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Label-free tumor cells classification 
using deep learning and high-
content imaging
Chawan Piansaddhayanon1,2,3,8, Chonnuttida Koracharkornradt2,8, Napat Laosaengpha1,2, 
Qingyi tao4, Praewphan Ingrungruanglert5, Nipan Israsena5,6 ✉, Ekapol Chuangsuwanich1,2 ✉ 
& Sira Sriswasdi  2,7 ✉

Many studies have shown that cellular morphology can be used to distinguish spiked-in tumor cells in 
blood sample background. However, most validation experiments included only homogeneous cell 
lines and inadequately captured the broad morphological heterogeneity of cancer cells. Furthermore, 
normal, non-blood cells could be erroneously classified as cancer because their morphology differ from 
blood cells. Here, we constructed a dataset of microscopic images of organoid-derived cancer and 
normal cell with diverse morphology and developed a proof-of-concept deep learning model that can 
distinguish cancer cells from normal cells within an unlabeled microscopy image. In total, more than 
75,000 organoid-drived cells from 3 cholangiocarcinoma patients were collected. The model achieved 
an area under the receiver operating characteristics curve (AUROC) of 0.78 and can generalize to 
cell images from an unseen patient. These resources serve as a foundation for an automated, robust 
platform for circulating tumor cell detection.

Background & Summary
Circulating tumor cell (CTC), or cell from primary tumor that were shed into the patient’s bloodstream, holds 
important clinical values as a source of early, non-invasive biomarker of metastasis and cancer prognosis and 
many cancer types1,2. Existing technologies for isolating and detecting CTC mainly rely on the fact that most 
normal blood cells can be captured by antibody targeting certain cell surface markers, such as CD45, while 
tumor cells can be captured by antibody targeting different markers3. Although multiple antibodies have been 
developed for characterizing various CTC types, such as epithelial and mesenchymal CTC4, enrichment-based 
approaches still cannot account for the full heterogenicity of CTC. In fact, a study of lung cancer patients has 
shown that only 40–60% of CTC in blood samples were detected by enrichment-based approaches5. Nowadays, 
high-throughput sequencing technologies have also been applied to characterize the genome and transcriptome 
of individual CTC6 as a non-invasive mean to probe the molecular signature of primary tumors and to develop 
prognostic cancer biomarkers.

Another possibility for unbiased characterization of individual CTC is through high-content microscopy 
imaging of patient blood samples, whereby cancer cells can be differentiated from normal cells as well as clas-
sified into types based on their distinctive morphological properties7,8. These techniques are enabled by recent 
advances in deep learning which let us train artificial neural network models to accurately identify cell types9,10 
and pinpointing the locations of subcellular compartments11,12 from bright-field microscopy images without any 
labeling of the cells. A recent work has also shown that CTCs derived from different tumor sites exhibit clearly 
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distinct morphological characteristics13. This suggests the possibility of simultaneously detecting and predicting 
the tissue-of-origin for each CTC.

However, imaging-based CTC detections were mostly developed and/or validated only on spiked-in cells 
from a few cell lines that do not capture the broad heterogeneity and morphological properties of actual CTC14. 
For example, Wang et al.15 trained a deep learning model using 436 cultured cells and 1,309 white blood cells 
and validated their model on 32 CTCs from two patients. Although Guo et al.16 trained a deep learning model 
on 555 CTCs and 10,777 non-CTCs from 776 patients, the technique relied on counting the copy number of 
chromosome 8 via CEP8 immunofluorescence labeling instead of cell morphology. Other large-scale cell image 
datasets suitable for developing deep learning models are also similarity restricted to the morphology of cells 
from established cell lines17,18. Hence, the first step toward developing a generalized imaging-based CTC detec-
tion platform is to establish a large-scale microscopy imaging dataset of cancer and normal cells that capture the 
heterogeneity of both cancer types and tissue types.

Patient-derived organoids, or 3D cultures, have been shown as realistic sources of diverse cell types and mor-
phology that faithfully represent the genotype and phenotype of cancer subtypes19,20. The combination of paired 
cancer and normal cells derived from the same tissue of the same patient would serve as a good benchmark for 
an imaging-based CTC detection technique by testing whether the technique can distinguish between cancer 
and normal cells (as supposed to distinguishing between blood and non-blood cells). By expanding the dataset 
of cell images to cover multiple tissues, cancer types, and patients, and by linking cell images to prognosis and 
treatment response information, future imaging-based CTC platforms have the potential to not only detect 
CTC, but also predict the tissue-of-origin and aid clinical decision making.

