
1Scientific Data |          (2023) 10:555  | https://doi.org/10.1038/s41597-023-02437-z

www.nature.com/scientificdata

a natural language fMRI dataset for 
voxelwise encoding models
amanda LeBel  1, Lauren Wagner2, Shailee Jain3, aneesh adhikari-Desai3,4, Bhavin Gupta3, 
allyson Morgenthal4, Jerry tang3, Lixiang Xu5 & alexander G. Huth3,4 ✉

Speech comprehension is a complex process that draws on humans’ abilities to extract lexical 
information, parse syntax, and form semantic understanding. these sub-processes have traditionally 
been studied using separate neuroimaging experiments that attempt to isolate specific effects of 
interest. More recently it has become possible to study all stages of language comprehension in a 
single neuroimaging experiment using narrative natural language stimuli. the resulting data are richly 
varied at every level, enabling analyses that can probe everything from spectral representations to 
high-level representations of semantic meaning. We provide a dataset containing BOLD fMRI responses 
recorded while 8 participants each listened to 27 complete, natural, narrative stories (~6 hours). This 
dataset includes pre-processed and raw MRIs, as well as hand-constructed 3D cortical surfaces for each 
participant. to address the challenges of analyzing naturalistic data, this dataset is accompanied by a 
python library containing basic code for creating voxelwise encoding models. altogether, this dataset 
provides a large and novel resource for understanding speech and language processing in the human 
brain.

Background & Summary
Historically, MRI has been used to study the structural and functional organization of the brain by way of 
highly controlled paradigms and simplified stimuli. This has also been true in language neuroscience (i.e. using 
block designs1,2) where it is common to use isolated words1,3 or simple sentences4–7 as experimental stimuli. 
While these paradigms have proven useful, they also present several issues. First, their hypothesis-driven 
design limits the number of scientific questions one can ask using a given dataset. Second, isolated words and 
sentences are devoid of context, which is a critical component of language understanding in the real world.  
Thus, results obtained on these simple stimuli may not generalize to natural language perception. And third, 
small stimulus sets limit the breadth of features sampled by the stimuli. This is problematic for studying com-
plex, high-dimensional feature spaces such as semantics.

An alternative approach is to use natural stimuli that closely approximate language as it is used in everyday 
life. Natural language is language used in real world settings such as conversation, entertainment, and education. 
Natural language can also include multiple modalities, such as vision for written or signed language and audition 
for spoken language8. Our dataset9 focuses on one specific subset of natural language: spoken English in the 
form of complete narrative stories from The Moth podcast. This permits detailed study of the auditory speech 
processing as well as core amodal language systems. While narrow compared to the full breadth of natural lan-
guage—these stories are largely focused on personal experiences, and contain no dialogue—these stories are still 
highly varied in semantic and syntactic content. There is also considerable evidence from earlier experiments 
that such natural stories broadly activate cortex and can be used to study a variety of phenomena10–17.

One downside of natural language stimuli is the difficulty of analyzing and interpreting the resulting data. 
Data from controlled, block-design experiments can be analyzed using standard methods such as t-tests, f-tests, 
and ANOVAs. In natural language, however, the features of interest (e.g. a particular phoneme, or topic) are dis-
tributed throughout the stimulus. To model how the brain responds to these features—and account for correlations 
among them—we use voxelwise encoding models that are designed to predict brain responses from the stimuli18.  
The first step in creating encoding models is to extract features of interest from the stimuli. Previous work on this fMRI 
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dataset9 has used spectral, articulatory, part-of-speech, and semantic features to predict BOLD responses10,19–21. After 
features are extracted for each word, phoneme, or timepoint, they are downsampled to the rate of the fMRI acquisi-
tion, delayed to account for hemodynamic response, and used in a regression model to predict the fMRI data. These 
models are fit separately for each voxel in each participant, providing high resolution and high fidelity.

For this dataset9, we conducted an fMRI experiment in which eight participants passively listened to 27 com-
plete, natural, narrative stories (370 minutes) from The Moth over the course of five scanning sessions. Three of 
these participants also listened to a further 57 complete stories (629 minutes). These extra sessions are referred 
to as the “extended stimulus set” and include stories from The Moth and Modern Love from The New York Times. 
While only covering a few participants, the large amount of data per participant enables more sophisticated 
analyses than would be possible with fewer stimuli. Each story was transcribed, aligned, and hand-checked to 
provide the timing of every word and phoneme. Functional localizer data for known sensorimotor, auditory, and 
cognitive regions was also collected, as well as high resolution T1-weighted structural scans which were used 
to create hand-corrected cortical surfaces for each participant. For a summary of available resources see Fig. 1 
While there has been a recent boom in naturalistic neuroimaging datasets22–24, this dataset is unique in that it 
contains significantly more data per individual participant than others. This allows for better characterization 
of high dimensional phenomena such as semantics by better covering the available space. Further, this dataset 
includes all necessary base code to fit standard encoding models. This is the first release of a complete dataset9 
and codebase25 for encoding models.

