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Digital radiography is one of the most common and cost-effective standards for the diagnosis of 
bone fractures. For such diagnoses expert intervention is required which is time-consuming and 
demands rigorous training. With the recent growth of computer vision algorithms, there is a surge 
of interest in computer-aided diagnosis. The development of algorithms demands large datasets 
with proper annotations. Existing X-Ray datasets are either small or lack proper annotation, which 
hinders the development of machine-learning algorithms and evaluation of the relative performance 
of algorithms for classification, localization, and segmentation. We present FracAtlas, a new dataset 
of X-Ray scans curated from the images collected from 3 major hospitals in Bangladesh. Our dataset 
includes 4,083 images that have been manually annotated for bone fracture classification, localization, 
and segmentation with the help of 2 expert radiologists and an orthopedist using the open-source 
labeling platform, makesense.ai. There are 717 images with 922 instances of fractures. Each of the 
fracture instances has its own mask and bounding box, whereas the scans also have global labels for 
classification tasks. We believe the dataset will be a valuable resource for researchers interested in 
developing and evaluating machine learning algorithms for bone fracture diagnosis.

Background & Summary
There has been a surge in demand for computer-aided diagnosis (CAD) systems in recent decades. Moreover, 
recently different fields of medical science have seen rapid development of automation processes in diagnosis 
leveraging large datasets and advanced machine learning algorithms1,2. Models like convolutional neural net-
works (CNN)3, You only look once (YOLO)4 and U-NET5 can achieve expert-like performance in detecting 
anomalies from X-Ray scans. Training such models requires large and well-annotated datasets6–8. It is difficult to 
collect such data from hospitals and diagnostic centers. The annotation process can be very costly as it requires 
the involvement of multiple physicians and radiologists for consensus to remove bias and human errors. Due to 
the sensitive nature of medical data, it is also very hard to make the acquired data available for public use. To sum 
it up the creation of such datasets is costly and time-consuming2,9.

Some of the well-known X-Ray datasets that are publicly available and that focus on anomalies 
include MURA10, MedPix11, GRAZPEDWRI-DX12, IIEST1, MOST13, VinDr-CXR2, VinDr-SpineXR14 and 
ChestX-ray1415. Among these datasets, MURA is a collection of 2D muscular skeletal radiographs with 40,561 
images from different regions such as the elbow, finger, forearm, hand, humerus, shoulder, and wrist10. Each 
image is labeled as ‘Normal’ or ‘Abnormal’ which makes it suitable for classification tasks, however, it lacks 
proper annotation for localization and segmentation. MedPix is an online database of 2D and 3D medical scans 
of various diseases that can be filtered by the keyword ‘fracture’ resulting in 954 images. These images include 
X-rays, real images, Magnetic resonance imaging (MRI), Computed tomography (CT) scans, and ultrasound 
imaging. However, the dataset has issues such as unorganized annotation and falsely labeled images, as well as 
some spam images. GRAZPEDWRI-DX is a recently released dataset, containing 20,327 scans with annotation 
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for localization collected from 6,091 patients. Though this is a suitably large dataset, it covers only wrist frac-
tures, omitting the rest of the parts of the human body. IIEST is a small dataset of 2D X-rays containing 217 
images, of which 49 are healthy, 99 are fractured and 69 are cancerous bone scans. This dataset is very small and 
inadequate for machine-learning activities. MOST is a dataset that contains 4,446 X-ray and MRI scans labeled 
by the Kellgren–Lawrence (KL) grading system16 having five classes from grade-0 to grade-4 with increasing 
severity from one to the next. This dataset is no longer available in the public domain due to lacking of funding 
and closeout. It also covers only knee joint fractures. VinDr-CXR is also a recently published dataset, which 
contains 18,000 images of chest X-rays (CXR) with manual annotation for localization. This dataset contains 
samples for 28 different types of chest diseases and abnormalities. Though this is a good dataset for identifying 
chest diseases, it’s not suitable for bone fracture identification. Likewise, the VinDr group has other datasets 
VinDr-Mammo17, VinDr-SpineXR14 and PediCXR18 which are not suitable for fracture study for similar rea-
sons. ChestX-ray14 is a dataset for radio graphs containing 112,000 CXR scans. This dataset is also not suitable 
for bone fracture study as it only contains samples of chest diseases. Some prominent datasets of human body 
radiographs are compared with the FracAtlas dataset19 in Table 1.

