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a Data Set of Signals from an 
antenna for Detection of Partial 
Discharges in Overhead Insulated 
Power Line
Lukáš Klein  1,2 ✉, Jan Fulneček2, David Seidl1,2, Lukáš Prokop2, Stanislav Mišák2, 
Jiří Dvorský2 & Marian Piecha3

We introduce a data set obtained via a contactless antenna method for detecting partial discharges in 
XLPE-covered conductors used in medium-voltage overhead power transmission lines. the data set 
consists of almost three years’ worth of data, collected every hour from 9 measuring stations in Czechia 
and Slovakia. Each sample in the data set represents a single signal gathered for 20 ms. The contactless 
method is deployed on the same stations as the galvanic contact method, which is used by power 
distributors and can provide ground truth. also manually curated data by human expert are present. 
Successful detection of partial discharges can prevent electricity shutdowns and forest fires resulting 
from insulation failure due to vegetation contact. the data set is particularly relevant for covered 
conductors used in mountainous regions where establishing a safe zone is challenging. The contactless 
method offers advantages such as cheaper and easier installation. The data set has the potential to 
develop machine learning models to detect partial discharges and facilitate safer and cheaper use of 
covered conductors.

Background & Summary
The problem with using covered conductors with XLPE material is high impedance faults, which are hard to 
detect (e.g., fallen tree). However, they can be detected by the presence of partial discharges (PD)1, which are 
both a signal and a harmful event. PD is a phenomenon that occurs in insulation materials used in power trans-
mission systems, which can lead to insulation failure, power outages, and even fires2. The advantage of using 
CC in overhead power lines is its ability to withstand short contact with vegetation, making it useful for places 
where only a small safe zone can be maintained (e.g., national parks, hard-to-access terrains, etc.). This is useful 
to ensure the uninterrupted and reliable delivery of electrical power. When prolonged contact with vegetation 
happens, PDs (mainly surface PDs) start to appear and slowly degrade the insulation. Within a matter of hours 
or days (depending on the moisture of the vegetation and the environment), insulation failure occurs (as seen 
in Figs. 7, 8). For example, a very dry branch will not cause any PD and will pose no problem for CC. Insulation 
failure can cause accidents like a forest fire (Fig. 11) and others.

The main interest for power distribution companies is to detect if there is any contact with vegetation in 
order to prevent insulation failure. In the past, partial discharge detection for medium power voltage (22 kV) was 
performed mainly using galvanic contact method, which required physical access to the conductors and inter-
ruption of the power supply3. This method is used in production settings, for example in the Czech Republic 
and Slovakia, on over 22 sections of overhead power lines with CC. However, these method is rather expensive 
and time-consuming, and it require power outages for installation. Despite these drawbacks, it is used because 
it saves money and improves reliability. Therefore, alternative methods, such as the contactless antenna method, 
have been proposed to overcome these limitations4. This method is cheaper and does not require a shutdown of 
power during the installation of the detection device. On the other hand effective range of contactless method is 
smaller than contact method (1 km vs 4 km - depend on background noise in the measuring place) and acquired 
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data is much noisier. Also as this method is cheaper (approx 10 times cheaper) more measuring stations can be 
deployed.

This study introduces a novel data set5 obtained using a contactless method for detecting partial discharges 
in XLPE-covered conductors used in medium voltage overhead power transmission lines4. The data set was 
collected every hour from nine measuring stations in the Czech and Slovak Republics, covering half a year of 
raw data. Each sample in the data set represents a single signal gathered for 20 ms. 20 ms are enough to capture 
single period as utility frequency is 50 Hz. The PD has a very distinct pattern in captured signal, which is used 
for distinguishing if PD are present or another type of like corona discharge is present. This data is from a real 
production environment on real power transmission lines with CC.