Methods
participants. Data was collected from 8 participants (three female): UTS01 (female, age 24), UTS02 (male, 
age 34), UTS03 (male, age 21), UTS04 (male, age 31), UTS05 (female, age 24), UTS06 (female, age 23), UTS07 
(male, age 25), UTS08 (male, age 24). All participants were healthy and had normal hearing. The experimental 
protocol (protocol # 2017-07-0030) was approved by the Institutional Review Board at the University of Texas at 
Austin, and written informed consent was obtained from all participants for both participation in the research 
and for publicly sharing the data.

Fig. 1 Schematic of naturalistic story-listening paradigm and available resources. 27 unique natural stories 
from The Moth podcast were played for eight participants over five fMRI sessions while they were instructed to 
passively listen. One of these 27 stories was played in each of the 5 sessions. No other story was repeated. These 
stimuli can be converted to previously used feature spaces for model fitting, including semantic, phoneme, and 
word rate feature spaces10,11,14. Regularized regression can then be used to fit voxelwise encoding models that use 
the features to predict BOLD data. Model performance can then be evaluated on a held out dataset. Available 
resources on OpenNeuro include the stimuli, BOLD data, and hand-corrected surfaces for each of the eight 
participants. Available resources on GitHub include the feature spaces and code for fitting the encoding models.
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Natural language stimulus set. The stimulus set consisted of 26 10–15 minute stories (320 minutes and 
24 seconds total duration, see Table 1) from The Moth plus one additional 10-minute story played in each session 
to be used as a test dataset (50 minutes), giving a total of 370 minutes of data per participant. For three of these 
participants, the stimulus set contains an additional 55 stories for a total of 82 stories (949 minutes) including 
an additional story to be used as a test dataset. For a complete list of the stimulus including those found in the 
extended data set see Supplemental Table 1. For stimulus presentation, the audio for each story was filtered to 
correct for frequency response and phase errors induced by the headphones using calibration data provided by 
Sensimetrics and custom Python code (https://github.com/alexhuth/sensimetrics_filter). All stimuli were played 
at 44.1 kHz using the pygame library in Python.

In each story, a single speaker tells an autobiographical story without reading from a prepared script. All sto-
ries were manually transcribed by one listener. The Penn Phonetics Lab Forced Aligner (P2FA)26 was then used 
to automatically align the audio to the transcript. Certain sounds (for example, laughter and breathing) were also 
marked to improve the accuracy of the automated alignment (see Table 2). Praat27 phonetic analysis software was 
used to manually check and correct the alignment of each word within the transcript.

fMRI data collection. MRI data was collected over 6 scanning sessions (15 scanning sessions for extended 
dataset) on a 3 T Siemens Skyra scanner at the UT Austin Biomedical Imaging Center using a 64-channel Siemens 
volume coil. Anatomical data for participant UT-S-02 was collected on a 3 T Siemens TIM Trio at the Berkeley 
Brain Imaging Center using a 32-channel Siemens volume coil. The first session included an anatomical scan 
and functional localizers. Each subsequent session consisted of passively listening to 4–5 stories, plus the story 
used for model testing. Each story was played during one EPI scan that included padding of 10 seconds silence 
at the beginning and end of each story. Audio was delivered through Sensimetrics S14 in-ear piezoelectric head-
phones. To minimize head motion, foam headcases (CaseForge, Inc., now defunct) that precisely fill the space 
between the participant’s head and the headcoil were used during data collection. To create the headcases, an RGB 
Structure.io sensor (Occipital Inc.) was used to collect a 3-dimensional scan of each participant’s head while hair 
was compressed using a swim cap. These scans were then used to mill customized styrofoam headcases for each 
participant.

