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2DeteCT - A large 2D expandable, 
trainable, experimental Computed 
Tomography dataset for machine 
learning
Maximilian B. Kiss1 ✉, Sophia B. Coban1,2, K. Joost Batenburg1,3, Tristan van Leeuwen1,4  
& Felix Lucka  1 ✉

Recent research in computational imaging largely focuses on developing machine learning (ML) 
techniques for image reconstruction, which requires large-scale training datasets consisting of 
measurement data and ground-truth images. However, suitable experimental datasets for X-ray 
Computed Tomography (CT) are scarce, and methods are often developed and evaluated only on 
simulated data. We fill this gap by providing the community with a versatile, open 2D fan-beam CT 
dataset suitable for developing ML techniques for a range of image reconstruction tasks. To acquire it, 
we designed a sophisticated, semi-automatic scan procedure that utilizes a highly-flexible laboratory 
X-ray CT setup. A diverse mix of samples with high natural variability in shape and density was scanned 
slice-by-slice (5,000 slices in total) with high angular and spatial resolution and three different beam 
characteristics: A high-fidelity, a low-dose and a beam-hardening-inflicted mode. In addition, 750 out-
of-distribution slices were scanned with sample and beam variations to accommodate robustness and 
segmentation tasks. We provide raw projection data, reference reconstructions and segmentations 
based on an open-source data processing pipeline.

Background & Summary
X-ray computed tomography (CT) is a non-invasive X-ray absorption-based imaging technique used in a range 
of fields, including medicine, manufacturing industry, food industry, and materials science. For a CT scan, X-ray 
projection images of an object are taken from multiple angular positions. To obtain a reconstruction of this 
acquired data, an inverse problem has to be solved through analytical methods such as filtered back-projection 
or iterative reconstruction algorithms. The overarching methodology to reconstruct images from these meas-
urements is called computational imaging.

In recent years, the field of computational imaging focused on developing data-driven methods for image 
reconstruction1. With that focus also the need for large datasets increased. In particular, image reconstruction 
based on deep learning (DL) methods, such as deep neural networks (DNNs), requires a large amount of real-
istic data for both evaluating the developed methods on real world applications as well as for constructing the 
method itself. For example, supervised learning approaches optimize the network parameters based on training 
data composed of a large number of representative pairs of input and desired ideal output data of the network 
(i.e., the ground truth).

While in various application fields of DL there already exist large and open data collections such as MNIST2 
for handwritten digit recognition or IMAGENET for image classification/processing3, suitable experimental 
data collections for computational imaging with high-quality ground truth reconstructions and/or segmen-
tations are scarce. For magnetic resonance imaging (MRI), the fastMRI dataset4 is a larger dataset containing 
raw (unprocessed) k-space data of knees and brains acquired across multiple institutions and scanners. There 
are some datasets available for X-ray CT but unfortunately they lack certain desirable characteristics: The Mayo 
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clinic low-dose CT challenge of 20165 with 30 patient scans consisting of roughly 70 slices each has a fairly small 
number of scan subjects. Although their new release of 20216 has 300 patients another important downside of 
both datasets is that noisy reconstruction and projection data is simulated from clean reconstructed volumes. 
The LoDoPaB-CT dataset7 contains over 40,000 scan slices from around 800 patients selected from the LIDC/
IDRI database. But despite the large size of the data collection it still uses simulated low photon count measure-
ments and not experimental data. The walnut dataset8 provides 42 three-dimensional cone-beam CT (CBCT) 
scans of walnuts. Although it provides raw experimental data, the applicability of the dataset is limited through 
the small number of samples of the same object type and its design for a specific task in 3D CBCT. This makes it 
less useful for more general methods development. Overall, the few available datasets are limited in their appli-
cability to one computational imaging task.

A key disadvantage of available datasets for X-ray CT is that they commonly use commercial CT solutions 
with licensed software that have no (or limited) access to raw projection data or the specifics of the experimental 
acquisition. Therefore, mathematical and computational studies typically rely on artificial data simulated with 
varying degrees of realism. To develop and train algorithms for computational imaging tasks such as low-dose 
reconstruction, limited or sparse angular sampling, beam-hardening artifact reduction, super-resolution, 
region-of-interest tomography or segmentation it is necessary to have corresponding experimental training 
data. The field of X-ray CT still lacks such a large-scale, versatile, experimental dataset for machine learn-
ing. Especially two-dimensional, reconstructed CT slices would be useful for method development since the 
corresponding learning and reconstruction tasks require less computational resources compared to their 
three-dimensional counterparts.

Acquiring such a large 2D CT dataset encompasses various requirements: First, research groups need to have 
a scanning facility readily available and be able to also use it for a large-scale, time-extensive data collection pro-
cess. Second, the geometry and other acquisition parameters of this scanner must be highly adjustable to collect 
a dataset that can be used for a wide range of machine learning applications. Third, similar image characteristics 
as encountered in medical CT would be preferable because of the great importance of medical imaging as an 
application area of X-ray CT means. Last, it is necessary to limit manual intervention during the acquisition 
process to be able to reach a high number of acquired CT reconstruction slices. This requires the ability to 
automatize the acquisition process as much as possible.