The primary goal of this data set5 is to facilitate the development of machine learning models that can detect 
partial discharges in covered conductors using the contactless antenna method. Successful detection of partial 
discharges can prevent electricity shutdowns and forest fires resulting from insulation failure due to vegetation 
contact6. The data set is particularly relevant for covered conductors used in mountainous regions where estab-
lishing a safe zone is challenging or where smaller safe zones are required.
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Fig. 1 Data collection process.
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The contactless method is deployed on the same stations as the galvanic contact method, which is used 
by power distributors and provides a ground truth. This allows for a comparison of the performance of the 
contactless method with the galvanic method. One of the inspirations for publishing this data set is a Kaggle 
competition7, which was held for the galvanic contact method and enabled the development of modern and very 
precise methods for the detection of PDs in CC. It is also one of the largest data sets available today to detect PD 
in CC8–12. Measuring stations are installed on poles with overhead power transmission lines for CC.

Several recent studies have used parts of this data set. Fulnecek et al.4 proposed, developed and tested a 
contactless fault detection system based on partial discharge activity detection for tree fall detection on MV 
overhead lines with covered conductors. Martinovic et al.13 proposed a fast algorithm for contactless partial 

Fig. 5 Example of an acquired signals with PD pattern.

Fig. 3 Example of an acquired signals without PD pattern.

Fig. 6 Second example of an acquired signals with PD pattern.

Fig. 4 Second example of an acquired signals without PD pattern.
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discharge detection on a remote gateway device, which consists of outlier detection, clustering, feature extrac-
tion, and classification. Klein et al.14 introduced a machine learning algorithm based on a heterogeneous stack-
ing ensemble neural network to classify partial discharges obtained by a contactless detection method using an 
antenna. They also explored the ability of edge computing devices, such as the Jetson platform, Neural stick, 
and Edge TPU, to solve the real-world problem of detecting partial discharges from covered conductors on 
high-voltage power lines located in remote and heavily forested areas15. None of these studies had published a 
data set.

These recent studies show promising results and highlight the potential of this data set to develop machine 
learning models to detect partial discharges. This, in turn, can facilitate safer and cheaper power transmission 
using covered conductors.

The data set has the potential to improve the accuracy and efficiency of detecting partial discharges in cov-
ered conductors and facilitate safer and cheaper power transmission. It has the potential for reuse in various 
applications, including fault diagnosis, power system protection, and predictive maintenance. In addition, the 
data set can be used to evaluate the performance of different machine learning models and compare them with 
traditional galvanic contact methods.

Methods
To obtain the data set, data acquisition devices were installed alongside an existing galvanic contact method. 
The galvanic contact method provides ground truth for detection and reliable data to compare, while contactless 
partial discharge detection involves the use of an antenna sensor. The antenna sensor can be easily installed on 
existing medium voltage (MV) overhead lines without modifications to the covered conductor (CC) and without 
the need to disconnect the line, making it a convenient and cost-effective option as it it much cheaper then using 
contact galvanic method. Moreover, the antenna sensor only requires a single channel DAQ, which reduces the 
requirements for wireless data transmission. Unlike the galvanic contact sensor, the antenna sensor does not 
require an MV capacitive divider for its operation, which is expensive. Most common XLPE CC cables used in 
transmission lines, where measuring station are installed are 1AS or CCX WK 20Kv. The description of used 

Without PDs With PDs Total

Manual annotation 1520 180 (10%) 1700

Inferred annotation 149493 1941 (1.2%) 151434

Table 1. The data set sample count.

Station ID

Interrupted Intervals

1 Hour 8 Hours 24 Hours 72 Hours One Week

52007 436 31 17 5 2

52008 196 15 11 6 4

52009 473 30 22 9 6

52010 542 119 72 38 22

52011 191 21 17 10 8

52012 304 18 15 6 4

52013 571 59 12 7 5

52014 1090 66 18 8 4

Table 2. Table of number of interrupted intervals in data by time period and station ID.

Fig. 7 Example of damaged insulation after prolonged contact with vegetation (tree).
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cables can be found for example on website of manufacturer PRAKAB PRAŽSKÁ KABELOVNA s.r.o. (https://
www.prakab.cz/en/products/insulated-overhead-lines/).

