.0.1.2 in multiple samples mode. The mapping number of each read in the human genome hg38 was 
constrained by a maximum of 5. Low-expression miRNAs with an average expression of less than 1 were filtered 
out, and then log2(CPM + 1) values of miRNA in each sample were used to perform the principal component 
analysis (PCA) and calculate the correlation coefficient. Differentially expressed miRNAs (DEMs) were identified 

Sampleid total_reads total_bases q20_bases q30_bases Q20_rate Q30_rate mean_length gc_content

Bi1 15,983,996 799,199,800 796,826,629 792,870,660 0.997 0.992 50 0.53

Bi2 18,872,729 943,636,450 938,077,306 929,769,268 0.994 0.985 50 0.53

Bi3 15,732,231 786,611,550 785,093,177 781,918,272 0.998 0.994 50 0.54

Bs1 21,176,010 1,058,800,500 1,055,404,393 1,049,312,021 0.997 0.991 50 0.53

Bs2 21,911,464 1,095,573,200 1,092,947,383 1,088,359,267 0.998 0.993 50 0.54

Bs3 11,545,471 577,273,550 574,355,218 568,894,695 0.995 0.985 50 0.52

Fi1 14,233,184 711,659,200 709,793,867 706,682,059 0.997 0.993 50 0.52

Fi2 14,938,057 746,902,850 745,086,133 742,084,016 0.998 0.994 50 0.53

Fi3 11,886,246 594,312,300 592,697,475 589,236,954 0.997 0.991 50 0.54

Fs1 13,429,220 671,461,000 670,324,681 668,298,334 0.998 0.995 50 0.54

Fs2 19,247,873 962,393,650 959,346,447 954,100,077 0.997 0.991 50 0.54

Fs3 12,756,575 637,828,750 636,326,501 633,069,197 0.998 0.993 50 0.54

Ui1 16,088,130 804,406,500 802,295,973 798,437,967 0.997 0.993 50 0.53

Ui2 14,219,139 710,956,950 707,262,402 700,814,988 0.995 0.986 50 0.54

Ui3 12,721,163 636,058,150 632,932,608 627,133,372 0.995 0.986 50 0.53

Us1 14,992,844 749,642,200 747,796,975 744,619,620 0.998 0.993 50 0.53

Us2 21,346,203 1,067,310,150 1,063,346,899 1,056,552,796 0.996 0.99 50 0.53

Us3 11,545,471 577,273,550 574,355,218 568,894,695 0.995 0.985 50 0.52

Table 4. Quality summary of small RNA-seq data.

sampleid

mapping to genome mapping to human miRNA

total mapped unmapped %mapped %unmapped total mapped unmapped %mapped %unmapped

total 271,360,581 84,789,895 186,570,686 31.246 68.754 269,729,573 6,754,549 262,975,024 2.504 97.496

Bi1 15,762,375 3,908,311 11,854,064 24.795 75.205 15,685,441 139,053 15,546,388 0.887 99.113

Bi2 18,638,556 6,312,046 12,326,510 33.866 66.134 18,490,952 278,626 18,212,326 1.507 98.493

Bi3 15,416,194 3,949,971 11,466,223 25.622 74.378 15,388,520 116,991 15,271,529 0.760 99.240

Bs1 20,929,474 6,005,381 14,924,093 28.693 71.307 20,838,848 539,053 20,299,795 2.587 97.413

Bs2 21,300,568 12,536,808 8,763,760 58.857 41.143 20,928,490 1,003,553 19,924,937 4.795 95.205

Bs3 10,731,725 5,108,306 5,623,419 47.600 52.400 10,715,614 957,401 9,758,213 8.935 91.065

Fi1 14,093,922 3,743,562 10,350,360 26.562 73.438 14,021,907 128,966 13,892,941 0.920 99.080

Fi2 14,685,735 3,276,150 11,409,585 22.308 77.692 14,446,718 175,314 14,271,404 1.214 98.786

Fi3 8,118,568 5,057,441 3,061,127 62.295 37.705 8,107,302 934,318 7,172,984 11.524 88.476

Fs1 12,826,098 3,468,919 9,357,179 27.046 72.954 12,772,459 186,381 12,586,078 1.459 98.541

Fs2 18,768,802 2,814,758 15,954,044 14.997 85.003 18,645,871 77,853 18,568,018 0.418 99.582

Fs3 12,552,154 3,924,875 8,627,279 31.269 68.731 12,527,848 523,224 12,004,624 4.176 95.824

Ui1 15,995,141 4,334,943 11,660,198 27.102 72.898 15,931,942 131,848 15,800,094 0.828 99.172

Ui2 13,973,256 4,611,054 9,362,202 32.999 67.001 13,931,071 213,275 13,717,796 1.531 98.469

Ui3 12,142,115 3,730,789 8,411,326 30.726 69.274 12,124,356 179,931 11,944,425 1.484 98.516

