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a large public dataset of annotated 
clinical MRIs and metadata of 
patients with acute stroke
Chin-Fu Liu1,2, Richard Leigh3, Brenda Johnson3, Victor Urrutia3, Johnny Hsu4, Xin Xu4, Xin Li4, 
Susumu Mori4, Argye E. Hillis3,5 & Andreia V. Faria  4 ✉

To extract meaningful and reproducible models of brain function from stroke images, for both 
clinical and research proposes, is a daunting task severely hindered by the great variability of lesion 
frequency and patterns. Large datasets are therefore imperative, as well as fully automated image 
post-processing tools to analyze them. The development of such tools, particularly with artificial 
intelligence, is highly dependent on the availability of large datasets to model training and testing. We 
present a public dataset of 2,888 multimodal clinical MRIs of patients with acute and early subacute 
stroke, with manual lesion segmentation, and metadata. The dataset provides high quality, large scale, 
human-supervised knowledge to feed artificial intelligence models and enable further development 
of tools to automate several tasks that currently rely on human labor, such as lesion segmentation, 
labeling, calculation of disease-relevant scores, and lesion-based studies relating function to frequency 
lesion maps.

Background & Summary
Stroke is the 5th more frequent cause of death and a leading cause of long-term disability in the United States1. 
Extracting meaningful and reproducible models of brain function from stroke images is a daunting task severely 
hindered by the great variability of lesion frequency and patterns. A corollary to this problem is that large data-
sets are imperative to encompass the possible lesion-function relationships. While biomedicine has seen a shift 
from “anecdotal” experiences to objective, data-supported evidence based on large amounts of data, many 
lesion-based studies failed to weather this transition, as evidenced by a plethora of underpowered designs lead-
ing to inexact extrapolations, or to conclusions that cannot be validated on external populations2–6. In addition, 
technical developments with artificial intelligence (AI) depend on the availability of high quality, large scale, 
human-supervised dataset to generate and test meaningful and reproducible models7–9. Although unsupervised 
and self-supervised techniques can extract valuable insights from unannotated data, their success still currently 
depends on the specific task, as well as the quality and quantity of available data. For instance, domain adap-
tation or transfer learning from unsupervised models, or from models trained with unrelated data (e.g., Large 
Language Model Meta AI models, LLAMA210) might be highly efficient only if fine-tunned with expert labeled 
data. Therefore, combining these methods with expert-annotated data can further improve the accuracy and 
reliability of AI models in medical imaging applications.

A public dataset of acute stroke MRIs, associated with lesion delineation and organized non-image infor-
mation will potentially enable clinical researchers to advance in clinical modeling and prediction. It will also 
enable the bioengineering community to develop and test AI algorithms of technical and clinical relevance, e.g.,  
for lesion segmentation, brain mapping, and automatic generation of labels and scores. AI applications in vari-
ous diseases, such as in chest X-ray, dermatology and histopathology images, and detection of breast cancer in 
mammography, have drastically increased, due to the availability of large image datasets11–16. Brain MRIs, par-
ticularly in acute conditions, offer extra challenges to the organization of large datasets, such as the lack of data  
(MRI scan is costly, therefore less common), the large variability among scanners and protocols, and the 
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volumetric nature of the data which hinders annotation and expert labeling. As of today, the most successful 
examples of open-source collections of annotated MRIs are probably the brain tumor dataset of 750 patients 
included in the Medical Segmentation Decathlon (MSD)17, used in the Brain Tumor Image Segmentation 
(BraTS) challenge, and the FastMRI+18, a collection of about 7 thousand brain MRIs, with diverse pathologies, 
some of them with bound-box 2D annotation. In acute stroke, the lack of such large, annotated, high quality 
dataset, rather than mathematical or computational resources, is the current bottleneck for AI development.

The first efforts to create stroke repositories started with population-based epidemiological studies19,20 and 
did not include images. Starting in the 2,000’s, both the medical and the bioengineering communities acknowl-
edged the need for a central repository for acute stroke images, in addition to metadata. Initiatives such as the 
“Acute Stroke Imaging Research Roadmap”21 initiated such effort, with the goal of standardizing imaging tech-
niques, accessing the accuracy and clinical utility of imaging markers, and validating imaging biomarkers rele-
vant to clinical outcomes. Since then, various consortiums and trials22–27 were able to accumulate large amounts 
of data, often available “after competition” and/or “upon request”. These conditions, however, do not guarantee 
that the data are shared under’FAIR’ principles28,29. FAIR stands for Findable, Accessible, Interoperable, and 
Reusable. Findable data are assigned persistent identifiers and well-described metadata, ensuring their easy 
discovery. Accessible data are openly available with clear access protocols, promoting transparency and inclu-
sivity. Interoperable data are structured in a way that facilitates integration across diverse platforms and tools, 
enabling seamless collaboration and analysis. Lastly, reusable data are properly documented, allowing research-
ers to effectively understand, reproduce, and build upon previous work. Embracing the FAIR principles not 
only accelerates scientific discovery but also fosters a culture of responsible and efficient data sharing within the 
research community. A search in generalist repositories (e.g., Dataverse, Mendeley Data, Dryad, Open Science 
Framework, Vivli) or using tools suited to find “open data” (e.g., Google Dataset Search, Data Citation Index, 
Data.gov) mostly reveals end-analysis data that do not serve purposes such as technical development. In addi-
tion, datasets from published studies usually involve a modest number of subjects and are research-focused, 
acquired with homogeneous and particular protocols that do not reflect the noise and variability of clinical data, 
hindering the translational potential.