In this paper, we describe in detail the steps involved in acquiring an unprecedented X-ray data collection by 
making extensive use of a highly flexible, programmable and custom-built X-ray CT scanner: The first step was 
to choose suitable scan parameters for the acquisition such as beam filtration, X-ray tube voltage and current, 
detector exposure time, binning and averaging, the number of projection angles and source, object and detector 
positions. The aim behind these choices was to acquire a rich projection dataset for each image slice that can be 
used for a wide range of imaging tasks such as supervised or unsupervised denoising, sparse-angle scanning, 
beam-hardening reduction, super-resolution, region-of-interest tomography or segmentation. It therefore pro-
vides a starting point for algorithm development with realistic experimental data. As a second step, a scanning 
object had to be designed in such a way that 2D slice scans resemble image features found in medical abdominal 
CT scans. For this a cylindrical tube was filled with a mix of samples of similar density but different shapes 
immersed in a powder. In the third step, an experimental set-up and a script generator program was developed 
that allowed to automatize the collection of 50 slices during an 8.5 h scan. In 111 scanning sessions (each with a 
different sample mix) and a total scanning time of more than 850 hours we acquired 5,000 slices over a duration 
of almost five months. Each of these slices was acquired in three different acquisition modes resulting in “clean”, 
“noisy”, and “artifact-afflicted” reconstructions. Furthermore, additional 750 out-of-distribution (OOD) slices 
were acquired, for which each ingredient was scanned separately, and scans with different parameters and/
or samples were designed. This was done to accommodate robustness tests or help with segmentation/foreign 
object detection tests.

To make this dataset accessible to a broad range of researchers including those who do not have 
high-performance computing facilities readily available, we provide also reference reconstructions and segmen-
tations, additionally to the raw projection data in sinograms and an implementation of the complete computa-
tional pipeline based on open-source software (cf. Figure 1).

The structure of the paper is as follows: The section “Experimental design” describes the overall study design, 
the experimental design of the acquisition and data processing protocols. In the section “Data records” the file 
structure of the data collection is described, while the “Usage notes” section contains all details on how to access 
and use it.

Methods
X-ray computed tomography scanner. The data collection has been acquired using a highly flexible, 
programmable and custom-built X-ray CT scanner, the FleX-ray scanner9, developed by TESCAN-XRE NV 
(https://info.tescan.com/micro-ct), located in the FleX-ray Lab at the Centrum Wiskunde & Informatica (CWI) 
in Amsterdam, Netherlands. It consists of a cone-beam microfocus X-ray point source (limited to 90 kV and 
90 W) that projects polychromatic X-rays onto a 14-bit CMOS (complementary metal-oxide semiconductor) flat 
panel detector with CsI(Tl) scintillator (Dexella 1512NDT10) and 1536 × 1944 pixels, 74.8 μm2 each. To create 
a 2D dataset, a fan-beam geometry was mimicked by only reading out the central row of the detector. Between 
source and detector there is a rotation stage, upon which samples can be mounted, cf. Figure 2. The machine com-
ponents (i.e., the source, the detector panel, and the rotation stage) are mounted on translation belts that allow the 
moving of the components independently from one another. Furthermore, we developed an in-house software 
toolbox for designing executable scan scripts for the scanner. With these, the scanner performs sophisticated 
acquisition protocols automatically without human intervention. The acquisition procedure that we programmed 
with this toolbox will be described in more detail in the “Data acquisition” section.
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experimental design. The three general aims of this data collection are as follows. First, to provide the com-
putational imaging community with a dataset that encompasses raw experimental measurement data that can be 
used to develop and test techniques in CT imaging for real world applications. These also include medical CT by 
producing similar image features and contrast in the dataset slices as exhibited in medical abdominal CT scans. 
Second, the possibility to expand the current scope of the dataset by adding more detailed multi-class segmenta-
tions or by adding more slices with the same or a different sample mix because of a reproducible setup. Third, to 
have a large enough dataset such that it can be used for developing deep learning algorithms for different compu-
tational imaging applications, including low-dose acquisition, limited or sparse-angle scanning, beam-hardening 
artifact reduction, super-resolution, region-of-interest tomography or segmentation. The three key features to 
achieve this were firstly, the design of a semi-automatic data acquisition; secondly, finding a scanning object and 
sample mix that is both, diverse enough as well as stable over the long scanning time; and thirdly, creating a scan-
ning setup and experimental design that enables the aforementioned applications. A total of 9 months went into 
the experimental design, developing and scripting the semi-automatic data acquisition, selecting and testing the 
different samples, designing the scanning setup and determining suitable acquisition parameters.

Semi-automatic data acquisition. To maximize the number of scanned CT slices it was strictly necessary to 
limit the amount of human intervention during the data acquisition. The idea was to use the flexibility of the 
scanner and its ability to be scripted to automatize the acquisition process as much as possible. The only neces-
sary human interaction would be to prepare the next sample mix and to start a scanning protocol, which then 
would acquire a certain number of slices automatically. In our optimized setting, acquiring a batch of 10 slices 
takes a fixed time of 1 h 42 mins, while 50 slices can be acquired in 8 h 34 mins. This way, the idle time of the 
scanner, e.g. at night, could be used to reach a large amount of slices.

Fig. 1 Overview of the scope of the 2DeteCT dataset.