In addition to acquiring more realistic data, improving the cancer cell detection model’s ability to handle 
imaging artefacts and cluttering of cells is also an important consideration for real-world applications. Past 
studies13,15,16,21 mostly focused on the model’s ability to classify whether a small proposed image regions contain 
a cancer cell (a classification task), but not necessarily the model’s ability to identify cancer cell locations in a 
large image with densely populated objects (a detection task). In pathological imaging domains22,23, multi-stage 
deep object detection pipelines have been widely and successfully utilized to address the issue of interfering 
artefacts and overlapping cells in cell detection tasks. Hence, a similar approach may be beneficial for cancer 
cell detection.

In this research, a large dataset of microscopic images of more than 75,000 individual organoid-derived 
cancer and normal cells from 3 cholangiocarcinoma patients were constructed, and a proof-of-concept deep 
neural network model was developed to (i) evaluate the possibility of distinguishing cancer and normal cells 
based on only unlabeled bright-field microscopic images and (ii) explore the morphological diversity of cancer 
and normal cells across cancer types and individual patients. Similar to recent efforts to catalog the molecular 
heterogeneity of organoids at single-cell resolution24, our work contributes to the frontier of cellular morphology 
resources in the same fashion. Furthermore, our dataset significantly expands existing collections of bright-
field organoid cell images by several folds25,26. The full dataset and code used for development are available at 
Figshare27 and https://github.com/cmb-chula/CancerCellVision-CCA, respectively.

Methods
Cholangiocyte organoid culture. Human liver tissues were obtained from patients undergoing surgery. 
The use of human cells for research in this study was approved by the Internal Review Board of the Faculty of 
Medicine, Chulalongkorn University (IRB No. 331/63). Informed contents were obtained from all patients.

For organoid establishment, liver tissues were cut into small pieces and washed 3 times with Advanced 
DMEM/F12 supplemented with 1x Glutamax, 10 mM HEPES, and 1x antibiotics (AdDF+++, Gibco, Thermo 
Scientific). Liver tissues were digested using 100 μg/ml dispase I and 300 U/ml collagenase XI in Cholangiocyte 
culture media with Advanced DMEM/F12 containing 10% R-Spondin condition media, 10% Wnt3a condi-
tion media, 1 mM N-Acetylcysteine, 10 mM Nicotinamide, 1x B27 supplement, 1x N2 supplement, 100 ng/ml 
Noggin, 10 nM Gastrin-I, 50 ng/ml EGF, 5 uM A83-01, 100 ng/ml FGF10 (Peprotech), 25 ng/ml HGF (R&D 
Systems), and 10 μM FSK (Tocris). The cultures were incubated at 37 °C for 1 hour. The digestion reaction was 
stopped with 10 ml AdDF+++ and the resulting suspension was filtered through a 70 μM cell strainer. Cells 
in suspension were collected via centrifugation and washed 5 times with AdDF+++. Cell pellets were resus-
pended in 70% Matrigel (Corning) and dropped on pre-warmed 24-well culture plates. After the Matrigel solid-
ified, 500 μl of organoid culture media was added. Cells were cultured at 37 °C with 5% CO2. The media were 
changed every 3 days and the cell passage was performed every 1-2 weeks by mechanically dissociating the cells 
with P1000 pipette tip.

Fluorescence labeling and high-content imaging. Each organoid was dissociated into single cells 
using TrypLETM Express Enzyme (Gibco, Thermo Scientific). Around 106 cancer and normal cells were obtained 
from each sample. Cells from cancer organoids were stained with a deep red fluorescence (Cytopainter ab176736) 
while cells from normal organoids were stained with green fluorescence (Cytopainter ab176735). Nuclei were 
stained with Hoechst. Cancer and normal cells were mixed at 1:1 ratio, dropped on 96-well plates, and subjected 
to bright-field and fluorescence imaging on an Opera Phenix instrument (Perkin Elmer). In total, 1207 paired 
bright-field and fluorescence images were acquired for cancer and normal cholangiocytes. Each image consists of 
1080 × 1080 pixels and contains 20–30 individual cells on average.