The shortcomings of the existing datasets are that most of them can only be used for classification tasks or 
they lack proper annotation. Some are also mislabeled and hence not suitable for machine learning tasks as 
they are not well maintained or the quality of annotation is not up to the mark. The available high-quality X-ray 
datasets are not intended for bone fracture study. With the recent advancements in CAD systems, datasets for 
only classification tasks are not enough as most are moving toward developing localization and segmentation 
models20. For such tasks, it is very important to have well-maintained and documented datasets with proper 
manual annotation. Due to the sensitive nature of the medical domain, it is very important for the models to 
perform at a high level. And to accomplish that, a large dataset with high-quality annotation is very important7.

Most of the prominent works on bone fracture classification, localization and segmentation have used pri-
vate datasets21–23. Due to the unavailability of publicly accessible datasets currently, it is not feasible to conduct a 
comparative analysis of state-of-the-art (SOTA) methods. To solve this problem we introduce FracAtlas dataset19 
which has been created by collecting 14,068 x-ray scans from three prominent hospitals in Bangladesh. From 
these 14,068 scans, 4,083 images have been isolated from regions like hand, shoulder, leg and hip. The rest of the 
scans were discarded as they were from the chest or skull region. Due to security and privacy concerns, we have 
anonymized all the patient-related structured data such as name, age, gender, time of diagnosis, etc. from each 
of the scans. The collected DICOM images have been converted to JPG format. The dataset can be accessed at 
figshare (https://doi.org/10.6084/m9.figshare.22363012).

Methods
We have created the FracAtlas dataset19 in four main steps (1) Data Collection (2) data cleaning (3) finding 
the general distribution of cleaned data (4) annotation of the dataset. Throughout the years 2021 and 2022, 
approximately 14,068 X-ray scans were collected from 3 hospitals and diagnostic centers. Most of the scans were 
collected from Lab-Aid Medical Center, Brahmanbaria, along with Anupam General Hospital and Diagnostic 
Center, Bogra and Prime Diagnostic Center, Barishal. The acquired DICOM images were generated by Fujifilm 
and Philips devices. The complete process is illustrated in Fig. 1. The ethical clearance of this study was approved 
by Institutional Research Ethics Board (IREB) according to the Bangladesh Medical Research Council (BMRC). 
The IREB approved the open publication of the data based on the facts that there are adequate provisions to 
maintain the confidentiality of the individuals through proper filtration of personally identifiable information. 
Furthermore, the permission of publishing the data to the public domain was also taken at the source. Consent 
for data collection for all subjects (adults and parents in the case of minors) was taken as part of the initiation of 
the diagnosis at the medical facilities. Also, the data collection process had no effect on the clinical treatment or 
processes of diagnosis of the three hospitals involved and all personally identifiable information in the gathered 
data has been removed. The whole process was administered according to the Institutional Research Ethics 
Board of United International University.