Story Author Duration TRs Words Phonemes

“Alternate Ithaca Tom” Tom Weiser 11:47 364 2681 7531

“Souls” Jen Lee 12:00 375 2481 6819

“Avatar” Laura Albert 12:35 388 1952 5171

“Legacy” Kyp Malone 13:40 420 2568 6773

“Ode to Stepfather” Ethan Hawke 13:48 424 3300 8334

“Under the Influence” Jeffery Rudell 10:28 324 2087 5932

“How to Draw” Tricia Rose Burt 12:09 375 2516 6952

“My First Day with the Yankees” Matt McGough 12:17 378 3180 8866

“Naked” Catherine Burns 14:25 443 3747 10281

“Life” Kimberly Reed 14:40 450 2786 7296

“Stagefright” Suzanne Vega 10:07 314 2469 6669

“Till Death” Cindy Chupack 11:08 344 2727 7716

“From Boyhood to Fatherhood” Jonathan Ames 11:57 367 3262 8925

“Sloth” Todd Hanson 14:55 458 3009 8595

“Exorcism” Andrew Solomon 15:55 488 3471 9952

“Have You Met Him Yet” David Litt 16:53 517 3438 10176

“A Doll’s House” Bill Burr 8:24 262 1882 5412

“In a Moment” Sitawa Wafula 7:10 225 1157 3494

“The Closet that Ate Everything” Morgan Zipf-Meister 10:49 335 2182 6566

“Adventures in Saying Yes” Gina Sampaio 13:24 412 2602 7850

“Buck” Tony Cyprien 11:25 353 1965 5455

“Swimming With Astronauts” Michael J Massimino 13:11 405 2485 7318

“That Thing on my Arm” Padma Lakshmi 14:49 454 2449 7080

“Eye Spy” Michaela Murphy 12:59 399 2742 7920

“It’s a Box” Navreet Chawla 12:11 375 1989 5665

“Hang time” Brian Gavagan 11:08 344 2226 6423

“Where there’s Smoke” Jennifer Hixson 10:02 310 2308 6068

Total Including Repeats 6.4 Hours 11543 TRs 78893 Words 219511 Phonemes

Table 1. Story stimulus from The Moth. All story stimuli were from The Moth and were hand transcribed and 
the transcripts were then aligned to the audio The titles and authors for all of the stories in the extended data set 
can be found in Supplemental Table 1.
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fMRI parameters. Functional scans were collected using gradient-echo EPI with repetition time 
(TR) = 2.00 s, echo time (TE) = 30.8 ms, flip angle = 71°, multi-band factor (simultaneous multi-slice) = 2, voxel 
size = 2.6 mm × 2.6 mm × 2.6 mm (slice thickness = 2.6 mm), matrix size = (84, 84) and field of view = 220 mm. 
Field of view covered the entire cortex for all participants. Anatomical data was collected using a T1-weighted 
multi-echo MPRAGE sequence on the same 3 T scanner with voxel size = 1 mm × 1 mm × 1 mm following the 
Freesurfer morphometry protocol.

fMRI preprocessing. fMRI preprocessing was only done on the derivative data. This data was motion cor-
rected using the FMRIB Linear Image Registration Tool (FLIRT) from FMRIB Software Library (FSL) 5.028.  
After motion correction, all the volumes within each run were averaged to obtain a single template volume. 
Cross-run alignment was then performed by using FLIRT to align the template volume from each run to the 
template volume from the first run in the first story session. These automatic alignments were manually checked.  
The motion correction and cross-run transformations were then concatenated and used to resample the orig-
inal data to a motion-corrected and cross-run-aligned space. This process avoids multiple resampling steps, 
thus minimizing unwanted blurring. Low frequency voxel response drift was then identified using a 2nd order 
Savitzky-Golay filter with a 120-second window and subtracted from the signal. To avoid artifacts from onset 
transients and poor detrending performance at the edges of the data, responses were trimmed by removing 
20 seconds (10 volumes) at the beginning and end of each scan. This removed the 10-second silent period as 
well as the first and last 10 seconds of each story. The mean response for each voxel was then subtracted and the 
remaining response scaled to have unit variance.

cortical surface reconstruction and visualization. All anatomical data has been defaced using pyde-
face (https://github.com/poldracklab/pydeface). For the cortical surfaces, meshes were generated from the 
T1-weighted anatomical scans using FreeSurfer29. Before surface reconstruction, anatomical surface segmenta-
tions were hand-checked and corrected. Blender (https://blender.org) was used to remove the corpus callosum 
and make relaxation cuts for flattening via the interface provided by pycortex30. Functional images were aligned 
to the cortical surface using boundary-based registration (BBR) implemented in FSL. These were checked for 
accuracy and adjustments were made to the registration parameters as necessary.

Cortical maps of selectivity or model performance were created by projecting the values for each voxel onto 
the cortical surface using the ‘nearest’ scheme in pycortex30. This projection finds the location of each pixel in the 
image in 3D space, and assigns the pixel the value associated with the voxel enclosing that location.

Functional localizers and region of interest definitions. Known regions of interest (ROIs) were 
defined separately in each participant using three localizer tasks: a visual category localizer, a motor localizer, 
and an auditory cortex localizer. For the visual category localizer, data was collected in six 4.5 minute scans con-
sisting of 16 blocks of 16 seconds each. During each block, 20 images of places, faces, bodies, household objects, 
or spatially scrambled objects were displayed. In order to encourage focus, participants were asked to perform a 
1-back task where they pressed a button if the same image appeared twice in a row. The corresponding cortical 
ROIs defined with this localizer were the fusiform face area (FFA)31, occipital face area (OFA)31, extrastriate body 
area (EBA)32, parahippocampal place area (PPA)33, retrosplenial cortex (RSC), and the occipital place area (OPA). 
These ROIs were hand-drawn based on t-value maps from contrasts comparing responses to faces and objects 
(FFA, OFA), bodies and objects (EBA), and places and objects (PPA, OPA, RSC).

The motor localizer data was collected during two identical 10-minute scans. The participant was cued to 
perform six different motor tasks in a random order in 20-second blocks. The cues ‘hand’, ‘foot’, ‘mouth’, ‘speak’, 
and ‘rest’ were visually presented at the center of the screen, and the saccade cue was presented as a random 
array of dots. For the hand cue, participants were instructed to make small finger-drumming movements for 
the duration of the cue. For the foot cue, participants were instructed to make small foot and toe movements. 
For the mouth cue, participants were instructed to make small nonsense vocalizations (i.e., the syllable string 
“balabalabala”). For the speak cue, participants were instructed to self-generate a narrative without vocalization. 
For the saccade cue, participants were instructed to look around for the duration of the task. Simple categorical 
regression models were fit for each voxel using ordinary least squares (OLS). Beta maps for the hand, foot, and 
mouth conditions were used to define primary motor and somatosensory areas for the hands, feet, and mouth; 
supplemental motor areas for the hands and feet; secondary motor areas for the hands, feet, and mouth; and the 
ventral premotor hand area (PMvh). The beta map for the saccade condition was used to define the frontal eye 
field and intraparietal sulcus visual areas. The beta map for the speak condition was used to define Broca’s area 
and the superior premotor ventral (sPMv) speech area34.