Image processing and preparation. Prior to the annotation step, brightfield and fluorescence images 
were prepossessed to make the individual cells more visually distinguishable to the human eyes. Data preprocess-
ing steps described in Christiansen et al.11 were performed with some modification. First, a median filter of size 
5 × 5 was repeatedly applied to the fluorescence images until convergence to reduce the salt-and-pepper noise. 
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After that, images were bilinearly downsampled by a factor of two to reduce shot noise. Finally, pixel intensities 
were normalized per image to the same mean and standard deviation. Frame stitching did not need to be per-
formed due to the difference in data acquisition technique. Flat field correction and dust artifact removal were 
also not applied because these operations did not significantly affect the quality of images here. After preprocess-
ing, the three fluorescence activations (red for cancer cells, green for normal cells, and Hoechst blue for nuclei) 
of each image were merged into a single three-channel image. Examples of prepossessed and annotated images 
are shown in Fig. 1.

Cell annotation. There were three human annotators. One annotator is an expert in microscopy with 
more than three years of experience. The other annotators are graduate biology students. An inter-annotator 
agreement was evaluated at the beginning by asking all three annotators to analyze the same set of 6 images  
(about 150 individual cells). Labelme28 was used to annotate the location and classification of each cell. Brightfield 
image and the corresponding fluorescence image were simultaneously shown to the annotators. Cells were clas-
sified as either cancer, if there was a clear red fluorescence signal, normal, if there was a clear green fluorescence 
signal, or unknown, if only the Hoechst signal was visible (Fig. 2).

The annotation process were divided into three phases (Figs. 3, 4). In the first phase, a subset of 30 images 
were fully annotated by the most experienced annotator and then used to train an initial object detection model, 
with both brightfield and fluorescence images as inputs. In the second phase, the initial model was used to gen-
erate bounding boxes and classification for the remaining images and the results were provided to the annotators 
for further refinements. Annotators can add new bounding boxes, remove erroneous bounding boxes, or change 
the classification of each cell. At the end of the second phase, 1087 out of 1207 images were analyzed by at least 
one annotator. These data were used to train the proof-of-concept model.

In the third phase, to construct the test set, 120 images were sampled from three patients (40 images each) 
and manually annotated by human annotators. Bounding boxes and classification labels from the initial object 

Fig. 1 Examples of preprocessed and annotated brightfield and fluorescence image for human annotator. Box 
colors indicate the object classes (red for cancer cells, green for normal cells, and blue for unknown cells that 
exhibited neither signals).

Fig. 2 Examples of annotated cells from each class.
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detection model were intentionally withheld to minimize biases. Furthermore, to maintain high annotation 
quality, each image was analyzed by at least two annotators and only cancer cells were annotated. The bounding 
boxes defined by the two annotators were merged using non-maximum suppression (NMS). When there is dis-
agreement, bounding boxes produced by the annotator with more experience were used.

Data Records
The dataset consists of 1207 paired brightfield and fluorescence microscopy images with a resolution of 
1080 × 1080 in the TIFF format with cell-level bounding box and classification annotations in the VOC format. 
The dataset is available on FigShare27. There are 84,503 cell-level bounding box annotations consisting of a 
bounding box (xmin, ymin, w, h), and object class. The three object classes are R, G, and U, which refer to tumor 
cell (red fluorescence), normal cell (green fluorescence), and unknown cell, respectively. The dataset is separated 
into training, validation, and test splits, where the test split contains only cancer cell annotation, while the rest 
have all three classes. The number of objects from each class in each data split is shown in Table 1.

Detailed description. Figure 5 summarizes the indexing structure of our dataset. Original raw image 
files are stored in the directory raw_images_for_model. This directory consists of two sub-directories: 
raw_images_for_model/brightfield contains brightfield images and raw_images_for_model/
fluorescence contains fluorescence images. Files are named with the r{patient_id}c04f{file_id}
p01.tiff format, where patient_id and file_id refers to the IDs of the patients (06, 07 or 08) and 
image, respectively. Each brightfield image and the corresponding fluorescence image share the same file name.  

Fig. 3 The annotation process for the training and validation sets. First, a small subset (30 images) was 
fully manually annotated. Then, the initial cell detection and classification model was trained to generate 
pseudolabels for all unannotated images. The pseudo-generated bounding boxes were then filtered using Non-
Maximum Suppression (NMS) to remove highly overlapping boxes. These pseudolabel annotation were then 
refined by the experts to obtain the final annotation used for training and validation. Note that every step in this 
annotation process used fluorescence images as guidance.