Measuring platform. As the hardware was reused, the Remote Terminal Unit (RTU) used for the galvanic 
contact method was used as there was enough free computation power and a last free data acquisition chan-
nel with a 8 bit ADC that has a very high sample rate and variable range up to 1 Vpp (Voltage peak to peak).  

Fig. 8 Second example of damaged insulation after prolonged contact with vegetation (tree).

Fig. 9 Temporal distribution of data samples.

Station ID Without PDs With PDs Total

52007 22700 269 22969

52008 22628 998 23626

52009 23477 164 23641

52010 8161 63 8224

52011 10007 9 10016

52012 22757 5 22762

52013 18235 353 18588

52014 21528 80 21608

Table 3. Samples per station for inferred data.
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The hardware of the detection device is a proprietary solution manufactured by the ELVAC company. The detec-
tion devices contain ARM CPUs and run the Linux operating system.

The measuring platform for PD detection was mounted on the single pole of an overhead line, consisting of 
a box containing a power source with a backup battery, a DAQ with a sample rate of 40 MS/s (Mega sample per 
second), and a control unit. The antenna and contact method can be seen in Fig. 10. The signals were then exam-
ined in a frequency spectrum of up to 20 MHz, as this was the maximum for the DAQ sample rate (according to 
the Nyquist-Shannon sampling theorem). This means that the range of frequencies acquired was from 20 kHz 
to 20 MHz. As a common type of wideband whip antenna with compact dimensions and low price is used, the 
Boni-Whip antenna. The antenna is mounted on the pole, parallel to the CC.

antenna sensor. The Boni-Whip antenna is a type of active wideband whip antenna with a frequency range 
of 20 kHz - 300 MHz We only use frequencies up to 20 MHz that is commonly utilized as an antenna sensor. 
It is a compact, cost-effective, and highly portable device that can be easily installed on overhead lines. This 
antenna is an improvement on the successful Mini-Whip antenna and is developed and manufactured by Bonito, 
a German-based company.

The Boni-Whip antenna provides excellent reception results on long-wave, medium-wave, short-wave, and 
VHF, making it ideal for a wide range of applications. Its gain is 3 dB, and its upper frequency limit is (−1 dB): 
300 MHz, with IP3 of +32.5 dBm and IP2 of +55 dBm. The voltage supply for the antenna is delivered by the 
antenna cable and the included power supply module (bias tee).

The antenna sensor requires a nominal power supply voltage of 12 V with a maximum current draw of 
150 mA. To power the entire acquisition platform, an instrumental transformer (22/0.1 kV) is utilized, which 
is directly connected to the power line under examination. However, the amplifiers within the DAQ platform 
introduce a DC offset in the acquired signals. Fortunately, the amplitude of this offset is typically very small, and 
thus it rarely results in any substantial issues.

It should be noted that the sensitivity of the BONI whip antenna sensor depends on various factors, 
such as the length, height above ground, type of conductor, and actual grid configuration of the power line.  

Fig. 10 Single pole with installed a galvanic contact method (yellow circles) and antenna based method (red circle).

Fig. 11 Example of a burned tree after insulation failure.
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Under laboratory conditions with an overhead power line model connected to the PD calibrator, the sensor 
sensitivity was found to be 1 nC/10 mV. However, in real-world environments, this value is subject to variability. 
On-site calibration is the only reliable method for determining the sensitivity of the sensor in such conditions. 
Unfortunately, conducting on-site calibration would require the entire distribution power grid to be shut down, 
which is not feasible for distribution grid operators. As a result, no on-site calibration has ever been performed.

Sample acquisition. The acquired signal comprises 800,000 samples, representing a single period of the 
frequency of the power grid. The sampling is performed every hour and the data is transmitted remotely using 
2 G GSM technology. Remote stations are often located in remote or inaccessible areas, where the 2 G signal is 
unreliable. Thus, transmitting additional samples is not feasible. Furthermore, in the event of a tree fall, PD activ-
ity remains stable and continuous, resulting from the tree’s direct contact with the covered conductors, posing 
a severe threat to the conductor insulation. Although unstable PD activity is common due to random contacts 
with surrounding vegetation, such events have little impact on insulation damage. On the basis of our experience, 
hourly data acquisition is sufficient for detecting insulation damage. The general information on data acquisition 
can be seen in Fig. 1.