Fig. 2 FleX-ray Lab: the computed tomography set-up used for the data acquisition. (1) cone-beam X-ray 
source; (2) Thoraeus filter sail; (3) Rotation stage; (4) Sample tube; (5) Flat panel detector. The objects 1, 3, 4, 
and 5 move from their red transparent front position to the mid position for the acquisitions of mode 3. In both 
positions 3,601 projection images per slice are taken while the object rotates 360 degrees.

https://doi.org/10.1038/s41597-023-02484-6
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Sample preparation. One of the aims of this dataset was to produce images with similar image features and 
contrast as abdominal medical CT scans. To achieve this, a container representing the body was used as a scan-
ning object and was filled with a mix of cm-scale objects mimicking the organs/bones submersed in a back-
ground medium resembling connective tissue. Furthermore, this mix of sample objects should have a high 
natural variability in both inter and intra-sample shape and density (see Table 1). In particular, one of the sam-
ples should be dense enough to correspond to bones/teeth and introduce beam-hardening effects. Lastly, this 
sample mix should stay stable during long lasting high-intensity X-ray exposure and therefore have especially a 
certain temperature stability.

To fulfill these requirements a variety of dried fruits and nuts were scanned and their appearance as well 
as their relative intensities in the reconstructed image slices were evaluated. Although the actual attenuation 
coefficients of the samples are not the same as for organs, bones and connective tissue in medical CT scans, the 
ratio between dense and soft regions are similar. Furthermore, some of the dried fruits and nuts have shapes 
that resemble organs, e.g. walnuts resembling brain tissue. The tested samples included: dried apricots, bananas, 
dates, figs, mangoes, raisins, and coffee beans as well as almonds, cashews, hazelnuts, para nuts, peanuts, pecans, 
pistachios, and walnuts. Furthermore, different stone types were tested for the sample selection as objects that 
introduce beam hardening effects such as different types of basalt, granite, lime stone, lava stone, marble, quartz, 
and slate. To avoid air volumes between the samples, various filler materials were investigated: cereal-based 
coffee powder, sand, saw dust, (powdered) sugar, salt, and sweetener. The requirements were similar or lower 
density than water, contrast to other samples, no/limited air bubbles, not too coarse in its fine structure, rather 
homogeneous, and temperature stable regarding aggregate state, physical extension, as well as density/humidity.

After evaluating all sample mix tests, the following sample mix was selected: almonds, dried banana chips, 
coffee beans, dried figs, lava stones, raisins, and walnuts immersed in cereal-based coffee powder as a filler mate-
rial. These samples were chosen to have three categories of densities, where in each category the objects differ 
mainly in size, shape, and fine structure but have a similar density. This is comparable to the medical imaging 
domain in which most organs have a similar density but differ mainly in size, shape, and fine structure. For our 
dataset, dried banana chips and coffee beans were chosen in the low-density category. In the medium-density 
category two samples had to be chosen from a diverse mix of nuts. Due to the bigger size of their fine structure 
walnuts were chosen over pecans. For the second nut, almonds were selected over cashews, hazelnuts, para nuts, 
peanuts, and pistachios because of their medium size and their simpler shape. In the high-density category rai-
sins were selected as a small-size sample and figs were found to be the most interesting samples in terms of fine 
structure in comparison to apricots, dates, and mangoes. The respective densities of these samples can be found 
in the appendix in Table 1. Since X-ray absorption is related to the density and thickness of the scanned material, 
these values are a first indicator for the measured intensities and their contrast to each other.

To avoid the samples to dry up too much over time through the long exposure to high energy X-ray radia-
tion, the sample mix was replaced three times in total. The amount of each sample within the final mixes can be 
found in Table 2 and was based on yielding a roughly equal share of volume within the sample mix.

The aforementioned sample mix was put into a sample container as a scanning object. The requirements for 
this were apart from a stable positioning and temperature/radiation exposure stability that the container did not 
absorb too much of the X-ray radiation. After testing different paper and plastic (PE, PVC, etc.) based containers 
a cylindrical cardboard tube was selected.

Because of the restrictions imposed by the inner dimensions of the scanner and the maximal diameter usa-
ble on the scanner sample stage (109.4 mm) a cardboard tube with 10 cm inside diameter and 34 cm of height 
was used. To prevent unwanted scattering from the aluminum sample stage the sample tube was elevated by a 
few centimeters with a 3D-printed PETG sample stage cylinder of 50.0 mm in height. To ensure that the setup 
remains the same this cylinder can be steadily and reproducibly positioned into a carved out circle on the sample 
stage and the cardboard tube was positioned centrally onto this sample stage cylinder using superglue.

For the additional 750 out-of-distribution (OOD) slices, each ingredient in the mix was scanned separately 
and new samples were included to accommodate robustness tests or help with segmentation or foreign object 
detection tests. The OOD sample objects were fresh figs, grapes, hazelnuts, pistachios, peanuts and titanium 
prostheses screws. The latter were chosen to have objects in the sample mix that create even more severe artefacts 
than the lava stones and furthermore are used in clinical practice.