Fig. 4 The annotation process for the test set. Two annotators were separately tasked to annotate all cancer cells 
inside each brightfield image with paired fluorescence image as guidance. Results from the two annotators were 
combined and used as the final annotation.

Data split No. of image R G U

Train 967 22800 24862 24575

Validation 120 2823 2972 3135

Test 120 3336 (3374) (3459)

Table 1. The number of images and cells in each dataset split. Numbers in brackets were estimated from model 
prediction results under the guidance of fluorescence signal. For reference, the average precision for R, G, and U 
class on the validation split is 89.2, 88.0, and 80.8, respectively.

https://doi.org/10.1038/s41597-023-02482-8
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Each fluorescence image is a three-channel image file where channels correspond to red fluorescence signal (cancer cells),  
green fluorescence signal (normal cells), and Hoechst signal (nuclei), respectively. These raw images can be readily  
used as input for the detection stage without further post-processing.

Annotations are provided in the directory Annotations. Annotations for the training-validation split 
and the test split are provided separately in subdirectories trainval and test, respectively. Each annota-
tion file is named with the same r{paitent_id}c04f{file_id}p01.xml format as the raw image files 
provided in raw_images_for_model. The test subdirectory contains three subdirectories: Expert1, 
Expert2, and Unioned, which contain the annotations from the first expert, second expert, and the com-
bined version, respectively.

Fig. 5 The index of our proposed dataset.

https://doi.org/10.1038/s41597-023-02482-8
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Images of individual extracted cells, which are ready to use for cell classification, are provided in the direc-
tory raw_cell_images. There are three subdirectories R, G and U, each containing images of cells from 
each class. The file name of each cell follows the r{paitent_id}c04f{file_id}p01_{cell_id}_
{xmin}_{ymin}_{xmax}_{ymax}.tiff format, where cell_id refers to the ID of each cell, and 
(xmin, ymin, xmax, ymax) indicates the position of the cell in the raw image r{paitent_id}
c04f{file_id}p01.tiff.

Each line in train.txt, val.txt, and test.txt indicates the split of each data point. The file 
expert_annotation_id.csv contains the ID of the annotator who analyzed each image.

Technical Validation
Technical validations of our dataset were conducted by training a deep learning model to recognize cancer cells 
in given brightfield (unlabeled) microscopy image. Evaluations were performed at two levels: cell level and 
image level. The cell-level evaluation measures the model’s ability to distinguish between cancer (class R) and 
other cell types (classes G and U) from given cropped cells from the brightfield image as an input. On the other 
hand, the image-level evaluation measures the model’s ability to do so on the whole brightfield image. This setup 
introduces additional challenges since the model also has to differentiate cancer cells from background objects 
and imaging artifacts.

The experiments were conducted under three input settings: Brightfield, Brightfield + Hoechst, and 
Brightfield + Fluorescence. The Brightfield setting is a standard setup where the model receives only the bright-
field images as an input, while under the Brightfield + Hoechst or Brightfield + Fluorescence settings, Hoechst 
fluorescence signals or all fluorescence signals were also provided as input, respectively. The Brightfield + Hoechst 
setting reflects the situation where nuclei staining data are available. The Brightfield + Fluorescence setting 
was included to evaluate the upper bound of cancer cell recognition performance (as fluorescence signals that  
contain the ground truth are provided).

Here, a two-stage detection pipeline consisting of a detector and a classifier was developed. The detector is 
responsible for proposing bounding boxes of objects of interest, while the classifier refines the confidence score 
of each proposed bounding box. During the cell-level evaluation, the ground truth bounding box of each object 
was directly provided to the classifier. An overview of the pipeline is shown in Fig. 6.

Cell detection from brightfield image. A deep object detection artificial neural network based on 
Faster R-CNN29 with ResNet-5030 as a network backbone was developed to propose the locations of all cancer 
cells in a given brightfield image. The model receives an image as an input and return a set of bounding boxes,  
{(x1, y1, w1, h1, S1),…, (xn, yn, wn, hn, Sn)}, where each element of a tuple indicates the center of the predicted cell, 
the dimension of the predicted cell, and the confidence score for the cancer class, respectively. In our benchmarks, 
the model was trained to detect only cancer cells, as we found that training the model to simultaneously recognize 
cells from all three classes dampened the performance.