Dataset Release year samples Global labels Local labels Local mask Multi-locale

MURA10 2017 40,561 Available N/A* N/A Yes

MedPix11 †† 2016 1,954 Available N/A N/A Yes

GRAZPEDWRI-DX12 † 2022 20,327 Available Available N/A No

IIEST1 (Δ) 2020 217 Available N/A N/A Yes

MOST13 2020 4,446 Available N/A N/A Yes

VinDr-CXR2 (•) 2022 18,000 Available Available N/A No

PediCXR17 (•) 2023 9,125 Available Available N/A No

ChestX-ray1415 (•) 2017 112,120 Available N/A N/A No

RSNA Pediatric26 (•) 2017 14,236 Available N/A N/A No

FracAtlas 2023 4,083 Available Available Available Yes

Table 1. An overview of existing X-ray datasets. *Can be generated or interpreted from the given data. (†)Used 
a mixture of automated NLP tools and Manual labeling. (††)Annotation is fully automated without any manual 
validation. (Δ)Too small to be applicable for training deep learning models. (•)Not suitable for fracture study.
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Data collection and cleanup. In the initial phase, a total of 14,068 X-Rays were collected. As the hospitals 
and diagnostic centers could not share patient information due to privacy concerns, all the DICOM images were 
given an arbitrary image name and converted to JPG image format. This automatically got rid of all the sensitive 
information that was present in the metadata of DICOM images. These conversions were done using the proprie-
tary software of the corresponding X-ray machines. The renaming process was automated using a Python script. 
The renamed DICOM images were stored in the hospital database separately for later study of general distribu-
tion. All the X-ray scans that have been collected are for general-purpose diagnosis. This means along with bone 
fracture scans there are also samples for chest diseases and abnormalities in the skull and spine region. In the 
collected data the number of bone fracture samples in the chest, skull and spine region was sparse. As a result, 
scans for the said parts were removed with the supervision of a medical officer. This left us with 4,083 scans from 
the hand, leg, hip and shoulder regions. Figure 2 shows some valid vs outlier images for the dataset. Some of the 
images in our dataset contain logos and texts which have not been removed.

Fig. 1 The workflow for creating the FracAtlas dataset: (1) general purpose X-ray images were collected in 
DICOM format and for de-identification, the images were converted to JPG and were given arbitrary names. 
(2) The resultant JPG image set from Stage 1 was filtered out from other body parts. (3) The resulting image 
set from stage 2 was taken back to the respective hospitals to find out the general distribution. (4) the resulting 
image set from stage 2 was annotated by 2 expert radiologists and later verified and merged by an expert 
orthopedic doctor. Masks were developed manually with open-source software based on the generated labels by 
the doctor in COCO JSON format. The resulting masks were then converted to other annotation formats for use 
in different machine-learning purposes.

Fig. 2 Example of valid (Left) vs outlier (Right) X-ray images. All the scans were manually filtered based on 
the parts of the body present in the scan, clarity of the scans and resolution. The scans containing only arm, 
shoulder, leg and hip regions were accepted.
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Distribution analysis. After the cleanup process, the demographic analysis was done on the 4,083 images. 
In our study, we have observed that the age of the patients has a major impact in terms of fracture analysis. For 
younger subjects (0–7 years old) the ends of bones near the joints can look like separate disjoint disc pads due 
to lack of bone density. A model trained on patients above this said range can misjudge those bone structures as 
fractures. On the contrary, for older patients (above 50 years old) the surface of bones can look rough24. This can 
also lead a model to misjudge those bones as fractured ones. So, it is crucial that a dataset intended for fracture 
study contains a diverse range of patients’ ages. As all metadata of the X-Ray images were discarded at the time of 
collection. After dataset cleanup, the remaining images were taken back to the corresponding hospitals to find out 
the distribution of age and gender on the entire dataset. The age of subjects in our dataset ranges from 8 months 
to 78 years old. Also, the gender distribution for abnormal studies is 85.4% and 14.6% between males and females 
respectively. The gender ratio for the whole dataset (normal + abnormal cases) is 62% male and 38% female 
approximately. There are 717 abnormal scans in our dataset which contain a total of 922 instances of fractures. 
The abnormal studies contain at least 1 and at most 5 fracture instances in them. Some of the scans have multi-
ple views and locales in them. The whole dataset contains 4,083 images and 4,497 locales. There are 396 images 
with different views of the same organ in the same image. There are 99 images with Orthopedic Fixation Devices 
(hardware) in them. The FracAtlas dataset19 has a total of 1,538 scans of the hand and among them, 437 are frac-
tured. There is a total of 2,272 leg scans, 338 hip scans and 349 shoulder scans. Among these, the number of scans 
belonging fractured class is 263, 63 and 63 for the leg, hip and shoulder regions respectively. Figure 3 illustrates 
the distribution of different properties present in the dataset. The FracAtlas dataset comprises a total of 2,503 
frontal, 1,492 lateral, and 418 oblique view images, each pertaining to different organs. Whereas the ‘Fractured’ 
class includes 438 frontal, 325 lateral, and 45 oblique view images. Conversely, the ‘Non-fractured’ class encom-
passes a total of 2,065 frontal, 1,167 lateral, and 373 oblique views. The relative distribution is illustrated in Fig. 4.