We share the first annotated large dataset of clinical acute stroke MRIs, associated to demographic and clini-
cal metadata. Recently, a dataset of (mostly) chronic stroke lesions annotated in high resolution

T1-WIs (ATLAS30, followed by ATLASv231) under the ENIGMA Stroke Recovery initiative32 was well 
received by the neuroscience and bioengineering communities. The ATLAS has been used to improve lesion 
segmentation of chronic lesions in high resolution images, to create new tools for processing chronic stroke 
MRIs, as well as for education proposes33,34. Acute stroke MRIs, however, require specialized processing because 
of the particular lesion intensity characteristics, the images low-resolution, heterogeneity, and noise. The organ-
izers of the Ischemic Stroke Lesion Segmentation Challenge 2022 (ISLES22) recently released 250 MRIs with 
acute stroke masks35. An analogous large, independent, multi-modality and clinical-representative dataset of 
acute strokes is highly anticipated.

The resource we present consists of 2,888 clinical MRIs of patients admitted with acute or early subacute 
stroke. It includes diverse protocols and MRI modalities, with typical clinical resolution. The large sample, 
as well as the technical and population heterogeneity, improve the potential generalization of models devel-
oped with these data. It includes diverse metadata, comprised of demographic information, basic clinical pro-
file (including National Institutes of Health Stroke Scale (NIHSS) scores, 90 days follow up modified Rankin 
Score (mRS), hospitalization duration, biometric screening at hospital admission and discharge, and associated 
health conditions), and expert description of the acute lesion. The stroke lesion is manually defined in the diffu-
sion weighted images (DWI); the images are provided in native subject space and in standard space (Montreal 
Neurological Institute, MNI). The data format and organization follows the Brain Imaging Data Structure, 
BIDS36 guidelines, facilitating navigation and sharing. To the best of our knowledge, this is the first large clinical 
MRI dataset shared under FAIR principles, and is available at the Inter-university Consortium for Political and 
Social Research, ICPSR (https://www.icpsr.umich.edu/web/ICPSR/studies/38464)37.

Methods
cohort. Clinical data and MRIs were obtained retrospectively from patients admitted from 2009–2019 to the 
Johns Hopkins Comprehensive Stroke Center. The dataset creation, under waiver of informed consent, and its 
sharing model followed the recommendations the Johns Hopkins Internal Review Board and were approved by 
this board (IRB00228775). About 500 stroke patients are admitted annually, and an estimated 70% of them have 
MRI at admission, the majority between 6–24 hours after symptoms. To create the dataset presented here, we 
included patients admitted with the clinical diagnosis of acute stroke that had MRIs with DWI. A neuroradiologist 
(AVF) excluded those whose scans had artifacts considered impeditive of the visual analysis, as well as post-op-
erative or strokes secondary to etiologies other than vascular, e.g., secondary to brain tumors (15% of cases).  
The final dataset includes 2,888 patients.

An expert neuroradiologist (AVF) and a stroke neurologist (RL), both with more than 20 years of experi-
ence, reviewed the lesions to provide qualitative descriptions of the type of lesion and location. According to 
their radiological appearance at MRI, the lesions were categorized as: (1) ischemic, which are lesions primarily 
hyperintense in DWI and hypo/isointense in the apparent diffusion coefficient (ADC); (2) hemorrhage, when 
any signal of bleeding, intra or extra-parenchymal was detected, or (3) “not visible” when the stroke lesion was 
not visually detected. Note that hemorrhage includes hemorrhagic transformation of ischemic strokes, as well 
as primary intraparenchymal, subarachnoid, subdural and intraventricular hemorrhages. The category “not vis-
ible” includes mostly transient ischemic attacks (TIA) or strokes with volume bellow the image resolution. Note 
that the radiological classification of “lesion type” aims to facilitate image-based organization and search, and 
does not necessarily corresponds to the clinical diagnosis of “stroke type” (Ischemic Stroke, Embolic Stroke, TIA, 
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Intracranial Hemorrhage, Subarachnoid Hemorrhage). The “stroke type” was recorded at patient’s admission 
and is also provided with the dataset.

The demographic and clinical information recorded at admission and discharge is provided for each 
patient, following the BIDS36 recommendation. The itemized description of the information available is in the 
“Dictionary” (Supplementary Material). The population, image and lesions profiles are listed in Table 1. The mean 
age of the patients was 62.16 years-old (±14.68); ages ranged from 18 to 99 years-old. There was a slightly pre-
dominance of male (52.87%) over female. African American/Black was the predominant racial group (43.52%), 
followed by Caucasians (31.79%). The mean NIHSS score at admission was 5.80 ± 6.48. The “hemorrhage” group 
had the highest mean scores, followed by the “ischemic”; the “not-visible” had the lowest. The length of hospi-
talization, which indirectly reflects the severity of the stroke, was 6.63 days in average. The “hemorrhage” group 
had the longest length, followed by the “ischemic”; the “not-visible” had the shortest. The results of the following 
laboratorial tests were recorded at admission: cholesterol profile, hemoglobin a1c, serum creatinine, prothrombin 
international normalized ratio, fasting glucose; the means are listed in Table 1. We also report blood pressure 
at admission, ambulation status (prior, at admission and at discharge), body mass index (BMI), and modified 
Rankin scores (mRS) collected by phone interview 90 days after the stroke event. The previous medical condition 
most often reported was hypertension (60.80%), followed by dyslipidemia (31.68%) and diabetes (25.66%). We 
report time from symptoms to scan in patients who were (or whose caregiver was) highly confident about symp-
toms onset. In most of cases, the MRI was performed 6 or more hours after the initial symptoms. The MRI scan 
was performed after acute treatment (intravenous tissue plasminogen activator, ivtPA, in the majority, followed 
by thrombolysis) in 43.32% of patients.