Sound Markings Meaning

{CG} Cough

{LG} Laugh

{LS} Lip smack

{NS} Misc. Noise

{SL} Silence

Table 2. Additional sounds marked in scripts. Certain sounds were included in hand aligned transcripts of the 
stimulus. This was done to improve alignment from the transcripts to the audio.
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Auditory cortex localizer data was collected in one 10-minute scan. The participants listened to 10 repeats of a 
1-minute auditory stimulus containing 20 seconds of music (Arcade Fire), speech (Ira Glass, This American Life),  
and nature sounds (a babbling brook). To determine whether a voxel was responsive to auditory stimulus, the 
repeatability of the voxel response across the 10 repeats was calculated using an F-statistic. This map was used 
to define the auditory cortex (AC).

Stimulus embeddings. The proximal goal of encoding models is to find stimulus features that predict var-
iance in the brain activity. This technique was originally developed for electrophysiology experiments35, but has 
been widely adopted for modeling BOLD signals in fMRI. In this framework, participants are presented with a 
stimulus, in this case stories, while brain activity is recorded. A linear regression model is then fit between some 
feature space, which is extracted from the stimulus, and the brain activity. The feature space serves as a hypoth-
esis for the kind of information each voxel of brain data is representing. It is important to note that this is not a 
winner-take-all model and that each voxel is likely representing multiple different components of information18.

This dataset includes three different representations of the stimulus: an audio waveform, phoneme-level 
annotations and word-level annotations. It is possible to turn these annotations into many different feature 
spaces. We have provided python code26 to generate three of the many possible feature spaces. The first is a 
word-level semantic feature space called English1000. This feature space has previously been used to map seman-
tic representations across the cerebral cortex and cerebellum10,11,14. English1000 is a 985-dimensional word 
embedding feature space based on word co-occurrence in English text11. For this feature space we include a 
saved matrix, “english1000sm.hf5” which can be found in the OpenNeuro dataset9 under derivatives. This matrix 
includes a vector for each word in the pre-defined vocabulary. The code loads this matrix and assigns the correct 
vector for each word in the transcript of the story. The second feature space is a phoneme feature space. This is 
a 1-hot space comprising 44 dimensions, one for each phoneme in American English as defined by the CMU 
Pronouncing Dictionary36 as well as a few non-speech sounds. The last feature space is a word rate feature space. 
This is a 1-dimensional feature space that represents the number of words spoken during each period of time. 
For both the phoneme feature space and the word rate feature space, the included code generates the feature 
space directly from annotations, with no need for an external data file. To create a feature space matrix for model 
fitting, each word (or phoneme) in the stimulus is assigned a vector from the feature space. For example, for 
the stimulus phrase “I reached over”, one would take the embedding vectors for “I”, “reached”, and “over” from 
English1000 and concatenate them into a 3 (words) by 985 (features) matrix.

Interpolation of the feature matrix. One challenge in fitting encoding models is that speech and BOLD 
data are sampled at very different frequencies. Approximately six words are spoken every two seconds, but only 
one brain image is recorded in that interval. To solve this problem, the stimulus matrix needs to be resampled 
to the same sampling frequency as the BOLD data. The procedure we provide for downsampling features to 
the fMRI acquisition rate can be thought of as comprising three steps. First, the discrete features for each word 
(or phoneme) are transformed into a continuous-time representation N(t) where t ∈ [0, T] and T indicates the 
length of the stimulus. This representation is zero at all timepoints except for the exact middle of each word (or 
phoneme), where it is equal to an infinitesimal-duration spike (Dirac δ-function) that is scaled by the feature 
value. Next, a low-pass antialiasing Lanczos filter is convolved with N(t) to get NLP(t). The cutoff frequency of 
this antialiasing filter is selected to match the Nyquist frequency of the fMRI data (half the acquisition rate, or 
0.25 Hz). The cutoff frequency and filter roll-off (controlled by the number of lobes: more lobes yield a sharper 
roll-off, but at the cost of potentially increased noise) can be selected manually, although we recommend using the 
default values. Finally, NLP(t) is sampled at the fMRI acquisition times tr where r ∈ [1, 2….nTR] corresponds to the 
volume index in the fMRI acquisition. In practice, these three steps are accomplished simultaneously by way of a 
single matrix multiplication: the word- (or phoneme-) level stimulus matrix S (number of features by number of 
words/phonemes) is multiplied by a sparse “Lanczos” matrix L (number of words/phonemes by number of fMRI 
volumes). In essence, this assumes that the total brain response is the sum of responses to each word or phoneme. 
This approach has been widely used for language encoding models with natural stimuli10,11,14,20,37. An alternative 
to this approach would be to simply average the feature vectors for all the word or phonemes that appear within 
each 2-second period. However, that approach leads to discontinuities since words that fall infinitesimally before 
or after a boundary wind up in different time bins. The Lanczos method naturally accounts for this issue: if a word 
falls exactly at the boundary between two time bins, its features contribute equally to both (albeit scaled by 50%).

