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a large-scale fMRI dataset for the 
visual processing of naturalistic 
scenes
Zhengxin Gong1, Ming Zhou  2, Yuxuan Dai1, Yushan Wen1, Youyi Liu2 ✉ & Zonglei Zhen  1,2 ✉

One ultimate goal of visual neuroscience is to understand how the brain processes visual stimuli 
encountered in the natural environment. achieving this goal requires records of brain responses under 
massive amounts of naturalistic stimuli. Although the scientific community has put a lot of effort 
into collecting large-scale functional magnetic resonance imaging (fMRI) data under naturalistic 
stimuli, more naturalistic fMRI datasets are still urgently needed. We present here the Natural Object 
Dataset (NOD), a large-scale fMRI dataset containing responses to 57,120 naturalistic images from 30 
participants. NOD strives for a balance between sampling variation between individuals and sampling 
variation between stimuli. this enables NOD to be utilized not only for determining whether an 
observation is generalizable across many individuals, but also for testing whether a response pattern 
is generalized to a variety of naturalistic stimuli. We anticipate that the NOD together with existing 
naturalistic neuroimaging datasets will serve as a new impetus for our understanding of the visual 
processing of naturalistic stimuli.

Background & Summary
Understanding the neural mechanism of visual processing is an important goal of visual neuroscience. To date, 
scientists have mostly employed designed artificial stimuli to characterize the response properties of the visual 
cortex1–10. While these controlled stimuli paradigms have yielded much important knowledge on the neural 
mechanism of visual processing for simple stimuli, challenges remain in understanding how the brain func-
tions to more complex, naturalistic stimuli in real-world environments4,11–15. To this end, naturalistic paradigms, 
which aim to probe the visual system using complex stimuli from the real world, have become increasingly pop-
ular16–20. However, as the stimuli become increasingly naturalistic, large amounts of neural data are required to 
effectively characterize the mapping between the stimuli and the neural responses.

Functional magnetic resonance imaging (fMRI) is commonly employed to measure brain activity in studying 
the neural basis of human visual processing. The cognitive neuroscience community has made significant efforts 
to collect large-scale fMRI data for naturalistic visual stimuli and make these datasets publicly available15,17,21–33. 
Multiple groups have obtained fMRI datasets using movies as stimuli which contain rich and diverse real-world 
scenes23–28. These datasets have been widely used to investigate the functional organization of the human visual 
system34–36 and test the correspondence between biological and artificial visual systems37,38. However, these data-
sets were not acquired specifically to understand the neural basis of human visual processing. The continuous 
movie stimulus and the lack of annotations for each frame make them unsuitable for testing specific hypotheses 
of visual processing. To our knowledge, there are only three large-scale fMRI datasets that have been specifically 
collected for the study of the neural basis of human visual processing under naturalistic scenes: the BOLD5000 
dataset31, the Natural Scene Dataset (NSD)32, and the THINGS dataset33. Notably, the naturalistic images used in 
the three datasets are selected from the most commonly-used computer vision datasets, including ImageNet39, 
Common Objects in Context (COCO)40, Scene UNderstanding (SUN)41, and THINGS42. The BOLD5000 data-
set features 5,000 real-world images as stimuli, scanning four participants with a slow event-related design. 
The NSD dataset consists of high-resolution 7 T fMRI responses to tens of thousands of naturalistic images, 
measured with a rapid event-related experiment on eight participants. The THINGS dataset records both fMRI 
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and magnetoencephalographic (MEG) responses to more than 8,000 unique images on three participants with 
a rapid event-related design. The three unique fMRI datasets have profoundly advanced our understanding of 
the neural basis of human visual processing in real-world scenes43–49. Nonetheless, additional fMRI datasets 
acquired with naturalistic stimuli are still urgently needed for characterizing both the properties of complex 
naturalistic stimuli and the response properties of the visual cortex under natural stimulation.

To meet the challenge, we here present another large-scale fMRI dataset called Natural Object Dataset 
(NOD), which recorded fMRI responses to 57,120 naturalistic images on 30 participants using a rapid 
event-related paradigm. In the same vein as BOLD5000 and NSD, NOD uses real-world images from the richly 
annotated ImageNet and COCO databases as stimuli. Moreover, NOD aims to achieve a good balance between 
sampling variation across individuals and sampling variation across stimuli. On one hand, each of the 30 partic-
ipants completed an ImageNet scan session with 1,000 different images selected from the ImageNet database to 
sample variation across individuals as much as possible. On the other hand, nine of 30 participants completed 
three additional ImageNet sessions with different images to sample variation across stimuli as much as possible. 
Additionally, one functional localizer session and one COCO session were conducted on these nine partici-
pants to enable precision mapping of individual brain activity patterns. The functional localizer session included 
retinotopic mapping50 and category-selective localizer51, and the COCO session consisted of 120 COCO images 
presented ten times. Consequently, the NOD dataset allows researchers to map brain activity patterns within 
an individual and across participants, as well as to test how a specific visual response is generalized across both 
stimuli and participants.