MRIs. The MRIs were collected in 11 MRI scanners, over 10 years. This resulted in a large data variability, due 
to the various image protocols used over the years in different machines, scanners changes and updates, as well as 
modifications in acute stroke guidelines over this period. Shortly, the MRIs were performed in 1.5 T (61%) and 3 T 
(39%), whole-body Siemens (91.66%), Toshiba (0.21%), Phillips (7.20%), and GE (0.93%) scanners. Summaries of 
the acquisition parameters for all the MRI modalities in the Supplementary Table 1 and Fig. 1. The DWIs had high 
in plane (axial) resolution (1x1mm, or less), and typical clinical high slice thickness (2–7 mm).

Almost all patients (98.8%) had at least one MRI modality other than DWI that met the visual quality con-
trol standards and is provided with the dataset. Additional MRI sequences, and the percentage of scans that 
had these sequences, are: T1-weighted images (T1-WI, before or after exogenous contrast injection, n = 2,373, 
82%), high resolution T1-WI MPRAGE (n = 1,298, 45%), T2-WI (n = 2,581, 90%), FLAIR (n = 2,746, 95%), 
Susceptibility-WI (SWI, n = 2,106, 73%), and Perfusion-WI (PWI, originally 34.2%; but only n = 531, 18.4% 
had “readable” quality PWIs, over passing the quality-control check).

The images were fully de-identified by removing all HIPAA (Health Insurance Portability and 
Accountability)-protected health information direct and indirect identifiers. The original DICOM files were 
converted to Neuroimaging Informatics Technology Initiative, Nifti format (nii.gz/json) using dcm2niix 
(https://github.com/rordenlab/dcm2niix) with the anonymization option according BIDS guide-lines. Note that 
the “.json” preserves the technical information from the image header. All the high resolution T1-WI MPRAGE, 
and the low resolution T1-WIs and FLAIR with full head coverage were defaced using FSL (https://surfer.nmr.
mgh.harvard.edu/fswiki/mrideface). Another round of visual quality control was preformed to secure complete 
anonymization, including 3D reconstruction of each image to guarantee impossibility of face recognition. The 
overall structure of the archive is represented in Fig. 1 and detailed in the sections below, as well as in the “Data 
Availability”.

Lesion masks. Although there is no perfect method for defining the lesion core, we chose to use DWI and 
Apparent Diffusion Coefficient maps (ADC), based on the fact that DWI is the most informative and most com-
mon sequence performed for acute stroke detection. Likewise, prior acute stroke studies and trials defined the 
lesion core in DWI, so our data will be broadly comparable to those investigations. As the majority of MRIs 
are performed 6 or more hours after symptoms, the odds of significant change in the lesion volume is low38. 
Nevertheless, we tabulated the time between symptoms onset and the MRI and make it available, so one can esti-
mate the stability of the DWI-defined lesion.

The methodological description of the lesion delineation procedures, inter- and intra-rater reliability meas-
ures, and additional technical validation of the lesion tracings are reported in “Technical Validation”. We note 
that the lack of ground truth for segmentation is a well know problem in imaging analysis and that lesion tracing 
is a subjective process, even across trained evaluators. This reinforces the importance of our exhaustive revision 
and final definition by consensus. Figure 2 shows the distribution of lesions according volumes and location. 
As shown in Table 1, the intra-parenchymal hemorrhagic lesions were significantly larger than the ischemic 
lesions. There was a slight predominance (not significant) of lesions in the left hemisphere compared to the 
right. The volumes of ischemic lesions showed a significant correlation with NIHSS (r = 0.57; p-value < 0.0001), 
as expected.

“post-processed” images. Image mapping to common coordinates (e.g., to standard templates) and inten-
sity normalization are common steps required in most pipelines for imaging processing. To expand the access to 
the dataset, in addition to the native data, we offer the DWI (plus B0 and ADC) and the stroke and brain masks 
mapped to standard MNI space. In order to convert the images to standard coordinates, we: (1) Resampled DWI, 
B0, and ADC into 1 × 1 × 1 mm3; (2) Skull-stripped with an in-house “UNet BrainMask Network”39; (3) Used 
sequential linear transformations40 to map B0 (less affected by the acute stroke) into JHUMNIB041, a template in 
MNI space.
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Dataset

Total Ischemic Hemorrhagic Not Visible

(n = 2888) (n = 1878, 70%) (n = 540, 12%) (n = 470, 18%)

Demographics

Age in years 62.00[53,73]; 0 62.00[53,72]; 0 64.00[54,75]; 0 61.00[52,71]; 0

Sex

 Female 1361(47.13%) 866(46.11%) 259(47.96%) 236(50.21%)

 Male 1527(52.87%) 1012(53.89%) 281(52.04%) 234(49.79%)

Race

 African American 1257 (43.52%) 824 (43.88%) 210 (38.89%) 223 (47.45%)

 Caucasian 918 (31.79%) 533 (28.38%) 206 (38.15%) 179 (38.09%)

 Asian 76 (2.63%) 44 (2.34%) 25 (4.63%) 7 (1.49%)

 Not Recorded 637 (22.06%) 477 (25.40%) 99 (18.33%) 61 (12.98%)

Clinics and 
laboratorial tests

NIHSS 3.00[1.00,8.00]; 1403 4.00[1.00,8.00]; 804 8.00[3.00,13.75]; 354 1.00[0.00,3.00]; 245

Systolic 154.00[136.00,178.00]; 508 155.00[137.00,180.00]; 401 154.00[133.00,172.00]; 58 150.00[133.00,173.00]; 49