Data retention. The data retention process involved storing the collected data in a Microsoft SQL 
Server database. The data were saved in the image data type that contained the measured signal information. 
Additionally, metadata such as station, phase, date and time, and operator details were stored in accompanying 
tables or columns.

To optimize the data storage process, the data was imported as batches as soon as it was gathered by the 
distribution operators. However, the frequency of data transfer varied among different operators, with some 
sending data consistently, while others did so infrequently.

The stored data was regularly classified and verified to ensure its quality and relevance to the research objec-
tives. This process helped filter out any irrelevant or corrupted data, which could have negatively impacted the 
accuracy of the results. In general, the data retention process was critical in providing a reliable and comprehen-
sive data set.

As the provided dataset is related to work on national infrastructure, critical data was anonymized to ensure 
the safety of infrastructure (location, etc.). Also, the primary purpose of gathering this kind of data is to ensure 
more reliable and safer use of XLPE-covered conductors.

Signal description. The signal measured by the wireless antenna contains a large amount of noise artifacts, 
mostly generated by the AM radio and the resistance in the circuit itself. The device always measures the highest 
received frequency, and noise usually hides a large part of the original signal, creating an almost compact body 
when visualized. This compact body changes its magnitude over time, making it impossible to define a single 
value that would discern outliers and noise.

The signal is processed by an 8-bit analog-to-digital converter (ADC), which returns values in the range from 
−128 to 127. A signal plotted as amplitude over time usually contains two larger clusters of higher electromag-
netic activity, corresponding to the three phases of an alternating current in overhead power lines. Visible peaks 
in the signal may indicate the presence of partial discharges or other noise.

The signals acquired in a real environment contain high levels of noise, unlike in laboratory conditions. There 
are various sources of background noise, including radio broadcasts, atmospheric disturbances, switching power 
supplies, and other types of discharges. Based on the influence of background noise on the frequency spectrum 
and time domain of acquired signals, most noise signals in observed data can be separated into two groups: 
discrete spectral interference (DSI) and random pulse interference (RPI)4.

Additionally, the data contains a large amount of noise, as well as time series associated with other types of 
discharge, such as corona discharge (corona discharge has different pattern6) or rime on covered conductors 
(still unsolved problem as rime has very similar characteristics to PD. These discharges have different frequency 
characteristics, which make them distinguishable from partial discharges.

In conclusion, the acquired signal from the wireless antenna contains a complex mix of partial discharges 
and background noise, which requires careful processing and analysis to detect and distinguish between them 
accurately.

Fault annotation using galvanic contact method. In addition to measuring signals to detect partial 
discharge (PD) using the antenna, a galvanic contact method is installed alongside for the annotation of faults. 
This method is used for supervised training to detect faults using the detection of PD. The annotation is done by 
an unpublished but production-used algorithm, which is utilized by Czech energy distributors.

The galvanic contact method has been shown to have high accuracy in fault detection with a precision of 
70%, sensitivity of 98.4%, specificity of 99.8%, and an overall accuracy of 96.7%13. However, it should be noted 
that the effective range of contactless detection is shorter than that of the galvanic contact method, with the latter 
having a range of 1 km compared to 4 km for the former. The effective range is also dependent on the environ-
ment and background noise4.

Manually annotated subset. A manually annotated subset was created as an alternative to the use of the 
galvanic contact method as labels. This subset was created through a meticulous data selection and validation 
process by an expert on partial discharges (PDs). The expert reviewed the data and confirmed the visible appear-
ance of the PDs or the lack thereof (See Figs. 5, 6 which do not have any PD presence). As the PD pattern is very 
distinctive4. (See Figs. 5, 6 which contains PD pattern).

https://doi.org/10.1038/s41597-023-02451-1
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To ensure accurate labeling of the time series, a human operator checked all samples for the presence of 
partial discharges using the galvanic method of detection of PD. The selected samples were diverse in their char-
acteristics, including samples without PD that contained other types of discharge, such as corona. This diversity 
of samples should help the model learn to distinguish between PD and other types of discharge.