This paper provides a comprehensive description of the design, acquisition, and preprocessing of the NOD 
dataset. We validated the quality of our data via both within-subject and between-subject analyses and illus-
trated the capacity of the data by building an encoding model to show the hierarchical correspondences between 
the brain and a deep convolutional neural network (DCNN)52–55.

Methods
participants. The Institutional Review Board of Beijing Normal University approved the study (approval 
number: ICBIR_A_0111_001_02). Flyers approved by the IRB were posted on the campus network to recruit 
potential participants. Initially, 34 participants were admitted into the experiment. All participants had a nor-
mal or corrected-to-normal vision, reported no history of psychiatric or neurological disorders, and provided 
written informed consent prior to their participation. Four participants were excluded from the NOD exper-
iment because they felt the scan time was too long for them or felt bored with the task in an initial behavior 
screening session. As a result, a total of 30 healthy participants (18 females), ranging in age between 18 and  
26 years (mean ± standard deviation [SD], 21.23 ± 1.96 years), participated in the NOD fMRI experiment. Of 
these, nine participants were invited to participate in the repeated ImageNet experiment according to their will-
ingness and availability to the multiple scan sessions. All participants provided their informed consent for sharing 
the anonymized data.

experimental design. General design. The NOD experiment consists of three types of fMRI sessions: 
ImageNet, COCO, and functional localizer. Each of the 30 participants accomplished an ImageNet session.  
Among them, nine participants (sub01-09) completed three additional ImageNet sessions, one COCO ses-
sion, and one functional localizer session (Fig. 1a). An ImageNet session consisted of ten runs, each last-
ing 8 minutes and 32 seconds. The COCO session consisted of ten runs, each lasting 8 minutes and 2 seconds.  
The functional localizer session included eight runs for retinotopic mapping (5 minutes /run) and four runs for 
the category-selective localizer (5 minutes/run). In summary, there are approximately 8.5 hours of MRI scanning 
for each of the nine participants with multiple sessions and 2 hours of MRI scanning for the twenty-one partici-
pants with one session, respectively. All stimuli were presented using Psychophysics Toolbox Version 3 (PTB-3)56 
via an MR-compatible LCD monitor mounted at the head end of the scanner bore. The monitor operated at a 
resolution of 1024 pixels × 768 pixels at 60 Hz. The size of the full monitor image was 39.0 cm (width) × 29.5 cm 
(height). Participants viewed the monitor image through a mirror mounted on the head coil. The viewing distance 
was around 100 cm (85.5 cm from the mirror to the monitor image + 14.5 cm from the participants’ eyes to the 
mirror). All stimuli from the various experiments were adjusted to fill 16° of visual angle (738 pixels × 731 pixels).

Stimuli from ImageNet. ImageNet is a large-scale visual database designed for computer vision39. We chose 
ImageNet as our core stimuli set for two primary reasons. First, the ImageNet images are naturalistic, but 
not very complicated. Most objects are centered in the image distinguishable from the background. Second, 
ImageNet offers diverse semantic annotations for objects organized according to the WordNet hierarchy57. In 
particular, the candidate stimuli set was selected from ImageNet Large Scale Visual Recognition Challenge 2012 
(ILSVRC2012), which contains more than one million images annotated of the 1000 object categories58. We 
selected 60,000 images from ILSVRC2012 through a three-stage procedure. First, initial images were randomly 
selected from the database (60 images/category), requiring each image appears square (aspect ratio≈1) and 
high resolution (>100,000 pixels). Second, the selected images were visually inspected to detect blurred images 
or wrong category labels. Finally, the improper images detected from the visual inspection were replaced with 
images that met the criteria required by the above two stages.

Stimuli from COCO. The Common Object in Context (COCO) is another large-scale image dataset for com-
puter vision, containing 2.5 million labeled everyday objects across 328,000 images with multiple annotations40. 
Images in COCO show more versatility and more variation than those in ImageNet. The COCO experiment was 
designed for the precise mapping of brain activity patterns induced by individual images which contain multi-
ple interacting objects we encounter daily. This requires us to present each image at least one time in each run. 
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Considering that a run should ideally be less than ten minutes, 120 images presented once with some randomly 
inserted blank trials (3 seconds/trial), resulting in a run lasting approximately 8 minutes would be a good choice 
for us. Further, a three-fold clustering procedure was developed to draw 120 images from COCO that can cover 
the image space expanded by the COCO images as much as possible and thus be diverse and representative of 
everyday life. First, the activations from the last layer of a pre-trained ResNet-15259 were used to encode each 
COCO image. Second, a K-means clustering algorithm was used to group these images into 120 clusters. Finally, 
the image closest to the center of each cluster was selected as the candidate stimuli for our COCO sessions.