Diastolic 83.00[73.00,95.00]; 508 84.00[74.00,96.00]; 401 81.00[72.00,96.75]; 58 81.00[72.00,92.00]; 49

Cholesterol 167.00[137.00,201.00]; 707 168.00[137.00,203.00]; 452 162.00[134.75,194.25]; 168 168.00[140.50,202.00]; 87

Triglycerides 100.00[72.00,144.50]; 717 102.00[73.00,146.00]; 460 91.00[67.75,128.00]; 168 101.00[72.00,156.00]; 89

HDL 46.00[36.00,57.00]; 710 45.00[36.00,57.00]; 455 47.00[37.00,59.00]; 168 47.00[38.00,59.00]; 87

LDL 95.00[70.00,124.00]; 712 96.00[71.00,125.00]; 455 92.00[67.00,115.00]; 171 95.00[69.00,124.00]; 86

Hemoglobin A1C 5.80[5.40,6.60]; 805 5.90[5.40,6.70]; 514 5.70[5.40,6.50]; 178 5.80[5.40,6.40]; 113

Glucose 0.90[0.80,1.20]; 509 113.00[98.00,146.00]; 451 125.00[104.00,159.00]; 79 107.00[94.00,131.00]; 59

Creatinine 0.90[0.80,1.20]; 509 1.00[0.80,1.20]; 400 0.90[0.70,1.20]; 59 0.90[0.80,1.10]; 50

Prothrombin 1.00[1.00,1.10]; 675 1.00[1.00,1.10]; 518 1.10[1.00,1.10]; 72 1.00[1.00,1.10]; 85

BMI 27.68[24.03,32.45]; 808 27.82[24.07,32.46]; 557 27.37[23.95,31.77]; 134 27.45[24.04,33.31]; 117

Days at hospital 4.00[2.00,8.00]; 829 4.00[2.00,7.00]; 567 7.00[4.00,14.00]; 123 2.00[1.00,4.00]; 139

Prior medical conditions

 Hypertension 1756 (60.80%) 1124 (59.85%) 346 (64.07%) 286 (60.85%)

 Dyslipidemia 915 (31.68%) 592 (31.52%) 147 (27.22%) 176 (37.45%)

 Diabetes mellitus 741 (25.66%) 481 (25.61%) 139 (25.74%) 121 (25.74%)

 Previous stroke 634 (21.95%) 409 (21.78%) 122 (22.59%) 103 (21.91%)

 Smoker 620 (21.47%) 434 (23.11%) 88 (16.30%) 98 (20.85%)

 Atrial Fibrillation/Flutter 272 (9.42%) 167 (8.89%) 68 (12.59%) 37 (7.87%)

 coronary disease/prior heart 
infarct 383 (13.26%) 232 (12.35%) 78 (14.44%) 73 (15.53%)

 Obesity/Overweight 225 (7.79%) 149 (7.93%) 35 (6.48%) 41 (8.72%)

 Chronic renal insufficiency 114 (3.95%) 82 (4.37%) 23 (4.26%) 9 (1.91%)

 Family history of stroke 111 (3.84%) 75 (3.99%) 22 (4.07%) 14 (2.98%)

 Heat failure 109 (3.77%) 75 (3.99%) 21 (3.89%) 13 (2.77%)

 Migraine 83 (2.87%) 52 (2.77%) 16 (2.96%) 15 (3.19%)

 Sleep apnea 57 (1.97%) 40 (2.13%) 9 (1.67%) 8 (1.70%)

 Peripheral vascular disease 40 (1.39%) 25 (1.33%) 6 (1.11%) 9 (1.91%)

 Carotid Stenosis 26 (0.90%) 17 (0.91%) 6 (1.11%) 3 (0.64%)

 Prosthetic heart valve 14 (0.48%) 6 (0.32%) 4 (0.74%) 4 (0.85%)

 Sickle cell 10 (0.35%) 6 (0.32%) 3 (0.56%) 1 (0.21%)

 Current pregancy 3 (0.10%) 2 (0.11%) 0 (0.00%) 1 (0.21%)

 Hormone replacement 3 (0.10%) 2 (0.11%) 0 (0.00%) 1 (0.21%)

 Vein thrombosis/lung 
embolism 2 (0.07%) 1 (0.05%) 1 (0.19%) 0 (0.00%)

 Not Recorded 665 (23.03%) 482 (25.67%) 95 (17.59%) 88 (18.72%)

Prior Medication

 Anticholesterol 966 (33.45%) 624 (33.23%) 174 (32.22%) 168 (35.74%)

 Anticoagulants 197 (6.82%) 100 (5.32%) 59 (10.93%) 38 (8.09%)

 Antiglucose 546 (18.91%) 361 (19.22%) 87 (16.11%) 98 (20.85%)

 Antihypertensive 1540 (53.32%) 974 (51.86%) 294 (54.44%) 272 (57.87%)

 Antiplatelet 1000 (34.63%) 630 (33.55%) 187 (34.63%) 183 (38.94%)

 Not Recorded 1088 (37.67%) 748 (39.83%) 195 (36.11%) 145 (30.85%)

 90 days mRS 2[1,3]; 1632 2[1,3]; 1018 3[1,4]; 265 1[0,2]; 348

Continued
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Using the resulting transformation matrix, the brain and the lesion mask were registered to the MNI template 
by nearest neighborhood interpolation, to keep their binary nature. Because these are clinical low resolution 