HRF estimation. The BOLD responses recorded by fMRI are thought to capture delayed and low-pass fil-
tered representations of local neural activity38. While most fMRI analyses treat the hemodynamic response func-
tion (HRF) as a fixed linear filter39, the current dataset9 contains enough data that separate HRFs can be estimated 
for each feature in each voxel. To efficiently estimate individual HRFs, we use a finite impulse response (FIR) 
model40 in which separate model weights are estimated for each feature at several different delays (e.g. 2, 4, 6, and 
8 seconds after the stimulus). This is accomplished by concatenating multiple versions of the interpolated stimulus 
matrix that have been delayed by different amounts.

Model fitting. To fit the linear regression models that predict the response in each voxel, previous work using 
this dataset9,11,18,41,42 have used L2-regularized, or, ridge regression. Regularized regression makes assumptions 
about the size and covariance of the regression weights in order to improve weight estimation in the face of lim-
ited and noisy data. This improvement can be measured quantitatively by comparing the prediction performance 
of models fit using unregularized (ordinary least squares) regression to those fit using regularized regression. 
Regularized regression methods such as ridge regression work well in cases where there is high collinearity in 
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the feature matrix or the number of features approaches the number of data points, in contrast to ordinary least 
squares regression, which yields large variance in parameter estimates and low model performance in those set-
tings. Ridge regression solves these issues by adding a penalty on the size of the coefficients. The strength of the 
penalty is controlled by the alpha parameter, where a larger alpha value results in the model being more robust to 
collinearity43. For a longer discussion on this alpha parameter see the section on using a single_alpha parameter 
below. We provide code for fitting ridge regression models as a part of the voxelwise modeling process.

Model validation. Voxelwise models are typically evaluated on a separate test dataset to avoid overfit-
ting on the training data. To do this, one takes the dot product of the regression weight matrix, consisting of a 
two-dimensional matrix of voxels by features, and the feature matrix of a new story not used in training the model 
(features by time). This results in a voxelwise prediction of brain activity in a 2-D matrix of voxels by time. The 
time-course of predicted brain response for each voxel is then correlated across time with the real brain data to 
measure model goodness-of-fit. This type of evaluation, which tests how well a model can predict responses to 
novel natural stimuli, is a good proxy for how well the model captures language representations in the brain44. 
One issue with this approach is that the correlation between predicted and actual responses will be biased down-
wards due to noise in the fMRI data. The amount of noise can also vary from voxel to voxel depending on factors 
like proximity to vasculature45,46, cortical folding46, or other factors. To better estimate the model performance 
given the noise ceiling for each voxel, it is common to collect responses to the same test stimulus multiple times 
and then average them, decreasing the amount of noise in the test data11,13,14,19,40,47. Averaging responses across 
repetitions effectively increases the signal to noise ratio of the BOLD response, providing less biased estimates of 
model performance. Here, the test dataset comprises one story, which was played once in each of the five scanning 
sessions.

Another issue that can complicate interpretation of model performance values is that BOLD responses 
recorded using fMRI are inherently noisy, and the amount of noise can differ across brain areas and between 
participants. The amount of noise affects the maximum model performance that can be attained, even by a the-
oretically “perfect” model. The repeated presentations of the test story can also be used to de-bias the prediction 
performance measure by estimating the noise-ceiling, or, the highest performance that any model can attain48. 
This is done by comparing responses across repeats of the test story, task-wheretheressmoke. We include code 
for computing the noise ceiling correction using a regularized normalized correlation coefficient (CCnorm)48. 
This is done by first calculating the absolute product-moment correlation, defined as:

CC Cov X Y
Var X Var Y

( , )
( ) ( )

abs =

where X are the BOLD responses and Y are the model predictions. Then, to isolate model performance from 
prediction accuracy, this value is normalized as:
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where CCmax is the noise ceiling. In comparison to the standard CCnorm, we regularize the estimate by limiting 
the noise ceiling to be greater than CCfloor = 0.3. This value was determined to result in the least biased estimates 
in simulations using realistic noise values. Without this regularization, the estimated correlation after noise ceil-
ing correction is not bounded and often surpasses a correlation of 1.0 for poorly-modeled voxels.

To test for the statistical significance of the model performance for each voxel, one must compare model per-
formance for each voxel to a null distribution. Here it is important to account for temporal auto-correlation in 
the BOLD signal. Block-wise permutation ensures that the permuted data retains temporal characteristics of the 
data while breaking the connection to the feature space being tested. This test is performed by shuffling blocks 
of 10 timepoints in true response time course and then recomputing the correlation between model predictions 
and the permuted true responses. This process is repeated many times to form an empirical null distribution 
for each voxel. Additionally, because each voxel is effectively treated as an independent model and each brain 
contains upwards of 80000 voxels, it is important to correct for multiple comparisons. In previous work, FDR 
correction was used to account for this13,14,49.