ImageNet experiment. ImageNet images were presented using a rapid event-related design with a 1-second 
ON/3-second OFF trial structure (Fig. 1b). We chose the rapid event-related design and the relatively short 
stimulus duration to maximize the number of trials and minimize eye movements21,32. Each session comprises 
1000 images (1 image per category), presented evenly in ten runs. First, the stimuli sequence of a session was 

Fig. 1 Design of the Natural Object Dataset (NOD) experiments. (a) The general design of the NOD 
experiments. (b) The stimulus and trial design for the ImageNet experiment. (c) The stimulus and trial design 
for the COCO experiment. The images selected from the ImageNet and the COCO dataset were resized into 
square shapes and displayed on a gray background. (d) The mean recognition accuracy of each subject in each 
session of ImageNet and COCO experiments.
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optimized with Optseq (https://surfer.nmr.mgh.harvard.edu/optseq/) to avoid the semantically similar objects 
(e.g., 130 categories of dogs) appearing in succession. Second, the optimized stimuli sequence was divided into 
ten runs evenly. Finally, a blank trial was inserted every five trials. Four blank trials were also added at the begin-
ning and end of each run. Note that none of the images were repeated in any run, any session, and any partici-
pant. The stimuli from different sessions and participants were aligned in conditions (i.e., categories), but not in 
individual images. Specifically, for sub01-sub09, each viewed 4000 unique images (i.e., 1000 images per session), 
adding up to 36,000 unique images; for sub10–30, each viewed 1000 unique images, totaling 21,000 unique 
images. As a result, 57,000 unique images from the ImageNet database were used in the ImageNet experiment. 
Participants were asked to fixate on the dot in the center of the screen and press one of two response buttons as 
quickly as possible after an image disappeared to indicate that the most salient object presented in the image was 
an animate or inanimate object. Specifically, they were instructed to press a button with their right thumb for an 
animate object and press another button with their left thumb for an inanimate object. Participants engage well 
with the task. The mean recognition accuracy is 83.7% across participants and except for sub-02, all participants 
show comparable good performance (Fig. 1d).

COCO experiment. COCO Images were presented using a rapid event-related design with a 0.5-second 
ON/2.5-second OFF trial structure (Fig. 1c). Each session is composed of ten runs. In each run, the 120 COCO 
images were randomly presented once on a gray screen, and 30 blank trials were randomly inserted between 
images. Four blank trials were also added at the beginning and end of each run. Different from the ImageNet 
experiment, participants shared the same 120 COCO images which were presented for each run and each ses-
sion. Participants were asked to detect a color change of the fixation. The color changes exclusively happened in 
the blank trials with a probability of 50%. The participants perform very well in this task with a mean recogni-
tion accuracy as 92%. Only sub-01 shows inferior performance.

Functional localizer experiment. A retinotopic mapping task and a category-selective localizer task were con-
ducted in the functional localizer session. Eight runs of the retinotopic mapping adapted from the Human 
Connectome Project 7 T Retinotopy experiment50 were conducted to map the retinotopic organization of the 
early visual cortex in individual participants. Stimuli consisted of slowly moving apertures filled with a dynamic 
colorful texture and pink noise background. Apertures and textures were updated at a rate of 15 Hz. Two runs 
used a rotating wedge (RETCCW and RETCW), two runs used an expanding (RETEXP) or contracting ring 
(RETCON), and four runs used a moving bar (RETMB).

Four runs of category-selective localizer were performed using fLoc (http://vpnl.stanford.edu/fLoc/) to 
define subject-specific category-selective areas51. The experiment presents grayscale images depicting ten dif-
ferent categories of stimulus, including characters (word and number), bodies (body and limb), faces (adult and 
child), places (corridor and house), and objects (car and instrument). Each trial consists of eight images from a 
given category sequentially presented, lasting 4 seconds. Participants performed a one-back task on the sequen-
tially presented images.