Dataset

Total Ischemic Hemorrhagic Not Visible

(n = 2888) (n = 1878, 70%) (n = 540, 12%) (n = 470, 18%)

MRI and lesion 
characteristics

Hours from symptoms to MRI

<2/2-6/6-12/12-24 />24; 
missing 81/205/234/456/398;1514 40/125/136/175/284;1118 16/24/42/111/72;275 25/56/56/170/42;121

MRI Magnetic Field

 1.5 T 1766 (61.15%) 1217(64.80%) 252(46.67%) 297(63.19%)

 3.0 T 1122 (38.85%) 661 (35.20%) 288 (53.33%) 173 (36.81%)

Scan manufacturer

 Siemens 2614 (90.51%) 1667 (88.76%) 517 (95.74%) 430 (91.49%)

 Philips 22 (0.76%) 15 (0.80%) 2 (0.37%) 5 (1.06%)

 GE 210 (7.27%) 166 (8.84%) 17 (3.15%) 27 (5.74%)

 Not Recorded 42 (1.45%) 30 (1.60%) 4 (0.74%) 8 (1.70%)

Treatment pre-scan

 Yes; % IVtPA 1251 (43.32%); 94% 931 (49.57%); 93.3% 98 (18.15%); 95% 222(47.23%); 95%

 No 1637 (56.68%) 947 (50.43%) 442 (81.85%) 248 (52.77%)

DWI voxel size 5.74[3.20,7.20] 5.72[3.20,7.60] 5.74[3.20,7.20] 5.74[3.53,7.60]

Lesion volume in ml 7.86[1.46,32.34] 4.27[0.98,22.12] 30.27[12.51,68.55] N.A.

Hemisphere

 Left 1082 (37.47%) 834 (44.41%) 248 (45.93%) N.A.

 Right 976 (33.80%) 766 (40.79%) 210 (38.89%)

 Bilateral 360 (12.47%) 278 (14.80%) 82 (15.19%)

Diagnosis

 Embolic Stroke 22 (0.76%) 19 (1.01%) 2 (0.37%) 1 (0.21%)

 Intra Cerebral Hemorrhage 381 (13.19%) 18 (0.96%) 346 (64.07%) 17 (3.62%)

 Ischemic Stroke 2164 (74.93%) 1794 (95.53%) 166 (30.74%) 204 (43.4%)

 Subarachnoid Hemorrhage 81 (2.8%) 25 (1.33%) 22 (4.07%) 34 (7.23%)

 Transitory Ischemic Acident 240 (8.31%) 22 (1.17%) 4 (0.74%) 214 (45.53%)

Table 1. Demographic and clinical profile of the population, MRI and lesion characteristics. Continuous data 
is presented as median [interquartile range]; missing value. Categorical variables are presented by the numbers 
and % they represent in each group.

Fig. 1 Overall description of the archive. The archive follows BIDS recommendations for structure and naming. 
All images are anonymized, in Nifti format. The itemized description of the metadata (* in “.tsv” format) 
is in the data dictionary, included in the dataset and here, as Supplementary Material. The summary of the 
demographic and clinical information for the cohort is in Table 1.
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images, with high slice thickness and, often, a fair amount of tilt on the z-axis (as they are axial oriented), the reg-
ular steps for linear transformation tend to perform less well than they do on high resolution images. Therefore, 
two rigorous steps of quality control were performed on the MNI-converted images: one qualitative, by visual 
analysis, and the other quantitative, based on how the global brain contour fits the template, as detailed in the 
Technical Validation section.

Fig. 2 Dataset lesion and image profiles. Distribution of lesions attributed to ischemia or hemorrhage according 
to (a) volumes, (b) arterial territories, (c) brain structures. (d) Presence of MRI modalities other than DWI. 
Note that although the categorization in arterial territories is not necessarily meaningful for hemorrhage, we 
show it for the sake of a uniform description.
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Regarding to the intensity normalization, it is unlikely that we can offer all the possible options that are ideal 
for each specific study. Some of these options are straightforward and can be easily generated by users (e.g., 
normalization using z-scores or maximum intensity). Others (e.g., by self-supervised methods), can be prospec-
tively derived for particular studies using this resource. We opted by offering DWIs normalized by a method 
that proved successful in homogenizing images across different lesion types, in minimizing major differences 
in scanners (e.g. magnetic field), and in reducing the complexity and time to train Deep Learning Networks for 
lesion segmentation (Table 2), as detailed in in the Technical Validation section.

probabilistic maps of lesions and “radiological normal” templates. Using the intensity-normalized 
DWIs in standard space (MNI) of the cases classified as “not-visible” strokes, we created average and standard 
deviation maps, here called “radiological normal” templates (Fig. 3). We note that “radiological normal” is an 
imperfect name, as these cases may still have abnormalities not directly related to the current stroke episode, such 
as white matter microvascular chronic lesions or brain atrophy. Nevertheless, such templates are representative of 
the radiological aspect of the brain tissue not directly affected by the acute stroke, of our population. Such tem-
plates are potentially useful for technical development, e.g., for modeling voxel classification by intensity.

We also created frequency maps of the “ischemic” and inrta-parenghymal “hemorrhage” lesions, with 
the simple purpose of visualizing the distribution of lesions across the dataset (Fig. 4). We performed a 
population-based averaging of the lesion masks in MNI space, producing a voxel-wise map where values can 
range from 0 at each voxel (no lesion in any subject) to 1 (100% presence of the lesion across subjects). The 
frequency maps and the “radiological normal” templates are provided with the dataset. Because the individual 
lesion masks are available, users are able to create multiple other types of templates and atlases that best fit their 
interest.