Although this approach allows for a high level of precision in identifying PDs, the major drawback of this 
method is that the size of the annotated subset is limited. However, the advantage of this method is that it pro-
vides a high level of accuracy in identifying PDs without the need for additional hardware or equipment, making 
it a more cost-effective solution.

It should be noted that the annotated subset provides a reliable ground truth for supervised learning, allow-
ing the training of machine learning models for the detection of PD. Additionally, this subset can be used to 
evaluate the performance of PD detection algorithms and compare their accuracy with the results obtained from 
the galvanic contact method.

Data records
We have uploaded our dataset to fiqshare system5. A hierarchical folder structure is used to ensure efficient and 
organized data management. At the root level, two CSV files store metadata and annotations related to meas-
urements. One is for manually validated data (manual_annotation.csv) and second one is for data with inferred 
annotation from the galvanic contact method (inferred_annotation.csv). An overview of the hierarchy folder 
can be seen in Fig. 2.

There are directories for each station, where the acquired signals are stored. Samples for each station are 
saved as numpy arrays in .npy format. Each sample is identified by a measurement ID, and the path to each sam-
ple is the station ID followed by the measurement ID, which is also the filename of the sample.

A single folder (manual_annotation) is used to store the manually validated data set, which includes signals 
selected by experts based on their experience and knowledge of PD behavior. The selected signals are carefully 
examined and annotated, and only those meeting high-quality criteria are included in the data set. There is a 
separate metadata file for this data (manual_annotation.csv).

The data are stored in a compressed format to optimize storage space, and the compression rate is very high 
due to the large size of the data files. The data for each station and the whole data set5 folder was compressed 
using the tar -cJf command, which creates a compressed tarball archive file in the .tar.xz format. This format is 
known for its high compression ratio and is commonly used to compress large files or directories.

This hierarchical folder structure ensures that the data is well-organized and easy to navigate, facilitating data 
analysis and further research. High compression rates are used for efficient storage of the large amount of data 
acquired, while the careful selection and annotation of the manually validated data set5 ensures its high quality 
and reliability.

Metadata description. There are two metadata files for the samples, one for manually annotated data (man-
ual_annotation.csv) and another for data with annotations from the galvanic contact method (inferred_annota-
tion.csv). Both metadata files are in CSV format with a comma delimiter, and the first row is the header.

The metadata file for annotations from the galvanic contact method contains a unique measurement ID used 
for internal identification, the station ID where the measurement was performed, the index in the array saved in 
the file for the given station, a timestamp in ISO 8601 format indicating when the measurement was taken, and 
fault annotation from the galvanic contact method.

The metadata file for manually annotated data follows a structure similar to the galvanic contact method, but 
does not include a timestamp. Expert annotations on partial discharges were used instead.

Description of samples. Samples for each station are saved as numpy arrays in a .npy format. Each sample 
has a length of 800,000 and a signed 8-bit data type (numpy dtype int8). Figs. 3–6 show a sample of the signal.  
The filename of the sample is a measurement ID and each sample is in directory with a name of station or for 
manually annotated data in directory manual_annotation.

The ID used for internal identification is consistent and can be used to match measurements from previously 
published galvanic contact method data sets7. A new data set5 containing a large amount of data for galvanic 
contact measurements will also be published, along with a new classification method for the contact galvanic 
method, by another team. We have no influence on when it will be available or published.

Table 1 shows the sample count in the data set5 for cases with and without PDs, as well as the total count, for 
both manual and inferred annotations.

technical Validation
Besides continuous validation and use of data for the research team and the development of new machine learn-
ing algorithms, we had performed a technical validation of the provided data set.

To ensure the quality and accuracy of the data5, a thorough technical validation was performed. This valida-
tion involved a combination of visual checks, statistical analysis, and spot testing of random samples.

First, the data were visually checked by station and ordered by time. For each station, every 1000th sample 
was examined to ensure that the data were consistent and free from errors or anomalies. Additionally, a ran-
dom 1% of the data was also checked to ensure that the validation process was thorough and comprehensive.  
We provide script to validate data by reader - test_station.py.