Magnetic resonance imaging acquisition. Magnetic Resonance Imaging (MRI) was conducted on 
a Siemens 3 Tesla (3 T) MAGNETOM Prisma MRI scanner at the BNU Imaging Center for Brain Research, 
Beijing, China, using a 64-channel phased-array head coil. Multiple runs of task-based fMRI were acquired in 
ImageNet, COCO, and functional localizer session. A spin-echo field map was acquired to correct the magnetic 
field distortion in the middle of each fMRI session. A T1-weighted (T1w) anatomical image was obtained for 
each participant at the beginning of the first fMRI session. Earplugs were used to attenuate scanner noise, and 
extendable padded head clamps were used to restrain head motion. No physiological data and eye-tracking data 
were recorded. As a result, we cannot provide quantitative measures on how participants successfully maintained 
central fixation though all of the participants orally reported that they were able to fixate on the fixation point.

Functional MRI. Blood-oxygenation-level-dependent (BOLD) fMRI data were collected using a gradient-echo, 
multi-band (MB) accelerated echo-planar imaging T2*-weighted sequence: 72 transversal slices paral-
lel to the AC-PC line; in-plane resolution, 2 × 2 mm; slice thickness, 2 mm without gap; field of view (FOV), 
200 × 200 mm; repetition time (TR), 2000 ms; echo time (TE), 34 ms; flip angle, 90°; echo spacing, 0.54 ms; 
bandwidth, 2380 Hz/Px; and MB factor, 3.

Field map. The field map was acquired using a dual-echo gradient echo pulse sequence: 72 slices with the same 
position as fMRI; slice thickness, 2 mm without gap; voxel size, 2 × 2 × 2 mm; FOV, 200 × 200 mm; TR, 720 ms; 
TE1/TE2, 4.92/7.38 ms; and flip angle, 60°.

Structural MRI. Structural T1w images were acquired for anatomical reference with a three-dimensional 
magnetization-prepared rapid acquisition gradient echo sequence: 1 slab; 208 sagittal slices; FOV, 256 × 256 mm; 
slice thickness, 1 mm; isotropic voxel size, 1 × 1 × 1 mm; TR, 2530 ms; TE 2.27 ms; TI, 1100 ms; and flip angle, 7°.

Data analysis. Overall data processing pipeline. The Digital Imaging and Communications in Medicine 
(DICOM) images acquired from the Siemens scanner were converted into the Neuroimaging Informatics 
Technology Initiative (NIfTI) format and reorganized into the Brain Imaging Data Structure (BIDS)60 using 
HeuDiConv (https://github.com/nipy/heudiconv). The facial features were removed from anatomical T1w images 
using the PyDeface (https://github.com/poldracklab/pydeface). The data were then preprocessed and analyzed to 
produce the derived data for sharing and quality validation (Fig. 2).
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Preprocessing of MRI data. The MRI data were preprocessed by fMRIPrep 20.2.161. Detailed information on 
fMRIPrep pipelines can be found in the online documentation of the fMRIPrep (https://fmriprep.org). In brief, 
individual structural MRI was intensity corrected, skull stripped, and normalized to ICBM152 nonlinear asym-
metrical template using ANTs62. Then, brain tissue was segmented using FAST63, and brain surfaces were recon-
structed using FreeSurfer64. Functional MRI data were motion corrected using MCFLIRT65, slice-time corrected 
using 3dTshift66, field-distortion corrected using SDCflows67, and co-registered to the T1w using bbregister68.

All the preprocessed individual fMRI data were registered onto the 32k fsLR surface space using the ciftify 
toolbox69 and a high-pass temporal filter (cutoff = 128 s) and a spatial smooth (FWHM = 4 mm) were applied 
to data from each run.

GLM analysis of the ImageNet and COCO experiment. For both ImageNet and COCO experiments, we esti-
mated the vertex responses evoked by each image by a surface-based general linear model (GLM) analysis with 
the Nilearn package70. Specifically, functional data from each run and each session were regressed vertex by 
vertex with a GLM in which the ideal time series induced by each image was modeled as a convolution of its 
timing function with a canonical hemodynamic response function. Six parameters from motion correction were 
also included into the model to account for the effect of head movements. The vertex-specific amplitude of the 
responses (i.e., beta values) estimated for each image was used for further analyses.

GLM analysis of category-selective localizer experiment. A GLM analysis was also conducted for the 
category-selective localizer experiment to define subject-specific category-selective regions. A boxcar kernel 
convolved with a canonical hemodynamic response function was used to model BOLD signal changes for 
each of the ten categories of stimulus in each run. Six parameters from motion correction were also included 
in the model to account for the effect of head movements. The brain activation for each category was com-
puted by a linear contrast between the category and the averaging of other categories. A fixed‐effect analysis 
was done to combine all runs within each session, and the resulting activation maps were used to define the 
category-selective region of interest for each participant.