Object Density (g/cm3)

Cardboard tube 0.689

Cereal coffee powder 0.260

Banana 0.422

Coffee beans 0.432

Walnut 0.494

Almond 0.507

Raisin 0.612

Fig 0.629

Lava stone 1.5–1.9*

Table 1. Reference densities of the final sample mix as published by the Agricultural Research Service of the 
U.S. Department of Agriculture (https://www.aqua-calc.com). *Depending on its porousness of 20–50%.
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Scanning setup and parameter choices. The scanning setup had to be designed in such a way that the dif-
ferent application areas for the data collection could be served. Namely, denoising, sparse-angle scanning, 
beam-hardening reduction, super-resolution, region-of-interest tomography or segmentation. Since data for 
sparse-angle, super-resolution and region-of-interest tomography can be generated from scans with a large 
amount of angle projections and high resolution, the objectives were to acquire at least a noisy, a beam-hardening 
artifact-inflicted and a “clean” scan as a ground truth and starting point for constructing a high-confidence 
segmentation.

Therefore, data has to be acquired in three different acquisition modes: Mode 1 being the noisy, low-dose 
acquisition; mode 2 being the clean, high-dose acquisition; and mode 3 being the beam-hardening 
artifact-inflicted acquisition. To achieve both beam-hardening artifact-inflicted and “clean” images from the 
same sample it is necessary to scan with and without beam filters. Since the FleX-ray scanner does not encom-
pass an automatic filter wheel we developed a new kind of setup within our scanner cabinet. To be able to scan 
multiple vertical slices with a filter we built a “filter sail” which was placed between the X-ray tube and the sam-
ple tube. Since the source, rotation stage and detector can be moved at the same time it was possible to get this 
filter sail into the beam axis without human interaction during the process (cf. red arrows in Fig. 2).

For this a second scanning position in the scanning cabinet was identified which is located in the front 
instead of the middle of the scanner (on the transversal axis). After testing that this scanning position yields 
indistinguishable results with otherwise identical acquisition parameters to the “mid position” a scanning script 
was developed that will move between these two position depending on which acquisition mode shall be used 
at that moment.

The “front position” was used for mode 1 and 2 whereas mode 3 was acquired in the “mid position”. This 
distinction was necessary since mode 1 and 2 require a filter setup while measurements in mode 3 are acquired 
without a filter. This means in the “front position” the X-rays go through the filter sail whereas in the “mid posi-
tion” they are not filtered. To limit the time spent on motor movements the scans were carried out in batches of 
10 slices in each mode.

The next choice for the scanning setup regarded the positioning within the scanner cabinet and encompassed 
three objectives: Sufficient photon flux, high resolution, and good detector coverage. These are mainly influ-
enced by two parameters, the so-called Source-to-Object Distance (SOD) and Source-to-Detector Distance 
(SDD). The bigger the SDD is, the more parallel the beam geometry is. At the same time though the photon flux 
decreases. While it is desirable to have a parallel beam geometry, a decrease in photon flux necessitates longer 
scanning times or the noise increases which prolongs the data acquisition significantly. The SOD and its ratio 
with the SDD, called magnification factor =mag SDD

SOD
, determine the resolution of the scan. This means what 

length inside the object is covered by one detector pixel det and accordingly, the resolution can be calculated as 
follows: res det

mag
= . We strived to maximize spatial resolution subject to the constraint that the size of the 

scanned object does not exceed the size of the detector.
The positioning of both sample tube and detector was limited by the dimensions of the inside of the scanner, 

the sample tube, the size of the detector, and the possible motor movements. With a minimal motor position 
distance between detector and rotation stage of 63 mm on the magnification axis, 529 mm was found to be a 
suitable SDD and increasing the distance to the sample tube to an SOD of 431 mm increased the footprint of the 
scanned object with respect to the width of the detector. This resulted in a sufficient photon flux and a resolution 
of 60.95 μm3. Although the size of our scanning object (10 cm diameter) is much smaller than a patient’s body 
in medical CT scans (up to 50 cm diameter) the ratio between the typical resolution and size are comparable (60 
and 300 μm respectively).

After the selection of the sample mix and sample tube as well as the positioning suitable beam parameters for 
the desired application areas had to be found. Two main problems arise though for the chosen scanning setup 

Sample Mix 1 (slices 1–1,800) Mix 2 (slices 1,801–3,720) Mix 3 (slices 3,721–5,000) Mix OOD (slices 5,521–6,370)

Cereal coffee powder 400 g 400 g 400 g 400 g

Banana 75 g 79 g 80 g 80 g

Coffee beans 60 g 58 g 54 g 54 g

Walnut 84 g 73 g 79 g 79 g

Almond 117 g 112 g 111 g 111 g

Raisin 111 g 100 g 110 g 110 g

Fig 282 g 285 g 290 g 290 g

Lava stone 171 g 154 g 177 g 177 g

Fresh fig 0 g 0 g 0 g 5 pieces*

Grape 0 g 0 g 0 g 121 g*

Hazelnut 0 g 0 g 0 g 105 g*

Pistachio 0 g 0 g 0 g 87 g*

Peanut 0 g 0 g 0 g 55 g*

Titanium prostheses screws 0 g 0 g 0 g 4 screws*

Table 2. Sample distribution for the three different sample mixes. *only one of them included in the mix during 
each OOD scan.

https://doi.org/10.1038/s41597-023-02484-6
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and experimental design: Firstly, lab X-ray sources emit a spectrum of X-ray energies. They have a so-called 
polychromatic beam in contrast to synchroton facilities which have a monochromatic beam consisting only 
of X-rays of one distinct energy11. The broader the beam spectrum is, the larger the occurring beam hardening 
effects are12,13. Secondly, low energy photons are absorbed more strongly by larger objects limiting the amount 
of detected photons. Therefore, a low average beam energy leads to high noise. Hence, the beam spectrum of 
the X-rays needed to be optimized to produce “clean” reconstructions with limited noise and beam-hardening 
artifacts.