The original 1080 × 1080 pixels resolution of the brightfield image was used for training. The network 
backbone was initialized using ImageNet pre-trained weights31. Minor modifications were made to adjust 
the number of output classes and the first convolutional layer. The number of input image channels were 
adjusted to 4 and 6 accordingly when fluorescence signals are provided as input (the Brightfield + Hoechst and 
Brightfield + Fluorescence settings). The training framework was based on MMDetection32. Specifically, the 
model was trained using a batch size of 4 and stochastic gradient descent (SGD) as an optimizer. The learning 
rate was set at 10−3 for 32 epochs and then divided by a factor of 10 after 16 and 24 epochs have passed. Only 
random flip augmentation were performed during training.

Refinement of cell detection results. Downstream from the object detection network is a classifier, 
which is a deep convolutional neural network (CNN) that outputs the confidence score for each object predicted 
by the detector. ConvNext-B33 was used as the network backbone with a fixed input resolution of 128 × 128 pixels. 

Fig. 6 The main pipeline for cancer cell detection consists of two stages, detection and classification, each being 
a deep artificial neural network. The detector proposes possible cancer cells which are then re-examined by the 
classifier to refine the confidence scores. Finally, Non-Maximum Suppression (NMS) is performed to remove 
highly overlapping bounding boxes.

https://doi.org/10.1038/s41597-023-02482-8
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The network backbone was initialized using ImageNet31 pre-trained weights. The model was trained using a batch 
size of 64 and Adam as an optimizer. The learning rate was set at 1 × 10−4 for 18,000 iterations and then divided 
by a factor of 10 after 10,000 and 14,000 iterations have passed. Random geometric augmentation, gaussian blur, 
and random brightness augmentation were performed during training. During the image-level evaluation, the 
confidence score S is the weighted average between the scores produced by the detector, Sdet, and the classifier, 
Scls, with the weight ω, (S = (1 − ω)Sdet + ωScls). ω was set to 0 during the cell-level evaluation to disregard the 
contribution from the detector.

Cell-level performance evaluation. Cell-level evaluation was performed on three different training runs 
to calculate the mean and standard deviation of each performance metric on the validation split. The cancer class 
confidence thresholds that yielded the highest F1 scores were selected for calculating the precision and recall 
values. The areas under the receiver operating characteristics curve (AUROCs) were also reported.

Table 2 summarized the cell-level performance of our model. Unsurprisingly, when both brightfield and 
fluorescence images were used as input (the Brightfield + Fluorescence setting), the model could accurately 
recognize cancer cells with an F1 score of 94.5. While this setting is unrealistic, it confirmed the quality and 
consistency in the annotations. Figure 7a shows that most of the confusions involved unknown cells, which are 
either cancer or normal cells that exhibit nuclear staining fluorescence but no cytoplasmic staining fluorescence. 
There was only around 1% confusion between normal and cancer cells. With only brightfield images as input 
(the Brightfield setting), the cancer cell classification performance dropped to 60.5% F1 with more than 20% 
confusion between normal and cancer cells (Fig. 7b). When the Hoechst fluorescence channel which indicate 
the nuclei was included as an input, the classification performance improved noticeably to 66.0% F1 (Fig. 7c). 
This indicates that the model can take advantage of the differences in nuclear morphology between normal and 
cancer cell34.

UMAP visualization35 of the latent embedding vectors, extracted from the feature map of the last layer before 
the last global pooling in the neural network, for the individual cells (Fig. 8) shows that unknown cells not only 
reside between the normal cells and cancer cells but also are visually separable from the other classes. Without 
full fluorescence information, the learned embeddings were more ambiguous (Fig. 8b,c), especially between 
normal and cancer cells.

To investigate the impact of neural network architecture choice on cancer cell classification performance, 
an ablation analysis was conducted by changing the chosen base backbone network (ConvNext33) with 
EfficientNet36, DenseNet37, ResNet30, and Swin Transformer architecture38 and their variants. All models used 
the same training schedule and training configuration as a baseline model, except for Swin Transformer where 
the training schedule was extended to twice its original duration. Table 3 indicates that a change in network 
architecture can affect the performances as there were up to 3.0% F1 score and 2.2% AUROC gap between the 
best and worst performing one, with ConvNext-L achieving the overall highest classification performances.