Population receptive field analysis of retinotopic mapping experiment. The fMRI data from the retinotopic map-
ping experiment were analyzed by a population receptive field (pRF) model implemented in the analyzePRF 
toolbox (http://cvnlab.net/analyzePRF/) to characterize individual retinotopic representation71,72. The model 
predicts fMRI time series as the convolution of the stimulus-related time series and a canonical hemodynamic 
response function. The stimulus-related time series are in turn generated by computing the dot product between 
the stimulus apertures and a 2D isotropic Gaussian, scaling and applying a static power-law nonlinearity. Several 

Fig. 2 Overview of data processing pipeline and shared data. The raw data were preprocessed with fMRIPrep 
and projected to the standard fsLR surface with ciftify. The surface-based general linear model (GLM) analysis 
was performed for data quality checks. Both the raw data and the derived data from preprocessing and GLM are 
shared.
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parameters of interest are produced from the pRF model for each vertex including phase angle, eccentricity, and 
pRF size.

Data Records
The data can be accessed from the OpenNeuro public repository (accession number: ds004496)73, organized 
according to the Brain-Imaging-Data-Structure (BIDS) Specification version 1.7.0. In short, the raw data from 
each subject are saved in “sub-<ID>” directories; The preprocessed volume data and the derived surface-based 
data are stored in “derivatives/fmriprep” and “derivatives/ciftify” directories, respectively (Fig. 3a).

Stimulus images. The stimulus images for different fMRI experiments are deposited in separate folders: 
“stimuli/imagenet”, “stimuli/coco”, “stimuli/prf ”, and “stimuli/floc” (Fig. 3b). First, the images for the ImageNet 
experiment are stored in 1000 subfolders of the “imagenet” folder. Each subfolder is named by synset id whose 
further information can be found in the “imagenet/info/synset_words.txt”. Second, the “coco_images.csv” file 
under the “coco” folder lists the names of images used in the COCO experiment. Finally, the “README.TXT” 
located in the “info” folder under the corresponding stimulus folder provides more details of the stimuli used in 
each experiment.

Raw MRI data. The folder for each participant consists of several session folders: “ses-anat”, “ses-coco”, 
“ses-imagenet”, “ses-prf ”, and “ses-floc”. The session folder in turn includes one or two folders, named “anat”, 
“func” or “fmap”, for corresponding modality data. The scan information for each session is provided in the “sub-
<subID>_ses-<sesID>_scans.tsv” file (Fig. 3c). In the “func” folder, the “sub-<subID>_ses-<sesID>_task-
<taskID>_run-<runID>_events.tsv” file contains task events of each run. The stimulus information for each 
trial is listed in the last column of this events file, which is named “stim_file” and “condition” for the ImageNet and 
the COCO experiments, respectively. As a result, the specific stimulus image for each trial can be located in the 
“stimuli” folder according to the stimuli information listed in the last column of the events file.

preprocessed volume data from fMRIprep. The preprocessed volume-based fMRI data are in subject’s 
native space, saved as “sub-<subID>_ses-<sesID>_task-<taskID>_run-<index>_space-T1w_desc-preproc_
bold.nii.gz” for each functional run (Fig. 3d). A “sub-<subID>_ses-<sesID>_task-<taakID>_run-<index>_
desc-confounds_timeseries.tsv” file stores the confounds variable extracted by fMRIPrep. Other auxiliary files 
can also be found under each session folder.

preprocessed surface-based data from ciftify. Under each run folder, the preprocessed surface-based 
data are saved standard fsLR space, named as “sub-<subID>/results/ses-<sesID>_task-<taskID>_run-<index>/

Fig. 3 The file structure of Natural Object Dataset (NOD). (a) The overall file structure of NOD. (b) The 
file structure of stimulus images. (c) The file structure of the raw data from a sample participant. (d) The file 
structure of the preprocessed data from a sample participant. (e) The file structure of the derived surface-based 
data from a sample participant.
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ses-<sesID>_task-<taskID>_run-<index>_Atlas.dtseries.nii” for each functional run. The standard and native fsLR 
surface can be found in the “standard_fsLR_surface” and “T1w_fsLR_surface” folders, respectively (Fig. 3e).