For this different combinations of tube voltage and filters to shape the beam spectrum were tested. First, the 
lower bound of the X-ray energy required to penetrate the object was determined. A tube voltage of 40.0 kV pro-
duced virtually no signal on the detector and the noise was too high. For a tube voltage of 60.0 kV and maximum 
current of 1000 μA a sufficient amount of photons was measured, but without using filters noticeable beam hard-
ening artifacts were observed in the reconstructions. Next, the tube voltage was set to the maximum of 90.0 kV 
and beam filtration was used to improve the image quality. To reduce the beam hardening effects the low-energy 
photons were filtered out by placing thin sheets of metal between the X-ray tube and the sample tube. A variety 
of filters of different materials (Al, Cu, Sn, W) and thicknesses (0.01mm–0.50 mm) as well as combinations of 
them were tested. A popular compound filter in CT imaging, the so-called “Thoraeus filter”14, showed the best 
performance. Its compound consists of a tin filter, followed by a copper and after that an aluminum filter of var-
ying thicknesses and effectively reduces the amount of photons carrying an energy of 1.5 keV to 70.0 keV. After 
testing a variety of thicknesses for the different compounds the final filter setup was composed of Sn = 0.1 mm, 
Cu = 0.2 mm, and Al = 0.5 mm. To have sufficient signal the tube current had to be set again to the maximum 
of 1000 μA. Figure 3 illustrates that with the chosen compound filter almost all photons with energies below 
40.0 keV are filtered out of the beam spectrum which will reduce the beam hardening artifacts.

Tube voltages employed by medical CT scanner commonly range between 80 and 140 kV and sometimes also 
use tin filtration between 0.4 and 0.8 mm15. The maximum tube voltage available for our particular CT-system 
is bound by regulatory requirements to 90 kV but nevertheless can be considered comparable to medical CT 
scanners. For the low-dose acquisition setting we chose a current of 33.3 μA resulting in a tube power of 3.0 W. 
According to Lee W. Goldman the relationship between dose and tube current is linear16. Therefore, mode 1 
is a 1/30 dose acquisition in comparison to mode 2. Note however, that we maximized the dose in mode 2 to 
obtain the best possible image quality while ensuring sufficient slice throughput. In medical imaging, the “full” 
dose is typically chosen as low as reasonably achievable (ALARA) to still obtain images with sufficient quality 
for the clinical task at hand. In clinical practice, “tube current”-“exposure time” products range between 50 
and 400 mAs17. The clean, high-dose acquisition of mode 2 has a “tube current”-“exposure time” product of 
~18.0 mAs, whereas the one of the noisy, low-dose acquisition of mode 1 is given by 0.6 mAs. However, this 
comparison has to be taken with caution since the scanning object is much smaller compared to a medical 
CT scan and the geometry of the scanning setup largely differs from a clinical setup. The circumference of our 
scanning object is roughly 35 cm whereas 50 to 100 cm are standard abdominal circumferences for children and 
adolescents17.

Lastly, the exposure time and the number of projections for the acquisition of the scans was chosen. For the 
latter an application of the Nyquist-Shannon sampling theorem to CT yields that the achievable image resolution 
is not limited by the angular sampling rate if the number of projections is chosen greater than the number of 
detector pixels times π/218, which amounts to × =π1912 3003

2
 in our setting. Therefore, 3,601 projections were 

chosen where the first and last projection coincide to have a standard angular increment of 0.1 deg. For the expo-
sure time 50 ms (20 Hz) ensured that all projections acquired for one slice are obtained within 3 min scanning 
time without saturating the detector in any of the acquisition modes. All projection images were taken without 
any hardware binning or averaging. The summary of the acquisition parameters used can be found in Table 3.

Fig. 3 Beam spectra of a tungsten target X-ray source with an X-ray exit window made of 300 μm Beryllium 
operated at 60 kV with no added filtration and 90 kV tube voltage with no added filtration and filtered with a 
Thoraeus filter of Sn = 0.1 mm, Cu = 0.2 mm, Al = 0.5 mm simulated by TASMIP software40.

https://doi.org/10.1038/s41597-023-02484-6
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Data acquisition. As described in the section “Experimental design” the data acquisition was done in a 
semi-automatic fashion. Using our in-house script generator (cf. Section “X-ray computed tomography scanner”)  
we developed a scan protocol that can acquire 50 slices in all three acquisition modes in one continuous session 
lasting 8 h 34 mins. The most time consuming processes in this acquisition protocol after acquiring the 3,601 
projections are the motor movements to change between the acquisition modes since mode 1 and 2 are acquired 
in the “front position” while mode 3 is acquired in the “mid position”. This means that scanning them directly 
after each other would prolong the acquisition duration. To ensure that the sample mix does not move noticeably 
between the different acquisition modes, 10 slices have been scanned consecutively before switching the acqui-
sition modes.