Data labeling. The distribution analysis of the data was followed by a review process by two expert radiolo-
gists, each with years of experience in the field. The radiologists went through all 4,083 images and labeled each 
image by identifying the presence and number of fractures, along with the location name of the fractures. After 
full observation, the fracture list generated by each radiologist was cross-checked with one another. The images 
that had unanimous labels provided by the radiologists were taken as fractured scans. In case of any disparities 
in the location of fractures or the count of fracture locales, the images were referred to an expert Orthopedic 
surgeon for further review and validation. After labeling those listed images independently, the images were 
again cross-checked with his own findings to the ones generated by the radiologists. And after comparing all 3 
samples the final labels were agreed upon. After resolving all conflicts, the images were manually annotated using 
makesense.ai https://github.com/SkalskiP/make-sense. The primary type of annotation generated for bone frac-
ture was in Common Objects in Context (COCO) format25. This format allows for the creation of polygon masks 
of the fracture regions. Each image can have multiple locales marked by separate masks and different masks 
are also allowed to overlap. The COCO JavaScript Object Notation (JSON) format was chosen to be worked 
on manually because it contains the most amount of information and allows conversions that are lossy to other 
annotation formats like YOLO annotation and Pascal VOC and also lossless ones like Visual Geometry Group 
(VGG) format. The COCO JSON format is used for segmentation tasks whereas YOLO and Pascal Visual Object 
Classes (VOC) are used for localization. The original record maintained for the primary labeling process is also 
provided for classification tasks in Comma Separated Values (CSV) format. Figure 5 shows different annotation 
types provided with the dataset.
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Fig. 3 The distribution of different locales along with other properties present in the images of the FracAtlas 
dataset. The locales include the hand, shoulder, hip and leg region. The distributions also show the number of 
Orthopedic Fixation Devices (Hardware) and images with a split view (Multi-view) of the same organs from 
different planes. The blue chart shows the distribution of the said attributes for the healthy scans of the dataset 
where the red bars show the same for fractured scans and they collectively show the overall distribution for the 
whole dataset. The numbers right of each bar with the corresponding color represent the value, whereas the gray 
numbers represent the collective values.
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Data Records
The FracAtlas dataset19 has been made available for public download through Figshare https://doi.org/10.6084/
m9.figshare.22363012). The data can be downloaded without any need for registration. The total size of our 
dataset is 323 MB. The folder structure containing the dataset with all relevant files is described below.

Folder structure. The root folder for the dataset is named “FracAtlas”. It contains subfolders “images”, 
“Annotations”, “utilities” and a “dataset.csv” file. The CSV file has been generated during the data labeling process 
discussed in the methods section. Figure 6 gives an overview of the folder structure. The CSV contains columns 
representing whether a scan has “hand”, “leg”, “hip” or “shoulder” region present in it along with the information if 
the scan contains multiple regions in the scan. It also has a “hardware” column corresponding to the availability of 
Orthopedic Fixation Devices in the scan. Some X-ray scans have multiple views of the same organ projected from 
the frontal (Coronal) plane and Sagittal plane. Those images can be identified using the “multiscan” column in the 
CSV. The “fractured” column represents if a scan has fractures in it. All the column mentioned so far has binary 
value containing ‘0’ and ‘1’. The ‘0’ and ‘1’ represents a specific attribute being absent or present in that particular 
image respectively. The only exception to this is the “fracture_count” column which has numerical values from 
0 and 5 representing the number of fracture instances present in that image. The “frontal”, “lateral” and “oblique” 
columns represent the perspectives present in a scan with values set to ‘1’ and ‘0’ otherwise.

The “images” folder has two subfolders named “Fractured” and “Non_fractured”. The “Fractured” Folder con-
tains all the images containing fractures in them. Whereas the Folder “Non_fractured” contains all the healthy 
bone radiographs. All the scan names start with “IMG” followed by zero padded seven-digit values which are 
unique to each image ending with “.jpg” signifying the datatype. The folder named “Annotation” comprises 
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Fig. 4 The number of samples present for each of the frontal, lateral and oblique views present in the FracAtlas 
dataset for individual classes.