Brain activation data from surface-based analysis. The brain activation data are derived from 
GLM analyses on the standard fsLR space, saved as “sub-<subID>/results/ses-<sesID>_task-<taskID>_
run-<index>/ses-<sesID>_task-<taskID>_run-<index>_beta.dscalar.nii” for each functional run from 
both ImageNet and COCO experiments (Fig. 3e). Within each run folder, the auxiliary information about 
labels or conditions can be found in “ses-<sesID>_task-<taskID>_run-<index>_label.txt”. Additionally, 
individual-specific character-, faces-, body- and place–selective activation maps and ROIs are stored in “sub-
<subID>/results/ses-floc_task-floc” folder; And pRF parameters maps are stored in “sub-<subID>/results/
ses-prf_task-prf ” folder.

technical Validation
Basic quality control indicates the data show good quality. The magnitude of participants’ head 
motion and the temporal signal-to-noise ratio (tSNR) of the fMRI time courses were evaluated for the basic 
quality control of the NOD data. The head motion of the participants was measured using the framewise dis-
placement (FD) metric, which measures the relative movement of the head from one volume to the next74.  
The FD from each time point was summarized across all runs separately for each participant from both ImageNet 
and COCO experiments. As shown in Fig. 4, all participants except sub-18 in the ImageNet experiment show a 
few volumes with FD larger than 0.5 mm, a criterion often used to detect the volume with large head motion74. 
The percentage of time points with high FD (i.e., greater than 0.5 mm) was further quantified. It is revealed that 
across participants, the median of the percentage of high FD time points is 6.3% for the ImageNet experiment and 
5.4% for the COCO experiment. These results indicate that head motion is in good control under both ImageNet 
and COCO experiments.

The tSNR is a widely used metric for assessing the ability to detect brain activation in fMRI data75. Specifically, 
the tSNR was computed as the mean of each vertex’s time course divided by its standard deviation on the preproc-
essed data of each run, and then averaged across runs to produce individual tSNR maps for both ImageNet and 
COCO experiments. The individual tSNR maps were finally averaged to construct the group mean tSNR maps for 
ImageNet (Fig. 4c) and COCO (Fig. 4d) experiments, separately. The median value of the group mean tSNR across 
vertices of the whole cortex is 82.72 for the ImageNet experiment and 83.03 for the COCO experiment, respectively. 
Except that the anterior temporal lobe shows low tSNR due to susceptibility-induced signal loss76, visual-related 
cortex shows high tSNR. Taken together, these results indicate that the data show good tSNR in both experiments.

Fig. 4 Basic data quality check of the data from the ImageNet and the COCO experiments. (a) The violin 
plots of FD in the ImageNet experiment for each participant. The red dots, pink bars and gray vertical lines 
indicate the mean, the range of quartiles, and the 95% confidence interval, respectively. (b) The violin plots of 
FD in the COCO experiment. (c) The group mean tSNR maps across all participants (N = 30) for the ImageNet 
experiment. (d) The group mean tSNR maps across all participants (N = 9) for the COCO experiment.
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the visual cortex shows reliable responses in ImageNet and cOcO experiment. The reliability of 
the BOLD response evoked by naturalistic stimuli was evaluated for both the ImageNet and COCO experiments. 
For the ImageNet experiment, nine participants completed four ImageNet sessions in each of which 1000 cate-
gories of stimuli were presented. Therefore, we can measure the test-retest reliability of the ImageNet experiment 
by computing the Pearson correlation between the BOLD responses of the 1000 categories (i.e., beta series) from 
each pair of sessions within each of the nine participants. As expected, both the lateral occipital cortex and the 
ventral temporal cortex, which are heavily involved in object processing8, present higher test-retest reliability 
in response to the 1000 categories of naturalistic stimuli than other brain areas (Fig. 5a). Because the partici-
pants have reliable behavioral responses (i.e., key pressing) in performing the animacy judgment task on the  
1000 categories, the hand motor area appears high reliability. The early visual cortex does not show high reliability 
because no exemplars of each category are repeatedly presented in different sessions. For the COCO experiment, 
120 images were presented in each of the ten runs within a session. We here thus assessed the test-retest reliability 
of responses to these images by calculating the Pearson correlation between the beta series of 120 images from 
the odd and even runs on each vertex. As shown in Fig. 5b,most visual areas, including the early visual cortex, 
ventral temporal cortex, and lateral occipital cortex, show higher test-retest reliability in response to the set of 
images. In summary, these analyses reveal that fMRI data from ImageNet and COCO experiments show reason-
able test-retest reliability across categories and images, respectively, in visual areas involved in object recognition.