For each acquisition mode and each 10 slice batch a dark-field and flat-field consisting of 100 averaged pro-
jections each were acquired for slice 1. Afterwards the 3,601 projections are acquired while the sample stage is 
rotating continuously. Subsequently, the source and detector move down by 1 mm and the next 3,601 projections 
are acquired. This process is repeated until the 10th slice of the batch, after which also a post-batch flat-field is 
acquired. Then the acquisition parameters are changed for mode 2 and the above process starts again before they 
are changed once again for mode 3 and the process repeats one more time. After that the next 10 slice batch is 
scanned starting again in mode 1. A visualization of the scanning procedure can be found in Fig. 4. Depending 
on the available time and/or scanner errors occurring between 10 and 50 slices were acquired per scanning 
session. In total 5,000 slices were acquired in 111 sessions which lasted between 1 h 42 mins (10 slices) and 8 h 
34 mins (50 slices).

Additionally to these slices acquired with the standard sample mix and the above mentioned acquisition 
parameters, the following out-of-distribution (OOD) scans were acquired:

•	 “pure-sample-ODD”: Only one type of sample is mixed with the filler material, scanned in the same way as 
the standard sample mix.

•	 “foreign-objects-ODD”: A new type of sample not contained in the standard sample mix is added and the 
resulting new mix is scanned with the standard settings. The foreign objects used are fresh figs, grapes, hazel-
nuts, peanuts, pistachios, and titanium prostheses screws, cf. Table 2.

•	 “Noise-OOD”: the standard sample mix with a tube voltage of 90.0 kV, the Thoraeus filter but an even lower 
tube power of 1.5 W compared to the 3.0 W used in mode 1. mode1 contains the 1.5 W measurements, 
mode2 the usual noisy 3.0 W and mode3 the usual “clean” 90.0 W measurements.

Remark. During the acquisition of the dataset the detector broke down. It was exchanged by TESCAN-XRE 
NV and the FleX-ray scanner has been re-calibrated before resuming the dataset acquisition. Since for every 10 
slice batch both dark- and flat-fields are acquired the pixel sensitivities and dark currents of the individual detector 
should not play a role. Table 4 lists which slices have been acquired on which detector and with which sample mix.

Computational processing. The above described data acquisition process yielded a total of 540,195,000 files 
for the 5,000 standard slices in three modes each. The scanning of every slice produced per mode 3,601 projection 
data files (images of size 1 × 1912 in TIFF format) and for every 1st and 10th slice of a 10-slice-batch per mode 
there are either an additional pre-batch dark- and flat-field or an additional post-batch flat-field, respectively.

Sinogram production. To facilitate using the data collection, the 3,601 projection data files for one slice and 
mode were combined into one sinogram (image of size 1912 × 3601 in TIFF format) and stored in a folder 
together with copies of the dark- and flat-fields which belong to the respective 10-slice-batch. The script used 
for this (sinogram_production.py) can be found on GitHub: https://github.com/mbkiss/2DeteCTcodes.

Reconstruction production. The sinograms contain the raw photon counts per detector pixel that have to be 
corrected by off-set counts (“dark currents”) via the the dark-field (D) and pixel-dependent sensitivities via the 
flat-fields (F). According to the following formula the combined sinograms (S) can be corrected and converted 
into a beam intensity loss image (I) following the Beer-Lambert law after applying the negative logarithm to it:

Acquisition parameter Mode 1 Mode 2 Mode 3 Noise-OOD

Tube voltage 90.0 kV 90.0 kV 60.0 kV 90.0 kV

Tube power 3.0 W 90.0 W 60.0 W 1.5 W

Filters used Thoraeus*1 Thoraeus No Filter Thoraeus

Exposure time 50.0 ms

Effective detector pixel size 74.8 μm

Source to object distance *2 431.020 mm

Source to detector distance *2 529.000 mm

Number of projections 3601

Angular increment 0.1 deg

Table 3. Summary of the acquisition parameters used. *1(Thoraeus = Sn 0.1 mm, Cu 0.2 mm, Al 0.5 mm), 
*2These quantities are based on the motor readings of the FleX-ray scanner which get translated into physical 
quantities and are subject to alignment errors.
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The conversion of the sinograms into beam intensity loss images can in some cases yield negative or zero 
pixel values which were then replaced by the value 1 × 10−6 to ensure strictly positive values as a pre-requisite for 
the subsequent negative logarithm transform. Although the filtered back-projection (FBP) is a widely used ana-
lytical technique to solve the inverse problem of CT reconstruction, noisy and beam-hardening artefact-inflicted 
measurements yield reconstructions with streaking artifacts19.

Therefore, the reconstructions for each slice were obtained by using an iterative reconstruction technique 
to solve a non-negative least squares (NNLS) problem using 100 iterations of Nesterov accelerated gradient 
descent20 with a step size of τ = 1/L, where L is the Lipschitz constant of the forward operator. The forward and 
backward projection operators were implemented using the CUDA kernels in the ASTRA toolbox. All refer-
ence reconstructions were computed from down-scaled sinograms (956 × 3,601), yielding reconstructions of 
1,024 × 1,024 to limit the memory size of the dataset. To reduce the extent of artifacts - especially due to beam 
hardening in mode3 - a reconstruction plane of 233.0 mm2 was used that was resolved by 2,0482 pixels of phys-
ical size 113.8 μm2. After the reconstruction the images were cropped to the central square of 1,024 × 1,024. 
The computation for one reconstruction took about 63 s on a NVIDIA GeForce RTX 3070 with 8GB of GDDR6 
memory and an Intel Core i7-10700KF 8-core processor. The total dataset was reconstructed on a gpu-server 
with 4 NVIDIA GTX 1080Ti (11GB) and 2x Intel Xeon 8-core processor in 83.25 hours. Examples of recon-
structed slices are shown in Fig. 5. The reconstructions for mode1 display a strong noise due to the limited 
amount of photons while image slices for mode2 appear clean, noise- and artifact-free and those for mode3 
exhibit strong beam-hardening artifacts.