In prior studies, statistical significance was measured using prediction performance on one test story 
“task-wheretheressmoke” that has multiple repeats10,11,13,14. However, this approach also has a potential draw-
back: if a voxel is selective for features that are not present in the single test story, then those voxels may falsely 
be labeled as poorly predicted. To test for significance with multiple stories, an alternative approach is to use a 
leave-one-out procedure. This can be done by fitting an ensemble of encoding models, each of which excludes 
one unique training story (or session) in their model estimation. Statistical significance can then be measured 
for encoding model predictions on all held-out stories and their true BOLD responses, ie., the entire training set. 
This procedure increases diversity in the test set and improves statistical power.
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Data Records
Data. The raw data and derived data are available on OpenNeuro9, including NIfTI files of all brain data, the 
story stimuli, derived data, hand-corrected surface reconstructions, and descriptions of paradigms. The data 
is organized into directories, one for each participant (8 total), chronologically organized by session. The first 
session includes both anatomical and functional data, broken up into corresponding folders. All other sessions 
only include functional data. Of note, the initial anatomical scan and functional localizer data for sub-UTS02 
was collected previous to this dataset using different sequence parameters. Consequently, the localizer data is 
not included here. The BOLD data is stored in gzipped NIfTI 4D files under the naming pattern sub-AA_ses-BB_
task-CC_bold.nii.gz. The story entitled wheretheressmoke is repeated in all five of the story sessions and thus also 
contains the run number in the name (i.e. sub-AA_ses-BB_task-CC_run-DD_bold.nii.gz). The preprocessed cor-
tical BOLD data is contained in HDF5 files for each story, organized by participant. The audio files for all of the 
story stimuli are stored as WAV files sampled at 44.1 kHz. Hand-corrected TextGrid27 files contain complete tran-
scripts of each story as well as the temporal boundaries of each word and phoneme, and are stored as a derivative 
under Textgrids. For more information on TextGrid files, readers can consult Boersma et al.27.

extended dataset for three participants. In this dataset release, we have also included an extended data-
set for three of the participants: UTS01, UTS02, and UTS03. The extended dataset includes 10 extra sessions with 
the raw BOLD data, preprocessed BOLD data, wav files of the stimulus, and their corresponding textgrids and is 
organized in the same OpenNeuro dataset9 as described above. The stimulus for this extended dataset includes 
stories from The Moth and The New York Times Modern Love which are listed in Supplemental Table 1. This brings 
the size of this dataset up to 81 hours of BOLD fMRI across all participants. This extended dataset was originally 
used in Tang et al.50. This extended dataset is best used for testing models where high encoding performance is 
necessary but few participants are required, such as in language decoding experiments. The extended datasets are 
not evaluated in this paper, but see Tang et al.50 for analyses showing that encoding and decoding model perfor-
mance scale roughly log-linearly with the amount of training data per subject.

code. All of the standard code used to fit voxelwise encoding models is available on github26.
‘encoding.py’ is the main script to train and evaluate encoding models. It takes 11 arguments, 2 of which 

are required. The first required argument is the subject code that expects a string for the subject identifier, 
e.g. “UTS02”. The second required argument is the feature space to be used in model fitting. The available 
options are “articulation”, “phonemerate”, “wordrate”, and “eng1000”. Briefly, the “articulation” feature space is a 
22-dimesional n-hot binary feature space that carries information about the articulations that are used for the 
phonemes being spoken in the stimulus. The “phonemerate” and “wordrate” models are 1 dimension each where 
there is a 1 at each time point where a phoneme or word is spoken. The “phonemerate” and “wordrate” feature 
spaces are useful for regressing confounds of the auditory stimulation alone. All other arguments are optional.

These other arguments include sessions which is the number of training sessions to use with the model as an 
integer ranging from 1 to 5. Generally more data is better, but training with more data can be memory intensive.

Trim is how many TRs at the beginning and end of both the features and responses have to be removed. TRs 
at the beginning tend to have more artifacts from sound onset, flip angle stabilization, and poorly-conditioned 
detrending, so removing a few TRs can improve model performance.

The ndelays parameter is the number of delays to use in the finite impulse response function (FIR) that is 
used to estimate the hemodynamic response (HRF) of each voxel. We have found 4 delays (8 seconds) to be 
sufficient to cover the HRF. However, there is little harm to increasing the number of delays except for increased 
memory utilization and potential for overfitting.

The parameters nboots, chunklen, nchunks, and single_alpha control the cross-validation procedure that is 
used to select the best regularization parameter for each voxel. Briefly, the cross-validation procedure used to 
select the ridge regularization parameter (either for each voxel or the whole brain, see the discussion of sin-
gle_alpha below) breaks the stimulus and response data up into pieces of length chunklen, and then randomly 
selects nchunks of those pieces to form a validation set on each of the nboots cross-validation runs. The chunk 
length chunklen should be several times longer than the longest HRF expected; we use a length of 40 TRs which 
works well in practice. The number of chunks reserved, nchunks, should be set so that roughly 20% of the dataset 
is reserved for validation at each step. The default parameter values for chunklen and nchunks are reasonable for 
data of this size, but at least the nchunks parameter should be scaled when using more or less data.