Us1 14,557,860 2,909,650 11,648,210 19.987 80.013 14,479,603 82,197 14,397,406 0.568 99.432

Us2 20,136,313 3,988,625 16,147,688 19.808 80.192 19,977,017 129,164 19,847,853 0.647 99.353

Us3 10,731,725 5,108,306 5,623,419 47.600 52.400 10,715,614 957,401 9,758,213 8.935 91.065

Table 5. Summary of small RNA-seq reads mapping results.
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using the same method as for DEGs. The miRNA targeted genes were analysed by multiMiR41 v1.12.0 based on its 
database v2.3, which incorporated three validated miRNA-target interactions databases (miRecoord, miRtarBase 
and TarBase) and 8 predicted miRNA-target interactions databases (DIANA-microT-CDS, RIMMo, MicroCosm, 
miRDB, PicTar, PITA and targetScan). The down-regulated DEGs were used to explore the up-regulated DEMs 
target genes, while the up-regulated DEGs were used to explore the down-regulated DEMs target genes. The 
targeted genes found in validated databases or in more than three predicted databases underwent GO and KEGG 
pathway enrichment, as described above.

Data Records
Our raw data, consisting of 17 RNA-seq and 18 exosomes’ small RNA-seq data sets, was stored in the Genome 
Sequence Archive42 in National Genomics Data Center (NGDC)43 with the accession number HRA00369744. 
The corresponding expression matrix information was deposited in NGDC of China National Center for 
Bioinformation with the accession number PRJCA01366245.

technical Validation
the characteristics of hiPSCs. Karyotype analysis indicated that the chromosome profiles of hiP-
SCs derived from PBMCs, SFs and UCs were without abnormality (Fig. 2a). The exogenous episomal DNA 
(OCT4, SOX2, KLF4, MicroRNA302-367 or c-Myc) was absent in all three somatic cell-derived hiPSCs (Fig. 2b). 
Compared with their respective somatic cells, the mRNA expression levels of OCT4, SOX2 and NANOG were 
significantly increased in hiPSCs from three categories (Fig. 2c). Immunofluorescence result revealed higher 
expression levels of the pluripotent protein markers (OCT4, SSEA4, TRA-1-60, and TRA-1-81) in hiPSCs derived 
from the three somatic cell types compared to their respective somatic cells (Fig. 2d). The pluripotent potential 
of hiPSCs derived from the three types of somatic cells was further investigated by teratoma formation, which 
exhibited their ability to differentiate into three germ-layer (Fig. 2e). These results illustrated that our hiPSCs have 
similar pluripotent characteristics to human embryonic stem cells.

hiPSCs somatic cells up_DEMs down_DEMS sum

BiPS exosomes PBMCs exosomes 169 79 248

FiPS exosomes SFs exosomes 109 28 137

UiPS exosomes UCs exosomes 79 27 106

Table 6. The number of DEMs between hiPSCs and somatic cells. DEMs: differently expressed miRNAs, BiPS: 
PBMCs-derived hiPSCs, FiPS:SFs-derived hiPSCs, UiPS: UCs-derived hiPSCs. The miRNAs with |log2 fold 
change (FC)| ≥ 1, and an adjusted P-value < 0.05 were determined as DEMs.

Type Database number B_dnDEM2upDEG B_upDEM2dnDEG F_dnDEM2upDEG F_upDEM2dnDEG U_dnDEM2upDEG U_upDEM2dnDEG

validated miRNA-
gene interaction

>0 18,902 15,689 6,562 16,317 9,648 8,318

>1 1980 1,207 581 1,561 1,041 917

>2 38 77 14 41 23 55

predicted 
miRNA-gene  
interaction 

>3 2,353 3,535 523 3,280 1,027 2,354

>4 2,353 3,535 523 3,280 1,027 2,354

>5 251 270 82 346 164 300

>6 31 20 6 38 17 35

Table 7. The number of DEGs targeted by DEMs. B: PBMCs-derived hiPSCs vs. PBMCs, F: SFs-derived hiPSCs 
vs. SFs, U: UCs-derived hiPSCs vs. UCs. dnDEM2upDEG illustrated up-regulated DEGs are used to search the 
targeted genes of down-regulated DEMs, upDEM2dnDEG illustrated down-regulated DEGs are used to search 
the targeted genes of up-regulated DEMs.