Data Records
The dataset is deposited in ICPSR37 (https://doi.org/10.3886/ICPSR38464). Because these data were originally 
assembled under a waiver of patient consent, the dataset is released as a restricted-use collection under a Data 
Use Agreement (DUA). Each subject is identified by an 8-digit random code. The data structure, format, and 
naming follow the BIDS guidelines, and is as follows (see Fig. 1):

 1. The main folder “raw-data” contains the image data (nii.gz and json files) in the native space of each subject 
in two subfolders:

“DWI”, with 4D DWI/B0 and ADC
“anat”, with T1-WI, MPRAGE, T2-WI, FLAIR, PWI, SWI

 2. The folder “DWI-mask” contains images in native space of manually-defined lesion masks
brain masks

3D DWI, B0, and “recalculated” ADC

 3. The folder “DWI-MNI-IntensityNormalized” contains images in standard MNI space, mapped to JHU_
SS_MNI template41, of

DWI, B0, ADC, lesion mask, brain mask Intensity-normalized DWI

 4. The folder “phenotype” contains

Individual files with structured metadata of each subject

 5. The folder “templates” contains the following images in MNI space, according to JHU_SS_MNI template41

Average and standard deviation of “radiological normal” DWIs.
Frequency maps of ischemic and hemorrhage lesions.

ProposedNorm StandardNorm BrainMaskStandardNorm MaxMinNorm

Validation 0.75(0.17); 0.80 0.64(0.22); 0.70 0.48(0.29); 0.51 0.54(0.24); 0.61

Testing 0.74(0.20); 0.80 0.64(0.21); 0.70 0.53(0.31); 0.62 0.53(0.23); 0.60

Table 2. Accuracy of the same UNET Deep Learning model on segmenting ischemic core, using DWIs 
normalized by different methods. The normalization methods tested were: ‘ProposedNorm’: described in this 
manuscript; ‘StandardNorm’: standard z-score normalization on whole images; ‘BrainMaskStandardNorm’: 
standard z-score normalization on brain-masked region only; ‘MaxMinNorm’: Max-Min normalization. 
Except for the intensity normalization, all procedures for training the network, inferencing predicts, and the 
post-processing are the same (as in39). The numbers represent the average (standard deviation); media of Dice 
scores between the automatically and manually traced images, in the 5-fold cross-validation (total training 
sample = 1849) and testing samples (499).
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 6. The folder “documentation” contains

The metadata dictionary (as in this Supplementary Material), in .txt and .json formats
The “dataset-description.json”, with the required description fields per BIDS specifications
The readme file, describing the general structure of the dataset

Technical Validation
Lesion delineation and agreement between lesion tracers. All the delineations were performed 
using ROIEditor (https://www.mristudio.org). A “seed growing” tool in ROIEditor was often used to achieve 
a broad segmentation, followed by manual adjustments. The segmentation was performed by two individuals 
highly experienced (more than 10 years) in lesion tracing (JH, XX). Additionally, they were trained by detailed 
instructions and illustrative files, in a subset of 220 cases (10% of the dataset cases with lesions). These cases were 
then revised by a neuroradiologist (AVF), discussed with the evaluators, and retrace and revised after 2 weeks. 
After achieving consensus, the evaluators started working on the whole dataset. The neuroradiologist revised all 
the segmentations and identified the suboptimum cases that were re-traced. The segmentations were revised as 
many times as necessary, until reaching final decision by the consensus of the tracers and the neuroradiologist. 
In the ischemic lesions, the evaluators looked for hyperintensities in DWI and/or hypointensities (<30% average 
brain intensity) in ADC. Additional contrasts were used to rule out chronic lesions or microvascular white mat-
ter disease. In the hemorrhage “lesion type”, extra modalities (SWI, T1WI, T2WI, FLAIR) were used to trace, in 
addition to DWI. Extra-parenchymal hemorrhage (intraventricular or subarachnoid) was not traced. The mean 
time for tracing was 7 min. The lesion definition was saved as a binary mask (lesion = 1, background = 0), in the 
original image space of each subject.

We calculated inter-and intra-rater reliability using the Dice similarity coefficient, which indicates if the 
same voxels are being selected as part of the lesion mask or not. Values range between 0 and 1 (1 is total agree-
ment). For Dice calculation, we used the set of 220 lesions traced twice. This sample had the same propor-
tion of ischemic and hemorrhagic lesions as the whole sample. The inter-rater Dice was 0.68 ± 0.23, while the 
intra-rater Dice was 0.72 ± 0.14. The agreement was better in ischemic lesions (0.76 ± 0.14 inter-evaluator and 
0.79 ± 0.12 intra-evaluator) compared to hemorrhage. We also calculated the intraclass correlation coefficient 
(ICC) for the lesion volumes. The ICC ranges from 0–1; 1 is total agreement. The inter- and intra-rater ICC were 

Fig. 3 Radiological normal DWI templates. (a) average and (b) standard deviation maps of the intensity-
normalized DWIs in standard space (MNI) of the cases classified as “not-visible” strokes.

Fig. 4 Distribution of (a) hemorrhage (intra-parenchymal) and (b) ischemic lesions in the dataset.

https://doi.org/10.1038/s41597-023-02457-9
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0.96 and 0.98, respectively. We reinforce that the final decision for the lesion segmentation in the whole dataset 
was made after many revisions and by consensus between the tracers and an expert neuroradiolist.