Segmentation production. The reference 4-class segmentation is based on the noise- and artifact-free reference 
reconstructions of mode2. The segmentation distinguishes between background, tube wall, filler material and 
sample mix objects and is created in six steps. First, a fixed mask for the tube wall is matched to the correct 
location within the respective slice by maximizing the total sum of the overlap between the mask and the recon-
struction via the Nelder-Mead simplex algorithm21. Second, everything outside of the tube wall is classified as 
background. Third, the sample mix objects and tube wall are identified by applying a thresholding algorithm 
based on average thresholds [0.00110607, 0.00407358] found through a three-class multi-otsu thresholding22 for 
some sample slices. Fourth, the sample mix objects are distinguished by removing the tube wall and background 
from the thresholding segmentation. Fifth, the filler material is identified by removing all other classes from 
the whole image. Sixth, after checking that all pixels are classified once but not more than that the four-class 
segmentation is put together and integer values are assigned to the different classes. The values are: background 
−1, tube wall −2, filler material −3, sample mix objects −4. The computation for the segmentation of the total 
dataset took about 4.25 hours on a NVIDIA GeForce RTX 3070 with 8GB of GDDR6 memory and an Intel Core 
i7-10700KF 8-core processor. An example of such a four-class segmentation is shown in Fig. 5.

Sample Detector 1 Detector 2

Mix 1 (slices 1–1800) slices 1–1800 —

Mix 2 (slices 1801–3720) slices 1801–2830 slices 2831–3720

Mix 3 (slices 3721–5000) — slices 3721–5000

Fig (OOD Pure) slices 5521–5570 —

Almond (OOD Pure) slices 5571–5620 —

Banana (OOD Pure) slices 5621–5670 —

Raisin (OOD Pure) slices 5671–5720 —

Walnut (OOD Pure) slices 5721–5770 —

Coffee beans (OOD Pure) slices 5771–5820 —

Lava stone (OOD Pure) slices 5821–5870 —

Mix 3 (OOD Noise) — slices 5871–5920

Titanium prostheses screws (OOD Mix 3) — slices 5971–6070

Peanut (OOD Mix 3) — slices 6121–6170

Pistachio (OOD Mix 3) — slices 6171–6220

Hazelnut (OOD Mix 3) — slices 6221–6270

Grape (OOD Mix 3) — slices 6271–6320

Fresh fig (OOD Mix 3) — slices 6321–6370

Table 4. Overview of all slices in the dataset assigned to their respective sample mix and used detector.
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Data Records
The 2DeteCT dataset is published as open access on zenodo (https://zenodo.org) in 12 repositories. The com-
plete data collection is organized as follows: There are a total of 5,000 slices with standard sample mix and stand-
ard acquisition parameters which are split into 10 ZIP archives containing 1,000 slices each. Additionally there 
are 750 OOD slices which are split into two ZIP archives. To simplify the usage of the data collection the raw 
projection data are split from the reference reconstructions and segmentations. Each of the raw data archives 
is ca. 40 GB in memory size and the corresponding reference reconstructions and segmentations amount to ca. 
12 GB archives. The separate DOIs for the raw data are as follows: Slices 1–1,00023, slices 1,001–2,00024, slices 
2,001–3,00025, slices 3,001–4,00026, slices 4,001–5,00027, OOD slices 5521–637028. The reference reconstructions 
and segmentations can be found under these DOIs: Slices 1–1,00029, slices 1,001–2,00030, slices 2,001–3,00031, 
slices 3,001–4,00032, slices 4,001–5,00033, OOD slices 5521–637034. Each slice folder slice00001 - 
slice05000 and slice05521 - slice06370 contains three folders for each mode: mode1, mode2, 
mode3. In each of these folders there are the sinogram, the dark-field, and the two flat-fields for the raw data 
archives, or just the reconstructions and for mode2 the additional reference segmentation.

•	 sinogram.tif is a 16-bit unsigned integer TIFF file of shape 1,912 × 3,601 containing the measured pro-
jection data of 3,601 projections acquired in a full rotation of 360° combined into one sinogram (cf. Figure 5); 
size: 13,460KB.

•	 dark.tif is a 16-bit unsigned integer TIFF file of shape 1,912 × 1 containing the dark-field measurement; 
size: 3.82KB.
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Fig. 4 Visualization of the scanning procedure.
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•	 flat1.tif and flat2.tif are 16-bit unsigned integer TIFF files of shape 1,912 × 1 containing the flat-field 
measurements before and after every 10-slice-batch scanned; size: 3.82KB.

•	 reconstruction.tif is a 32-bit floating point TIFF file of shape 1,024 × 1,024 containing the NNLS 
reconstruction computed from the pre-processed singoram according to formula 1 by 100 iterations of Nest-
erov accelerated gradient descent (cf. Figure 5); size: 4,097KB.