Image-level performance evaluation. For the image-level evaluation, the ability of the model to locate 
cancer cells in a large brightfield image is also measured. Each bounding box predicted by the model is consid-
ered a match to a cancer cell if it overlaps with the annotated bounding box with an intersection-over-union 
(IoU) ratio of at least 0.5. Furthermore, because only the cancer cell class is considered here, the average pre-
cision at the IoU threshold of 0.5 (AP50) was measured instead of AUROC. F1 scores were also reported for 

Setting F1 precision recall AUROC

Brightfield 60.5 ± 0.4 50.5 ± 0.6 75.5 ± 1.7 77.5 ± 0.2

Brightfield + Hoechst 66.0 ± 0.2 58.7 ± 0.9 75.5 ± 1.3 83.0 ± 0.2

Brightfield + Fluorescence 94.5 ± 0.1 93.5 ± 0.3 95.5 ± 0.1 99.3 ± 0.1

Table 2. Cell-level cancer classification performance of our method on the validation split of our dataset.

Fig. 7 Normalized confusion matrix of the cell-level evaluation on the validation split.

https://doi.org/10.1038/s41597-023-02482-8
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comparison to the cell-level evaluation. Table 4 shows significant performance improvement in both Brightfield 
and Brightfield + Hoechst settings when the two-stage architecture (full pipeline) was used over the deep object 
detector (detection stage). This was because the detector can produce high-confidence false positives when many 
objects overlap with each other, such as in areas with high density of cells. The downstream classification stage can 

Fig. 8 2D embeddings of cells from different classes in the dataset. The embeddings were calculated using UMAP 
from the feature map at the last layer before the last global average pooling in the network. (a) Embeddings from 
the model trained with brightfield images and all fluorescence signals. (b) Embeddings from the model trained 
using only brightfield images. (c) Embeddings from the model trained with brightfield images and Hoeschst signal.

Backbone #Params
Training 
time

Brightfield Brightfield + Hoechst Brightfield + Fluorescence

F1 AUROC F1 AUROC F1 AUROC

Swin-B38 86.7 M 2.80 h 59.9 ± 0.1 75.8 ± 0.1 66.2 ± 0.1 83.0 ± 0.1 94.6 ± 0.1 99.3 ± 0.1

Swin-S38 48.8 M 2.18 h 59.8 ± 0.3 77.1 ± 0.1 66.2 ± 0.1 83.0 ± 0.1 94.6 ± 0.1 99.3 ± 0.1

ConvNext-L33 196.2 M 1.30 h 61.0 ± 0.1 77.9 ± 0.2 66.4 ± 0.4 83.2 ± 0.2 94.5 ± 0.1 99.3 ± 0.1

ConvNext-B33 87.6 M 0.87 h 60.5 ± 0.4 77.5 ± 0.2 66.0 ± 0.2 83.0 ± 0.2 94.5 ± 0.1 99.3 ± 0.1

ConvNext-S33 49.5 M 0.75 h 60.2 ± 0.1 77.2 ± 0.1 65.8 ± 0.3 82.7 ± 0.2 94.6 ± 0.1 99.3 ± 0.1

EfficientNet-B736 63.8 M 1.30 h 60.3 ± 0.4 77.1 ± 0.2 65.1 ± 0.2 81.9 ± 0.2 94.5 ± 0.2 99.1 ± 0.2

EfficientNet-B436 17.6 M 0.81 h 60.0 ± 0.1 77.3 ± 0.2 65.2 ± 0.3 82.2 ± 0.1 94.4 ± 0.2 99.2 ± 0.1

EfficientNet-B136 6.5 M 0.71 h 59.1 ± 0.2 76.2 ± 0.2 63.4 ± 0.3 80.6 ± 0.1 94.4 ± 0.2 99.2 ± 0.1

DenseNet-20137 18.1 M 1.23 h 60.0 ± 0.4 76.6 ± 0.2 64.6 ± 0.3 81.7 ± 0.3 94.5 ± 0.2 99.3 ± 0.1

DenseNet-16937 12.5 M 0.94 h 59.5 ± 0.2 76.5 ± 0.2 64.8 ± 0.2 81.8 ± 0.1 94.2 ± 0.1 99.2 ± 0.1

DenseNet-12137 7.0 M 0.75 h 59.3 ± 0.4 76.0 ± 0.3 64.2 ± 0.3 81.1 ± 0.2 94.4 ± 0.4 99.1 ± 0.1

ResNet-15230 58.2 M 1.03 h 58.8 ± 0.2 75.7 ± 0.3 63.9 ± 0.3 81.1 ± 0.2 94.5 ± 0.1 99.2 ± 0.1

ResNet-10130 42.5 M 0.78 h 59.1 ± 0.4 75.7 ± 0.1 63.6 ± 0.3 80.8 ± 0.1 94.4 ± 0.2 99.2 ± 0.1

ResNet-5030 23.5 M 0.55 h 59.1 ± 0.2 75.8 ± 0.1 63.8 ± 0.2 80.9 ± 0.1 94.6 ± 0.1 99.3 ± 0.1

Table 3. The effect of classifier backbone architecture choices on cell-level performances. Every experiment was 
conducted using NVIDIA RTX 3090 and Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz.