Automated skull stripping - brainmask network. The deep-learning method used for skull stripping, 
in order to reduce the complexity and computational time of the process, is described in our previous paper39. 
Briefly, to generate the gold standards brain masks, the DWI and B0 images from the “not-visible” cases were 
resampled into 1 × 1 × 1 mm3 and skull striped by a level set algorithm (available with ROIEditor), with W5 = 1.2 
and 4, respectively (see explanation about choice of parameters in MRIstudio.org). The resulting brain masks (the 
union of masking on DWI and B0) were manually corrected by our annotators, serving as ground true for the 
“UNet BrainMask Network”. To train the network, all images are mapped to MNI and down-sampled to 4 × 4 × 4 
mm3. The final brain mask inferenced by the network was then post-processed by the closing and the “binary_
fill_holes” functions from Python scipy module, upsampled to 1 × 1 × 1 mm3, and dilated by one voxel with image 
smoothing. The Dice agreement between the “gold-standard” brain masks and those obtained with our network 
was above 99.9%, in an independent test set. The average processing time was about 19 seconds (against 4.3 min 
taken by the level-set algorithm), making it suitable for large scale, fast processing.

DWI intensity normalization. The process described here is similar to that descried in our previous publi-
cation39, now extended to the whole dataset, including the cases with hemorrhage lesions.

Intensity-normalization increases the comparability between subjects and, as normalizing images to a stand-
ardized space, is crucial for diverse image analytical processes. Although the lesion might affect intensity dis-
tribution, we assume that the majority of brain voxels are from healthy tissue and can be a good reference for 
intra- and inter-individual comparison. We used bimodal Gaussian function, as in42, in Eq. (1) to fit the intensity 
histogram of DWI and cluster two groups of voxels: the “brain tissue” (the highest peak) and “non-brain tissue” 
(the lowest peak at lowest intensities, composed mostly by cerebrospinal fluid).
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where ai, bi, ci are the coefficients of the scale, mean, and standard deviation of Gaussian distribution. ai, bi, ci are 
calculated by least-square fitting the bimodal Gaussian function to the intensity histogram of individual DWI. 
DWI intensities are normalized to make the “brain tissue” intensity with zero mean and one standard deviation.

Figure 5a show that the DWI intensity distribution of voxels in a brain with ischemic lesions (blue), one with 
hemorrhage (green), and in a brain with “not visible” lesion (orange), prior-to (left column) and post-to (right 
column) intensity normalization. We note that the preservation of the minor peak at high intensities in the brain 
with ischemic lesion indicates the preservation of the lesion contrast after normalization. Figure 5b–d show the 
distribution of DWI intensities in groups of images, prior-to (left column) and post-to (right column) intensity 
normalization. We note that the distributions are much more homogeneous, and the individual variations are 
smaller after intensity normalization. More importantly, intensity differences between different magnetic fields 
and scan manufacturers are ameliorated after intensity normalization.

We also note that this normalization approach helped to reduce the complexity and time to train Deep 
Learning Networks for ischemic lesion segmentation. We experimented training UNet with DWIs nor-
malized by our proposed method (‘ProposedNorm’) and three others: (1) standard z-score normaliza-
tion on whole images (‘StandardNorm’), (2) standard z-score normalization on brain-masked region only 
(‘BrainMaskStandardNorm’), and (3) Max-Min normalization (‘MaxMinNorm’). We kept all other procedures 
for training the network, inferencing predicts, and the post-processing the same, as described in39. We used the 
intensity normalized DWI and ADC as inputs, and 5-fold cross-validation. Table 2 shows that the Dice scores 
between automated and manually traced images were higher when using images intensity-normalized with the 
proposed method.

Finally, in addition to the ADC from the scanners, we offer ADCs “recalculated” as:

=
−

I x y z
lnI x y z lnI x y z

b
( , , )

( , , ) ( , , )
(2)ADC

0

where I(x, y, z), I0(x, y, z) are the intensity of DWI and B0 voxels, respectively, at (x, y, z)-coordinate, with 
b-value = 1000.

Quality control for images in standardized space, MNI. Clinical images offer extra challenges for 
brain mapping to standardized space, because of their high slice thickness and fair amount of tilt out-of-plane, 
therefore requiring further stringent quality control. The quality control of the normalized images was performed 
in two steps: (1) qualitative: a neuroradiologist looked at the MNI-normalized images with the MNI template 
brain mask overlaid, in order to rule-out obvious misalignments, and (2) quantitative: performed as described 
below.

 a) Three regions of 5 voxels bandwidth were defined in the template: the outside strip of the brain mask 
(OSBM), the inside strip of the brain mask (ISBM), and the outside strip of the lateral ventricles (OSLV), as 
shown in Fig. 6, top.

 b) The ratio of the mis-deformed voxels in OSBM, ISBM and OSLV for each subject, defined as γOSBM, γISBM, 
and γOSLV, was calculated as follows:
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the number of the deformed B0 voxels whose intensity is larger than 0 in OSBM
the number of voxels in OSBM (3)OSBMγ =

Fig. 5 Probability distribution (y axis) of DWIs’ voxel intensity (x axis) prior-to (left column) and post-to (right 
column) intensity normalization. Panel (a) shows the distributions of DWI intensities of a selected cases with 
ischemic lesion (blue), hemorrhage (green), and “not visible” lesion (orange). Panels (b), (c), and (d) show the 
distributions of DWI intensities in groups according to presence of visible ischemic abnormality or hemorrhage 
(b), magnetic fields (c), and scanner manufacturers (d). The solid line is the average group distribution, the 
shadowed area is within 1 standard deviation from average.
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γ =
the number of the deformed B0 voxels whose intensity is 0 in ISBM

the number of voxels in ISBM (4)ISBM

γ
λ

=
the number of the deformed B0 voxels whose intensity is larger than in OSLV

the number of voxels in OSLV (5)OSLV

λ µ σ= − . ×0 5 (6)deformed B0 in LV deformed B0 in LV

γOSBM indicates the ratio of the deformed B0 voxels aligned outside the template brain mask and γISBM indi-
cates the ratio of the background voxels aligned inside the template brain mask. High γOSBM or γISBM indicte pos-
sible issues with the global brain mapping. γOSLV indicates the ratio of voxels from a subject’s deformed ventricles 
that exist outside the template lateral ventricle boundaries. High γOSLV is common in this population since aged 
subjects’ lateral ventricles are usually larger than the template’s lateral ventricles and indicate the need for local, 
and possibly non-linear deformation for brain mapping.