•	 segmentation.tif is 8-bit unsigned integer TIFF file of shape 1,024 × 1,024 containing the reference 
segmentation based on the mode2 reconstructions (cf. Figure 5); size: 1,025KB.

Technical Validation
The FleX-ray scanner is subject to regular maintenance and calibration. Log-files of the scans have been 
recorded with which we can trace what happened during the scans. Furthermore, the sanity of all collected 
data was checked via sinogram_production.py including that the number of files, their names and their 
dimensions are correct. Finally, a histogram analysis of all sinograms was performed to ensure that there is no 
over-saturation present.

Usage Notes
Raw projection data. The projection data for each slice are shared as combined sinograms of 16-bit 
unsigned integer TIFF files containing the raw photon counts per detector pixel. TIFF files can be interpreted and 
manipulated by common image visualization software such as ImageJ35 or scientific computing languages such as 
MATLAB36 or Python37, e.g., through the imageio package38. In order to be used by tomographic reconstruction 
algorithms, they typically need to be pre-processed as described above and as shown in the provided scripts.

Reconstructions and segmentations. In general, all reconstructions described in the previous sections 
can be computed from the projection data with the scripts provided. Depending on the computational resources 
available this could, however, require a large amount of computing time. Therefore, reference reconstructions are 
included in the data collection as well. They can be also used as comparison images to test novel reconstruction 
algorithms, or as ground truths for supervised learning algorithms. Furthermore, they can be used for CT image 
analysis tasks. Each reconstruction is given by a 32-bit floating point TIFF file.

The reference segmentations of the mode2 reconstructions can be computed by the users with the provided 
script segmentation_production.py as well but have been included in the uploads as well for the same 
reasons. Each segmentation is given by an 8-bit unsigned integer TIFF file.

expansion possibilities. Although the current scope of the 2DeteCT dataset is already offering a lot of ver-
satile applications, the reproducible setup and experimental design as well as the availability of our highly-flexible 
laboratory X-ray CT scanner enable us to expand the dataset upon reasonable request. Expansion possibilities 
include among others: First, adding more slices with the same sample mix to increase the size of the data collec-
tion to host possible coding challenges. Second, including various new samples in the sample mix or using an 
entirely different sample mix for smaller expansions of the data collection. Third, adding more detailed multi-class 
segmentations to the dataset to train more powerful segmentation algorithms. We encourage the computational 
imaging community to approach us for suggestions or collaborations on such expansions.

Further usage. This dataset can be used for developing both classical and ML-based algorithms for a vari-
ety of computational imaging applications, including low-dose acquisition, limited or sparse-angle scanning, 
beam-hardening artifact reduction, super-resolution, region-of-interest tomography or segmentation. With 
the provided raw projection data and the reference reconstructions in the three different modes, high-fidelity, 
low-dose, and beam-hardening-inflicted, it is possible to create training data pairs for supervised learning in 

Fig. 5 From left to right: Sinograms and reconstructions from slice 1661 (mode1 -low-dose), slice 4300 
(mode2 - artifact-free), slice 560 (mode3 - artifact-inflicted) and segmentation of slice 4300 based on the mode2 
reconstruction. To illustrate the variation in the sample mix we selected different slices for each mode.
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both the sinogram and the reconstructed image domain. For example, either the A1 (low-dose) or A3 (beam 
hardening-inflicted) iterative reference reconstructions can be paired with the A2 high-fidelity reference recon-
struction (cf. Figure 1) to train a denoiser or an artifact-reduction algorithm. For image segmentation the 
high-fidelity measurements or reference reconstructions of mode2 and the provided 4-class reference segmen-
tation can be used. Alternatively, the user could use their own multi-class segmentation approach. The provided 
reconstruction scripts can also easily be modified by the user to represent different scan scenarios: Limited or 
sparse angle tomography can be experimentally simulated by simply loading only subsets of the raw projection 
data; Super-resolution experiments can be conducted by either artificially binning the raw projection data into 
larger pixels, or by binning the reconstructed volumes into larger voxels; Region-of-interest tomography can be 
achieved by a combination of suitable sinogram sub-sampling and binning. In each of these cases, the provided 
iterative reconstruction using the full data can be set as a ground truth.

With this dataset we provide a starting point for general algorithm development with experimental X-ray 
CT data. Due to the design of the dataset, trained machine learning algorithms may generalize to the medical 
imaging domain, but further research with raw clinical projection data would be needed to demonstrate this. For 
ethical and regulatory reasons such data is commonly not publicly available for medical CT scanners39.

Code availability
Python scripts for loading, pre-processing and reconstructing the projection data in the way described above are 
published on GitHub: https://github.com/mbkiss/2DeteCTcodes. They make use of the ASTRA toolbox, which is 
openly available on (www.astra-toolbox.com www.astra-toolbox.com) or accessible as a conda package (conda 
install -c astra-toolbox astra-toolbox). ASTRA is currently only fully supported for Windows 
and Linux. Installing it on Mac OS is possible but in the current state very involved and version-dependent. 
All reference reconstructions provided have been computed with the Python scripts. Furthermore, while the 
scripts allow for angular sub-sampling the projections and the reference reconstructions were computed with all 
projections as mentioned in the subsection “Reconstruction production” above.
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