Fig. 5 Fully tagged and labeled sample image. (A) shows the original scan with global tags leg, hardware, 
fractured set to 1 (true) and fracture count set to 2. The remaining tags (hand, hip, shoulder, mixed, multiscan) 
are set to 0 (false) (B) The boxes mark the local region of the fracture instance for localization tasks. (C) The red 
borders mask the fracture regions for segmentation tasks.
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various annotation files for segmentation and localization purposes. For segmentation, there are two subfolders 
named “COCO JSON” and “VGG JSON”, which contain corresponding annotation types in the “.json” format. 
These files contain annotations only for images that have fractures. For localization, there are two subfolders 
named “YOLO” and “PASCAL VOC” (PASCAL Visual Object Classes) containing “.txt” and “.xml” files, respec-
tively, named after the corresponding image files. Additionally, the “YOLO” folder has a “classes.txt” file that lists 
the available classes for localization, and in this case, there is only one class named “fractured.”

The “Utilities” folder contains several notebooks used in the preparation of the dataset. As the manual anno-
tations were done in COCO JSON format, the YOLO annotations were generated from the COCO masks using 
“coco2yolo.ipynb” and later PASCAL VOC annotations were generated from the YOLO annotations using “yolo-
2voc.ipnyb”. Under the subfolder “Fracture Split” there are 3 CSV files titled “test.csv”, “train.csv” and ‘valid.csv”. 
Each of these files contains a list of images used for testing, training and validation in the technical validation of 
the dataset respectively.

Technical Validation
All the images in the dataset were manually examined to make sure no individually identifiable information is 
attached or embedded in the dataset images. After the annotation process of the dataset, all the masks generated 
were reviewed by the medical officer. To make sure the dataset is suitable for training machine learning algo-
rithms we trained both fracture localization and segmentation using YOLOv8s and YOLOv8s-seg respectively.

The fractured images were randomly split into 80% (574) training, 12% (82) validation and 8% (61) test 
images for training and testing both the localization and segmentation models. The training was done on a 
Windows laptop equipped with an Nvidia RTX 3070 GPU with 8GB video memory and an AMD Ryzen 5900HX 
processor. Both the models were pre-trained with COCO40 and ran for 30 epochs. The input size for both cases 
was 600 pixels with standard hyperparameters. Table 2 lists the relative performance across different tasks.

Object detection performance. For the localization task, the fractures were detected with a box precision 
of 80.7%, recall of 47.3% and an mAP of 56.2% at IoU of the 50th percentile on the validation set.

Fig. 6 The folder structure of the FracAtlas dataset.
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Segmentation performance. For the segmentation task, the fractures were detected with a box precision 
of 71.8%, recall of 60.7% and an mAP of 62.7% at IoU of 0.5 on the validation set. As for the mask, the precision 
is 83%, recall 49.9% and mAP50 of 58.9%.

Usage Notes
The dataset FracAtlas19 is made freely available for any purpose. The data provided within this work are free to 
copy, share or redistribute in any medium or format. The data might be adapted, remixed, transformed, and 
built upon. The dataset is licensed under a Creative Commons “Attribution 4.0 International” license (https://
creativecommons.org/licenses/by/4.0/).

Additionally, any publication that utilizes this resource are requested to cite the original paper, and the 
authors are encouraged to share their code and models to help the research community reproduce the experi-
ments and advance the field of medical imaging.

Code availability
The conversion of DICOM to JPEG image format was done using proprietary software of the X-ray machines from 
brands like Fujifilm and Philips hence they could not be made available. The mask annotations for segmentation 
were done using an open-source web tool named makedsense.ai. It was also used for generating VGG annotations 
from COCO format. As explained in the Methods section, the annotation conversion procedures from COCO 
to YOLO and YOLO to PASCAL VOC were performed using Python 3.10.1 on a Windows 11 operating system 
using ‘coco2yolo.ipynb’ and ‘yolo2voc.ipynb’. Both the Jupyter notebooks can be found inside the ‘Utility’ 
folder along with the dataset at Figshare (https://doi.org/10.6084/m9.figshare.22363012). The code used for 
technical validation can be accessed from (https://github.com/XLR8-07/FracAtlas). There are 2 notebooks inside 
‘notebooks’ under the root folder called ‘Train_8s.ipynb’ and ‘Prediction_8s.ipynb’. The ‘Train_8s.ipynb’ is used 
to train 2 models of ‘YOLO8s_seg’ and ‘YOLO8s’ variants targeted toward segmentation and localization tasks 
respectively. ‘Prediction_8s.ipynb’ is used to generate predictions out of the 2 aforementioned models and view 
the results.
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