The average γOSBM was 0.2042 ± 0.0628 (medium = 0.1929, range [0.0723, 0.5070]). The average γISBM was 
0.2683 ± 0.0426 (medium = 0.2666, range [0.1560, 0.4273]). This means that a small minority of voxels were 
outer or inner the template brain contour, when considering a stringent bandwidth of 5 voxels. Importantly, the 
small ratio of error was stable over stroke types, magnetic field, or scan manufacturer (Fig. 6).

Usage Notes
Multimodal public repositories for research data have been organized on the pillars of “FAIR” principles28: they 
are designed to be maximally “Findable, Accessible, Interoperable, and Reusable”. These repositories and cen-
tralized collections43–47, combined with initiatives to establish semantic and analytical consensus48,49, are likely 
to represent the core structure for future neuroscience research. The sharing of clinical data, however, is com-
plicated by technical and regulatory issues. While the models of research data sharing are not adoptable in their 
exact same form for clinical data, they inspire a similar sharing structure, respecting the conditions under which 
the data are usable, without limiting accessibility.

We share a large dataset of clinical acute stroke MRIs, associated to demographic and clinical metadata, 
in alignment with the broad aim of the biomedical community to share FAIR data. Although a challenge for 
imaging processing, the image heterogeneity is an important feature of the dataset as it guarantees that tools 
developed using these images can be applied broadly. Providing multimodal image data is another important 
achievement as it will enable to train and test models that rely in multimodal integration and/or data fusion. The 
data organization, in BIDS36 recommended format, is compatible, or can be easily converted to, newly developed 

Fig. 6 Quality control of the image mapping to standard coordinates (MNI). The top figure illustrates the three 
regions of 5 voxels bandwidth defined in the template: the outside strip of the brain mask (OSBM), the inside 
strip of the brain mask (ISBM), and the outside strip of the lateral ventricles (OSLV). The bottom boxplots 
illustrate the average of OSBM and ISBM (γOSBM and γISBM), which are indicative of the global quality of the 
brain mapping, across lesion type, magnetic field and scanner manufacturer.
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semantic standards, such as the NeuroImaging Data Model (NIDM)48. This provides critical capability to gen-
erate “computable data objects”, that can be readily used by the AI community and are user-friendly organized 
to improve access to non-expert data analysts. It also makes easy to integrate with other ongoing open science 
efforts29,43, analytical pipelines (such as in brainlife, https://brainlife.io/about/), application program interfaces 
(APIs), modules for quality control50,51 and harmonization52–54, and indexing and management engines55.  
These capabilities enable the use of this resource not only for discovery, but also for data synthesis and augmen-
tation56–58, and to aid reproducibility and replication studies59,60.

Specifically, the dataset presented here could be used to train, test, or “transfer learning” to algorithms for lesion 
segmentation, providing highly important metrics for acute treatment, such as the volume of the ischemic core 
and perfusion deficits. For example, we recently used the images with ischemic strokes from this dataset to devel-
oped a public, user-friendly tool to generate “computable data objects”61 (https://www.nitrc.org/projects/ads).  
We also developed a public, user-friendly tool for ischemic lesion segmentation and quantification39, overcom-
ing limitations of previous algorithms not tested in large numbers of real clinical data62,63. We created the first 
public digital atlas of brain arterial territories64 (https://www.nitrc.org/projects/arterialatlas), based on the fre-
quency lesion maps of 1,298 of these cases. This dataset could also be used to develop and test algorithms for 
mapping low resolution images of brains with lesions. This mapping allows the examination of the overlap of 
the lesion with specific brain structures, like those defined in our arterial territory atlas or others. This ena-
bles voxel-based lesion symptom mapping and the automated calculation of relevant scores, as for example, 
we did using this dataset by automatically estimating ASPECTS65. The association of image annotations and 
lesion description also enabled us to develop automated image retrieval engines and to generate automated 
radiological reports66. Furthermore, this dataset is potentially useful as a general training and testing resource 
for translational research. In fact, we initiate several of those efforts by using this dataset and the tools enabled 
through it to study laboratory67 and anatomic-functional relations68, to explore bias in clinical measures69, to 
study populational trends70, and to test hypothesis developed in external, smaller datasets.

The main limitation of this dataset is that it originates from a single center. Although we used data from a 
certified Comprehensive Stroke Center, whose population reflects the profile of the US national population 
with stroke, and scans with great technical heterogeneity (collected along 10 years, in eleven scanners, and with 
dozens of different protocols), a regional bias71 might exist. For instance, our population includes a higher per-
centage of Black and lower percentage of Hispanic/Latinx and Asian patients than many urban stroke centers.  
We expect that future sharing and indexing initiatives enable the enrichment of this dataset with data from 
multiple other centers, worldwide, reducing possible population biases. Nevertheless, this dataset will serve as 
a valuable resource for training and testing models, particularly those for technical development and for image 
processing.
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