the large-scale topographic animacy map can be revealed with ImageNet experiment at both 
group and individual levels. The existence of a large-scale topographic map for the distinction between 
animate and inanimate conditions in the lateral to medial visual cortex has been widely documented in the lit-
erature77–79. We next evaluated whether our fMRI data from a large set of naturalistic stimuli could consistently 
reveal the animacy map across individuals. Specifically, we contrasted animate versus inanimate conditions from the 
ImageNet experiment within each of the thirty participants, with a total of 410 animate and 590 inanimate exper-
imental conditions. The statistic maps for the contrast between animate and inanimate conditions were computed 
with a t-test on each participant. For those participants who completed four ImageNet sessions, only the data from 
the first session were used. A large-scale topographic animacy map is clearly revealed in individual participants 
(Fig. 6a upper panel), with the animacy representation organized along the lateral to the medial axis in the ven-
tral pathway and the mid-fusiform sulcus separating the representations for animate and inanimate conditions as 
shown in many existing studies77,78. The group mean of this map is more continuous than that of individuals (Fig. 6a 
lower panel). The inter-subject similarity (ISS) of the animacy maps was quantitatively measured by computing the 
Pearson correlation of the animacy maps from each pair of participants. Results show that the distribution of ISS has 
a mean value of 0.36, indicating the arrangement of the animacy map is well consistent across individuals (Fig. 6b).

Subject-specific functional regions of interest can be successfully defined with functional 
localizer experiments. To support fine-scale subject-specific analyses, a retinotopic mapping task and a 
category-selective localizer task were performed in the functional localizer session of NOD. The fMRI data from 
the retinotopic mapping were used to map the retinotopic representation of low-level visual areas in individual 
participants. As shown in Fig. 7a, the polar angle, eccentricity, and pRF size derived from the pRF model anal-
ysis on individual data show spatial patterns highly like those derived from the Human Connectome Project 
7 T Retinotopy Dataset50. In contrast to retinotopic mapping, which aimed to map low-level visual areas, the 
category-selective localizer is conducted to define high-level areas that are selective for categories. It is revealed 

Fig. 5 The fMRI data from ImageNet and COCO experiments show higher response reliability in visual areas 
involved in object recognition. (a) The group mean maps of test-retest reliability of BOLD response across 1000 
ImageNet categories. The test-retest reliability was first computed with each pair of sessions and then averaged 
across sessions and participants (N = 9). (b) The group mean maps of test-retest reliability of BOLD across 120 
COCO images. The test-retest reliability was first calculated between odd runs and even runs within a session 
(i.e., participant) and averaged across participants (N = 9).
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that individual functional areas selective to character, face, body, and place can be easily identified with the 
category-selective localizer51 (Fig. 7b). Overall, these analyses demonstrate that the functional localizer of NOD 
is of good quality in defining subject-specific visual areas.

encoding model reveals the hierarchical correspondences between the brain and the deep 
convolutional neural network. Numerous studies have discovered a hierarchical correspondence in rep-
resentation between deep convolutional neural network (DCNN) and the ventral visual stream in both humans 
and monkeys27,52,80,81. Here, we combined the data from ImageNet, COCO, and functional localizer experiments 
to build an encoding model to replicate the hierarchical correspondence of representations between the brain and 
the DCNN. The encoding models were built to map artificial representations from each layer of the pre-trained 
AlexNet82 to neural representations from each area of the ventral visual pathway. The ventral-stream ROIs were 
defined according to the Human Connectome Project Multi-Modal Parcellation (HCP-MMP), including V1, V2, 
V3, V4, V8, VMV (ventromedial visual areas), PIT (posterior inferotemporal complex), LO (lateral occipital), FFC 
(fusiform face complex), and VVC (ventral visual complex)83. In order to conserve computational resources, the 
top 50 vertices, which showed the best model performance in fitting the pRF model to the retinotopic mapping 
data, were selected from each area to represent the area, and encoding models were then constructed for them. 
First, the pRF estimated from the retinotopic mapping data was used as a spatial kernel for the vertex to weigh 
the feature maps from AlexNet to generate the weighted features of each convolutional layer. Second, a linear 
GLM encoding model with L1 regularization was built for each vertex using the pRF-weighted AlexNet layer 
features as input. The ImageNet experiment data were used for model training and a four-fold cross-validation 
framework for hyperparameter tuning. Finally, the prediction accuracies of encoding models were evaluated as 
the correlation between the predicted and actual responses from the COCO experiment. As depicted in Fig. 8a, 
the encoding precision of low-level visual regions decreases gradually as the AlexNet layers ascend. In contrast, the 
encoding accuracy of the high-level visual areas shows opposite trends (Fig. 8b). In conclusion, our data confirm 
an early-to-early and late-to-late correspondence pattern between the ventral visual stream and DCNN layers.