Detection Alogrithm Setting

Detection stage Full pipeline (ω = 1) Full pipeline (ω = 0.7)

AP50 F1 AP50 F1 AP50 F1

Faster R-CNN29

Brightfield 43.1 ± 0.6 50.3 ± 0.3 50.6 ± 0.2 54.1 ± 0.2 52.2 ± 0.2 55.4 ± 0.3

Brightfield + Hoechst 45.5 ± 0.7 52.2 ± 0.3 56.5 ± 0.5 57.8 ± 0.4 57.7 ± 0.3 59.3 ± 0.3

Brightfield + Fluorescence 86.6 ± 0.3 87.3 ± 0.1 86.7 ± 0.3 86.2 ± 0.2 89.2 ± 0.3 87.8 ± 0.1

FCOS39

Brightfield 46.7 ± 0.2 51.5 ± 0.2 51.4 ± 0.1 54.9 ± 0.3 52.4 ± 0.1 55.3 ± 0.3

Brightfield + Hoechst 48.2 ± 0.6 52.8 ± 0.2 57.7 ± 0.4 58.8 ± 0.4 58.7 ± 0.3 59.2 ± 0.8

Brightfield + Fluorescence 89.8 ± 0.3 86.0 ± 0.1 88.4 ± 0.4 85.2 ± 0.1 90.8± 0.2 86.7 ± 0.1

DINO40

Brightfield 43.6 ± 0.3 49.7 ± 0.2 52.1 ± 0.2 54.4 ± 0.3 52.9 ± 0.1 55.1 ± 0.3

Brightfield + Hoechst 45.1 ± 0.4 50.4 ± 0.3 58.3 ± 0.3 57.8 ± 0.5 58.9 ± 0.2 58.7 ± 0.4

Brightfield + Fluorescence 91.0 ± 0.3 86.7 ± 0.5 89.0 ± 0.1 85.9 ± 0.2 91.7 ± 0.3 87.5 ± 0.3

Table 4. Image-level cancer cell detection performance of our method on the test split.
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effectively resolve these errors as it observe each proposed object separately. For the Brightfield + Fluorescence 
setting, the performance did not change much because some of the bounding boxes generated by the detection 
stage were oversized and did not sufficiently overlap with the ground truth annotation, even though the predicted 
classes were correct (Fig. 9). It should be noted that a small performance gain can still be achieved by properly 
weighing the prediction confidences between the detector and the classifier (ω = 0.7).

To investigate the impact of detection algorithm on cancer cell detection performance, an ablation analysis 
was conducted by switching the base detection algorithm from Faster R-CNN to FCOS39, an anchor-free object 
detector, and DINO40, a set prediction-based object detector. All models used the ResNet-50 backbone and the 
same training schedule and configuration, except for DINO where AdamW optimizer with an initial learning 
rate of 10−5 was used. It should be noted that DINO significantly benefited from using a COCO pretrained 
weight (which covers both the encoder and the decoder) over using an ImageNet pretrained encoder weight 
with a randomly initialized decoder. The results in Table 4 indicated that the choice of object detection algorithm 
significantly impacts detection F1 performance. Nevertheless, the difference in performance diminished when 
the full pipeline with a classification stage and weighted confidence technique was used.

One interesting result is how information from unknown cells (those with unclear cytoplasmic fluores-
cence signals) could be used to improve cancer cell detection performance. As shown in Table 5, dropping all 
unknown cells from the training data resulted in a suboptimal F1 of 56.3%. Thus, we performed semi-supervised 
learning by predicting pseudolabels for unknown cells and adding them to the training set. However, the per-
formance dropped regardless of whether all pseudolabels were included or even when only high-confidence 
pseudolabels were considered. Curiously, the best improvement with 3.0% additional F1 was achieved by 
labeling all unknown cells as non-cancer. This is unexpected because there are many unknown cells whose 
latent embeddings, which reflect the cells’ morphological characteristics, were similar to cancer cells’ (Fig. 8).  