Database Type Bips_B Fips_F Uips_U

GO:BP

DEGs 1,175 523 668

DEMs2DEGs 1,057 674 668

Shared 969 386 474

KEGG

DEGs 98 60 74

DEMs2DEGs 82 55 79

Shared 80 41 60

Table 8. The number of enriched pathways of DEGs and their targeting DEGs based on biological process GO 
and KEGG. DEMs2DEGs: DEGs targeted by DEMs. Bips_B: PBMC-derived hiPSCs vs. PBMCs, Fips_F: SF-
derived hiPSCs vs. SFs, Uips_U: UC-derived hiPSCs vs. UCs.
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Quality control of RNA sequencing data. High-throughput RNA sequencing generated 1.2~2.0 × 107 
raw reads per sample, with the Q20 > 0.95, Q30 > 0.90, GC-content close to 0.50, and the mean length of 149 bp 
for clean reads(Table 1). Most of the pair reads were aligned to the hg38 genome, with the sample align rate 
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Fig. 4 Expression of miRNA in exosomes from somatic cells and hiPSCs. (a) Principal components analysis 
applied to different somatic cells and their derived hiPSCs. (b) Correlation analysis of different somatic cells 
and their derived hiPSCs. (c) Venn plot of differentially expressed miRNA (DEMs) among the three groups, 
Bips_B: PBMCs-derived hiPSCs Vs. PBMCs, Fips_F: SFs-derived hiPSCs Vs. SFs, Uips_U: UCs-derived hiPSCs 
Vs. UCs. (d) The expression profile of the shared DEMs (e,f) Gene set enrichment analysis of DEGs targeted 
by DEMs based on GO and KEGG databases, respectively. The top 20 enriched pathways of each group were 
shown.
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ranging from 66% to 88% and the unique mapping rate ranging from 15% to 22%, much lower than that of the 
multiple mapping rate (Table 2).

Genes expression analysis. Gene expression analysis was performed using three biologically replicated 
samples, except that SFs-derived hiPSCs had only two samples. The correlation coefficients calculated based 
on Pearson correlation and PCA analysis implied good repeatability within the biological replicates and high 
similarity among hiPSCs derived from the three kinds of somatic cells (Fig. 3a,b). The gene expression levels 
of the pluripotency related genes (PPA2, GDF3, TERT, NANOG, ZFP42, FGF4, LIN28A, DPPA4, POU5F1, and 
SOX2) were significantly higher in hiPSCs than that in somatic cells, whereas the gene expression levels of differ-
entiation related genes (NR2F2, ANPEP, and SOX17) were significantly lower (Fig. 3c). The analysis of differen-
tially expressed genes (DEGs) between somatic cells and their derived hiPSCs indicated significant changes from 
a differentiated state to a pluripotency state. In these sets, a total of 10,203 genes, 10,026 genes and 9,330 genes 
were identified as DEGs (Table 3), respectively, including 4446 shared DEGs with 2279 consistently up-regulated 
DEGs and 1423 consistently down-regulated DEGs. (Fig. 3d). In addition, the top 20 pathways identified in the 
enrichment analysis of DEGs based on the biological process GO and KEGG indicated that immune-related 
pathways were mostly down-regulated in PBMCs-derived hiPSCs compared to PBMCs. Up-regulated synaptic 
signalling and down-regulated embryonic skeletal system development were both observed in the SFs and UCs 
categories (Fig. 3e,f).

Processing the small RNA sequencing data. A total of 2.83 × 107 raw reads were generated, ranging 
from 1.1 to 2.2 × 106 raw reads per sample. The Q20 rate was more than 0.99, the Q30 rate was more than 0.98, 
and the GC content of raw reads with a mean length of 50 bp was approximately 0.53 (Table 4). In summary, 
the small RNA-seq sequencing data have quite good quality. The mapping rate of small RNA reads to the hg38 
genome per sample ranged from 19% to 62%, while the mapping rate of reads to human miRNA sequences ranged 
from 0.5% to 12%, with an average rate of 2.50% (Table 5). According to data GSE21655646 deposited on the NCBI 
GEO database, the mapping rates of small RNA sequences extracted from exosomes to human miRNA sequences 
ranged from 1.26% to 2.68%, indicating a lower alignment rate of miRNA from exosomes compared to the cellu-
lar datasets. The results of correlation coefficients and the PCA analysis implied good repeatability within the bio-
logical replicates, except for sample Us3, which displays a closer relationship to the PBMCs exosomes (Fig. 4a,b).  
The exosomal miRNA data generated from three categories of hiPSCs exhibited a high degree of similarity, vastly 
different from their somatic miRNA samples. A total of 248, 137 and 106 miRNAs were separately identified as 
differentially expressed miRNAs (DEMs) in these three groups, including shared 72 DEMs with 68 consistently 
up-regulated DEMs and 5 consistently down-regulated DEMs (Table 6, Figs. 3d, 4c). The items of DEGs targeted 
by DEMs were summarised in Table 7. The gene set enrichment analysis of targeted DEGs for each group based 
on biological process GO, and KEGG was conducted and revealed similar enriched pathways to DEGs (Table 8). 
The top 20 enriched pathways were shown in Fig. 4e,f.

Code availability
The command script for MirDeep2 and downstream analysis code written by R are available at the GitHub 
repository https://github.com/Andelyu/hiPSCs_exosomal_miRNA_project.
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