Usage Notes
The dataset provides unique opportunities for our understanding of the visual processing of naturalistic stimuli.  
First, given the abundance of naturalistic images with BOLD responses recorded, NOD will be useful for 
fine-grained exploration into the neural representation of a wide range of visual features and semantics. 
Importantly, compared to other publicly available datasets, NOD achieves a good balance between sampling 
variation across individuals and sampling variation across stimuli. On one hand, each of the 30 participants 

Fig. 6 The large-scale individual topographic animacy map revealed with ImageNet fMRI dataset. (a) The 
animacy maps for two sample participants (upper panel) and the group (lower panel). The animacy map was 
calculated as the t statistics between animate and inanimate conditions. (b) The distribution of inter-subject 
similarity of the animacy maps. The ISS was computed as the Pearson correlation of the animacy maps from 
each pair of participants.
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completed an ImageNet scan session with 1,000 ImageNet categories to sample variation across individuals 
as much as possible. The large sample size of subjects could support us to draw generalizable claims on the 
category-selective activity patterns from the population. On the other hand, nine of 30 participants completed 
three additional ImageNet sessions with different images to sample variation across stimuli as much as possi-
ble within an individual. This enables us to robustly characterize the category-selective activity patterns across 
different sets of stimuli within an individual. Second, the data from the COCO session, in which 120 COCO 
images were presented ten times, allows for precise mapping of brain activity patterns for individual images and 
investigating stimulus-independent effects such as neural variability and noise correlation84,85. Furthermore, the 
relatively large stimulus size (16° wide) compared to other publicly available datasets (usually ~ 8°) enables users 
to examine neural representation of more peripheral stimuli. Finally, when combined with other large-scale 
datasets such as BOLD5000, NSD, and THINGS, NOD can contribute to bridging the disciplines of visual neu-
roscience and artificial intelligence by being used as biological constraints to create deep neural network models 
that more closely resemble the human visual system32,86,87.

Fig. 7 The individual low- and high-level functional areas defined with functional localizer dataset from 
two representative participants. (a) The individual curvature and retinotopic maps on fsLR space of two 
sample subjects. The first column shows the thresholded curvature on which boundaries of V1, V2, and V3 
are indicated as white lines. The second to fourth columns show the angle, eccentricity, and pRF size map 
derived from individual retinotopic mapping localizer displayed on fsLR sphere space with the subject-
specific curvature as underlying. These parametric maps are thresholded respectively at 3.9% (for sub01) and 
1.5% (for sub08) variance explained by the pRF models. Labels: S, superior; I, inferior; M, medial; L, lateral; 
IPS, intraparietal sulcus; LOS, lateral occipital sulcus; POS, parieto-occipital sulcus; Calc, calcarine sulcus; 
OTS, occipitotemporal sulcus; CoS, collateral sulcus. (b) The individual character-, faces-, body- and place-
selective activation maps (threshold, t > 2.3, uncorrected) and manually delineated category-selective areas are 
displayed on the fsLR surface for two example subjects, the upper panel is for sub01 and the lower panel is for 
sub08. Only the data from the left hemisphere are displayed for saving space. Labels: Fus, fusiform gyrus; OTS, 
occipitotemporal sulcus; CoS, collateral sulcus; PPA, parahippocampal place area; FFA, fusiform face area; OFA, 
occipital face area; FBA, fusiform body area; VWFA, visual word form area; OWFA, occipital word form area.
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While we believe that this dataset is a unique resource for human visual neuroscience, we should acknowl-
edge its limitations. First, as noted above, no image was repeated in the ImageNet session, which may lead to 
noisy estimates for the BOLD response of a single image. Although our analyses proved those estimates were 
still sufficient for uncovering some general effects, we would like to point out that a more effective strategy is to 
construct the GLM on the feature level instead of the image level to reveal fine-scale effects. As each image is 
composed of multiple features, constructing the GLM on the feature level can effectively improve the statistical 
power. Besides, the advanced denoising toolboxes such as GLMdenoise88 and GLMsingle89 could be used to 
improve the accuracy of BOLD response estimates for the NOD data. Second, although a rapid event-related 
fMRI paradigm was used, sluggish fMRI signals are incapable of resolving neural dynamics at the milliseconds 
level. For this, we are conducting a MEG experiment with the same participants and the same stimuli as NOD to 
record the dynamic responses for visual processing of naturalistic stimuli. We hope this will further complement 
NOD with MEG measurements to resolve the spatiotemporal dynamics of visual processing33,90.

code availability
All codes for the experimental design, data organization, and technique validation are available at https://github.
com/BNUCNL/NOD-fmri. Preprocessing was performed using fMRIPrep version 20.2.1 (https://fmriprep.org). 
Grayordinate-based (CIFTI format) brain activation analysis was performed by combining the Ciftify (https://
github.com/edickie/ciftify) and HCP pipelines (https://github.com/Washington-University/HCPpipelines).
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