The parameter use_corr determines whether to use correlation or variance explained (R2) to select the opti-
mal ridge parameter during model fitting. For ridge regression this can make a large difference, as highly reg-
ularized solutions will have very small norms and explain very little variance while still potentially leading to 
high correlations.

The last parameter is single_alpha; when set to false, each voxel will be assigned its own ridge regularization 
parameter (alpha) based on cross-validation. This can result in higher model performance but will lead to very 
differently scaled weights across voxels, which is a problem when the research question requires comparing 
weights across voxels (e.g. when applying PCA to the voxel weights11). When single_alpha is set to true, all vox-
els will be assigned the same alpha parameter, which is selected as the best on average during cross-validation. 
This will slightly harm model performance (especially in the best voxels), but results in more comparably 
scaled weights across voxels. The single_alpha parameter also interacts with nboots: when estimating a single 
alpha parameter across all voxels, it is usually sufficient to use a small number of cross-validation steps (e.g. 
nboots = 10), as the alpha that is best on average across voxels is quite stable to variation in data sampling. 
However, when estimating a separate alpha parameter for each voxel (singla_alpha = False), one should use a 
larger number of cross-validation steps (e.g. nboots = 50), as the cross-validation results within each voxel are 
noisier than when results are averaged across many voxels.
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The encoding.py script first finds the train and test stories for the specified fMRI session. Next, it loads the 
corresponding fMRI responses for the participant. It then obtains down-sampled stimulus features from ‘fea-
ture_spaces.py’ for every story, z-scores them and applies the FIR delays. It then trains and cross-validates a lin-
ear regression model on all the specified training stories. The returned encoding model weights, test correlations, 
ridge parameters and cross-validation splits are all saved in the specified ‘save_directory’. Finally, it computes 
the significance of the voxel correlations by running a blockwise permutation test from ‘significance_testing.py’.

Several of the utility functions imported in the script can be found in the ‘ridge_utils’ directory. ‘fea-
ture_spaces.py’ contains implementations of each feature space—phoneme rate, articulators, word rate, 
English1000—and their corresponding downsampling functions. To add new feature spaces, one would need 
to implement a function that takes ‘story names’ as an argument and returns a dictionary of the downsampled 
stimulus features per story. Additionally, one would need to update the ‘_FEATURE_CONFIG’ variable which 
maps between the feature argument as a string in encoding.py and the function that loads that feature space. The 
‘significance_testing.py’ script implements a parallelized block-wise permutation test which takes in a vector of 
predicted and true voxel responses, the number of permutations to test with and the size of each permutation 
block. It returns the associated p-value of each voxel. This script also contains a function to control for the false 
discovery rate using the Benjamini-Hochberg procedure40,51.

technical Validation
One important metric for assessing BOLD data quality is head motion. Here we measured motion as framewise 
displacement52, which combines both rotation and translation into a single metric. Figure 2A,B show frame-
wise displacement for each participant and each story. Figure 2A shows the mean and range of average frame-
wise displacement across all stories. This functions as a general metric for how still participants tend to be. 

Fig. 2 Head Motion across participants. Framewise displacement is measured as the mean shift needed to align 
each frame of data to the starting reference frame52,53. (A) Mean framewise displacement for each participant 
shows very low motion in participants S02-S05. Participants S06-S08 show the highest framewise displacement 
as they moved the most during data collection. (B) Mean framewise displacement is also assessed at the scale of 
each individual story for each participant. This similarly shows the lowest displacement for participants S02-S05 
and the highest for participants S06-S08. However, these high movement participants had less motion over the 
course of data collection with later sessions having less movement.
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Fig. 3 Model performance variance across participants. (A) Voxelwise repeatability across five repeats of task-
wheretheressmoke was calculated for each participant. Repeatability was calculated as the mean pairwise correlation 
across each repeat for each participant. Participants S01-S03 had the highest repeatability. (B) English1000 
encoding models11 were fit with increasing numbers of stories in the training set. As the dataset grows, so does 
model performance. Here we show the mean voxelwise model performance (r) for each participant. Participants 
S01-S03 had the highest model performance.The shaded regions are the standard error of the mean across 15 
different training sets created by sampling the stories randomly without replacement. (C) Using many stimuli for 
model training makes encoding weights stable, or, invariant to the exact stimuli that were used. Here we measured 
weight stability by training encoding models using different stimulus subsets of varying sizes, and then computing 
the pairwise correlation between the learned weights. To reduce potential correlations between stimulus sets, each 
pair of models was trained with non-overlapping stimulus sets. Each colored line reflects an individual participant’s 
weight stability and the black line shows the group average. As the training set grows, the estimated model weights 
for each voxel become more similar across different training subsets. (D) Encoding model weights were projected 
into a lower dimensional space11 to visualize the semantic map for one example participant (S02). As the training 
set grows, the semantic map appears to converge. (E) Encoding model performance—shown here projected onto a 
cortical flatmap for one participant—increases with the number of training stories. These increases are particularly 
evident in temporal, parietal, and prefrontal cortex.
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Earlier work in the literature has suggested a threshold of 0.5 mm in framewise displacement as a benchmark for 
“good” data. Sub-UTS02 and sub-UTS03 have the lowest average displacement across stories while participants 
Sub-UTS06-08 have the highest average displacement, with participants UTS01-UTS05 all having all timepoints 
in the data below the 0.5 mm threshold on average. Figure 2B shows the average displacement for each individ-
ual story in each participant. This shows that some of the participants with higher movement improved as the 
sessions went on and thus their high displacement values are due to outliers, as in sub-UTS06 and sub-UTS08. 
The participant with the most consistent low framewise displacement is sub-UTS02. Out of a total 247 story 
scans across all participants, the highest mean framewise displacement is only 0.33 mm.