Furthermore, to ensure the accuracy of the data5, 100 samples with PDs were selected and checked. 
Additionally, ten random samples per station were also examined to ensure that the data were consistent across 
all stations - test_fault.py and test_station.py.

https://doi.org/10.1038/s41597-023-02451-1
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To further validate the data5, statistical analysis was performed on the data for each month. This involved 
calculating various statistical measures, such as means, medians, and standard deviations, for each station and 
comparing the results to expected values. Any discrepancies or anomalies were investigated and resolved to 
ensure the accuracy and integrity of the data. This is in the provided script - test_monthly.py.

Data acquisition is essential for capturing signals for further analysis. However, due to a variety of factors 
such as problems with the data acquisition device (DAQ) or connectivity issues, data acquisition is not always 
continuous. Therefore, the intervals between the data points are checked for consistency and absence of errors or 
anomalies to ensure data accuracy. This is crucial as missing values or gaps can potentially impact the integrity 
of the data.

Although missing values or gaps in the data may exist, they do not necessarily invalidate the data. Each 
sample is independent and sufficient for classifying the presence of partial discharge (PD) faults. However, if the 
samples are to be used as time series, missing data should be taken into account.

In our analysis, we provide a script (intervals.py) to retrieve continuous samples and visualize gaps in data 
acquisition. Our results show (in Table 2) that all stations experienced gaps in data acquisition, with the majority 
being single missing samples. Interrupts greater than 24 hours were rare, with station 52010 having the most 
significant gaps in data acquisition. This station also had a limited amount of data, contributing to the gaps in 
data acquisition.

Figure 9 provides an overview of the missing data intervals for each station. Station 52007 and 52008 had the 
most complete data acquisition, while other stations had gaps in data acquisition. It is worth noting that main-
taining stable connectivity and functionality is not always possible in the monitored environment and locations.

In general, the technical validation process confirmed the quality of the data5, and we are confident that 
it can be used with confidence by researchers and data scientists alike. The data set5 has the potential to be 
reused in various applications, including fault diagnosis, power system protection, and predictive maintenance. 
Furthermore, the data set5 can be used to evaluate the performance of different machine learning models and 
compare them with traditional galvanic contact methods. In Table 3 can be seen a distribution of samples 
between stations and number of samples with or without PDs.

Usage Notes
The data provided is in the npy format, which is the standard binary file format used in NumPy to persist a single 
arbitrary NumPy array on disk. This format stores all the necessary shape and dtype information to correctly 
reconstruct the array, even on a different machine with a different architecture.

In Github repository there is also a script to extract all data from compressed archives.
To work with these data, it is recommended to use the NumPy library, which provides efficient and flexible 

data structures for numerical computation. In addition, since the data files may be large, it is recommended to 
use tools such as Dask or memmap to handle these files.

Dask is a library for parallel computing in Python that allows for out-of-core computation on large data sets. 
It can be used to handle data that is too large to fit into memory by partitioning the data into smaller chunks and 
processing them in parallel.

Memmap is a feature in NumPy that allows for memory-mapped files, enabling efficient access of large arrays 
stored on disk. By using memory-mapped files, only the portions of the array that are accessed are loaded into 
memory, which can greatly reduce memory usage.

Metadata for the data is provided in csv files, which can be easily read and manipulated using tools such as 
pandas or NumPy.

Code availability
The code for loading the data set5, testing, and utility functions is available in a Github repository, which can be 
found at the following https://github.com/Lukykl1/dataset_pd_vsb.

The repository includes code for loading the data in npy format and the metadata in csv format, as well as util-
ity functions for processing and analyzing the data. The code is documented and includes comments to explain 
each step of the process.

To run the Python scripts, you will need to have the necessary libraries installed, including NumPy, pandas, 
Matplotlib, and any other required dependencies. You can install these libraries using a package manager such as 
pip or conda.

We hope that this code will be useful to researchers and data scientists who are working with these data and 
looking for an efficient and flexible way to load and process them.
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