Fig. 9 Example of image-level predictions (red boxes) and their confidence on the test set under the 
Brightfield + Fluorescence setting. Despite having the fluorescence signal as guidance, the model still outputted 
oversized bounding boxes and could not distinguish individual cells in areas with high cell density.
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These unknown cells are expected to be poorly stained cancer cells. A possible explanation is that because the 
majority of unknown cells are morphologically distinct from both cancer and normal cells (Fig. 8), they might 
include non-cell objects such as dead cells and other debris. Hence, by treating all unknown cells as non-cancer, 
the model might better delineate the morphological boundary of cancer cells.

Evaluation of patient-to-patient variation. The extent of patient-to-patient variation in cell morphol-
ogy was evaluated by training the model using data from one or two patient(s) and measuring the performance 
on data from the unseen patient(s). Overall, the model can generalize to cell images from unseen patients with 
less than 2% drop in F1 (Table 6). The 2D embeddings of cells from different patient are also similarly distributed 
(Fig. 10). Although the performances were lowest when the models were trained or tested on data from the third 
patient, this may be due to small number of annotated images from this patient. In contrast, around 500 images 
were annotated each for the other two patients. It should be noted that even though the model was able to gener-
alize across the three patients, the same level of performance would not be expected when applying the model to 
cells from patients of a different population or cells from patients with different underlying molecular causes of 
cholangiocarcinoma. However, our model weight and dataset should still be useful in a transfer learning frame-
work, where future users can fine-tune the model on their local datasets instead of having to train a new model 
from scratch. Furthermore, the fact that the model can at least generalize across local patients is a good sign that 
cell morphology does not vary significantly across individuals.

Method Test F1

Not including unknown cells 56.3 ± 0.2

Assign pseudo labels to all unknown cells 55.2 ± 0.3

Assign pseudo labels to only unknown cells with 
>0.8 confidence of being cancer 55.2 ± 0.1

Assign all unknown cells as normal 59.3 ± 0.3

Table 5. Impact of various strategies for adding unknown cells to the training set on cancer cell detection 
performance. The experiments were conducted under the Brightfield + Hoechst setting with confidence 
weighting (ω = 0.7) during inference. The confidence of each pseudolabel was obtained from an average of three 
inference runs from the models of different seeds.

Training data Number of annotated images 1st patient 2nd patient 3rd patient

All 3 patients 967 60.1 ± 0.2 59.2 ± 0.2 59.4 ± 0.5

1st patient 493 58.3 ± 0.2 58.3 ± 0.5 57.9 ± 0.5

2nd patient 503 57.7 ± 0.2 56.9 ± 04 58.1 ± 0.4

3rd patient 91 39.2 ± 0.4 39.7 ± 0.4 39.2 ± 0.7

Table 6. Model performances (F1) when trained and tested on cell images from different cholangiocarcinoma 
patients. The experiments were conducted under the Brightfield + Hoechst setting with confidence weighing 
(ω = 0.7) during inference.

Fig. 10 2D embeddings of cells from different patients in the dataset. The embeddings were calculated using 
UMAP from the feature map at the last layer before the last global average pooling in the network. (a) Embeddings 
from the model trained with brightfield images and all fluorescence signals. (b) Embeddings from the model 
trained using only brightfield images. (c) Embeddings from the model trained with brightfield images and 
Hoeschst signal.
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Impact of dataset size on cancer cell classification. Although our dataset already contains 25000–30000 
of cells from each class, the broad heterogeneity of cell morphology may not yet be fully captured. To evaluate the 
impact of additional training data on cancer cell classification, the training set were artificially down-sampled 
to 5%, 10%, 20%, and 50% of the original size to monitor the gain in performance as the training set size grows. 
Figure 11 shows that the performance readily saturate with just 5% of the training data if fluorescence signals 
were provided as input. On the other hand, under realistic settings where brightfield images are the main source 
of information, cancer cell classification performance increased steadily and linearly as the size of the data grew 
exponentially. This strongly suggested that the model will benefit from even more training cell images.

Usage Notes
The detailed instruction for reproducing our work was described in the directory detection and classification of 
our Github.

Code availability
All code used in this experiment was written in Python3 and could be publicly accessed at https://github.com/
cmb-chula/CancerCellVision-CCA. The code is based on PyTorch41 and MMDetection32.
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