Another important metric of fMRI data quality is functional repeatability, or how similar responses in the same 
voxel are to the same stimulus. While most of the stimuli were unique, the test story was played once in each of the 
five story sessions. This was done to enable us to compute the noise ceiling of the data and to increase the SNR of the 
held out dataset. It also enables us to measure how reliable the BOLD signal is in each voxel. Here, repeatability is 
calculated in each voxel as the mean pairwise correlation across the five validation story time course for that voxel, 
where a higher value means more reliable data. Figure 3A shows the repeatability for each participant as a step 
histogram across all voxels. The participants with the highest mean repeatability are sub-UTS03, sub-UTS02, and 
sub-UTS01. While repeatability does not have a clear threshold in the literature to compare to like framewise dis-
placement, we chose to include it here so that potential users can make an informed decision about which partici-
pants to include in their studies. Repeatability is an estimate of the signal-to-noise ratio of the data.. Since there is no 
single best value for acceptable noise in data, this is going to vary depending on the research question being posed.

Lastly, one important metric used to assess data quality13,14,49 is encoding model prediction performance 
(r). Similar to repeatability, there is not a standard value to compare the model performances here with other 
datasets. However, this information is provided to give potential users a better sense of the signal and noise 
in the dataset for each participant. In Fig. 3B, we show the performance of the semantic encoding models 
(English1000) (mean(r)) as a function of the number of stories used for model training. For each number of 
training stories, we fit 15 models in which training data were sampled from the full set without replacement. 
Each point represents the mean prediction performance across all voxels and the cloud around the point rep-
resents the standard error across the 15 runs. All participants appear to reach a plateau where increasing the 
amount of training data does not dramatically improve performance. Note that this metric includes the majority 
of cortical voxels that are not semantically selective, biasing the result downwards. By this metric, the partic-
ipants with the best data quality are sub-UTS03, sub-UTS02, and sub-UTS01. These participants are also the 
participants with the lowest motion and highest repeatability. Figure 3E shows the voxelwise prediction perfor-
mance (r) for one participant plotted on the flatmaps for an increasing number of stories. This again shows that 
as the amount of data increases, more voxels are predicted and predicted better.

This improvement in model performance means that the model weights from the fit encoding models 
become more stable and less affected by attention and noise (Fig. 3C). To demonstrate the importance of large 
datasets within an individual for interpreting model weights, we fit models using different subsets of stories and 
then calculate the mean pairwise correlation across estimated model weights. For each pair of models that were 
compared, we restricted the potential number of training stories to be non-overlapping. Each colored line shows 
the mean pairwise correlation of weights for each participant and the black line shows the group result averaged 
across all participants. As the number of stories in the subsets increases, the estimated model weights become 
more similar regardless of the individual stories used in training. This makes interpretation of the model weights 
more robust. Figure 3D shows the model weights for each of these models projected into a three-dimensional 
semantic space that was previously constructed from a group of participants using principal components anal-
ysis11. This lower-dimensional space is used purely for visualization purposes. Here projections on the first, sec-
ond, and third principal components are mapped into the red, green, and blue color channels, respectively, for 
each voxel and then projected onto the cortical surface. The color wheel shows approximately which semantic 
category each color on the maps represents. The separability and intensity of the weight increases and becomes 
clearer as dataset size grows. Increasing the size of datasets within individuals thus increases reliability and inter-
pretability of encoding models, and is vital to increasing the reliability of results in the field.

Usage Notes
Anatomical and localizer scans (ses-1) for sub-UTS02 were collected prior to this current dataset, at a different 
location, and with a different scan protocol than all other data in this project. Consequently, the localizer data 
for that participant is not included here. However, the hand-defined regions of interest (ROIs) derived from the 
localizer data can be found for this participant in the pycortex-db in their overlays file. This participant also has 
additional ROIs from other localizers including retinotopy.

Participant sub-UTS04 has one missing story scan, task-life.
Participant sub-UTS05 was presented with auditory cues for the motor localizer stimuli instead of visual cues. 

Additionally, this localizer lacked the saccade cue. This difference was due to the participant’s visual acuity being 
too low to successfully read the cue and MRI-safe glasses were not compatible with the headcase being used.

code availability
All code used for encoding model fitting is publicly available and can be found on github and zenodo25.

The code used for filtering the audio for each story to correct for frequency response and phase errors induced 
by the headphones using calibration data provided by Sensimetrics and custom Python code. This code can be 
found at https://github.com/alexhuth/sensimetrics_filter.
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