
1Scientific Data |          (2023) 10:509  | https://doi.org/10.1038/s41597-023-02409-3

www.nature.com/scientificdata

DIPS-Plus: the enhanced database 
of interacting protein structures for 
interface prediction
alex Morehead  1 ✉, Chen Chen1, ada Sedova  2 & Jianlin Cheng  1

In this work, we expand on a dataset recently introduced for protein interface prediction (PIP), the 
Database of Interacting Protein Structures (DIPS), to present DIPS-Plus, an enhanced, feature-rich 
dataset of 42,112 complexes for machine learning of protein interfaces. While the original DIPS dataset 
contains only the Cartesian coordinates for atoms contained in the protein complex along with their 
types, DIPS-Plus contains multiple residue-level features including surface proximities, half-sphere 
amino acid compositions, and new profile hidden Markov model (HMM)-based sequence features for 
each amino acid, providing researchers a curated feature bank for training protein interface prediction 
methods. We demonstrate through rigorous benchmarks that training an existing state-of-the-art 
(SOTA) model for PIP on DIPS-Plus yields new SOTA results, surpassing the performance of some of the 
latest models trained on residue-level and atom-level encodings of protein complexes to date.

Background & Summary
Proteins are one of the fundamental drivers of work in living organisms. Their structures often reflect and 
directly influence their functions in molecular processes, so understanding the relationship between protein 
structure and protein function is of utmost importance to biologists and other life scientists. Here, we study the 
interaction between binary protein complexes–pairs of protein structures that bind together–to better under-
stand how these coupled proteins will function in vivo, as illustrated in Fig. 1. Predicting where two proteins 
will interface in silico has become an appealing method for measuring the interactions between proteins as a 
computational approach saves time, energy, and resources compared to traditional methods for experimentally 
measuring such interfaces1.

A key motivation for determining protein-protein interface regions is to decrease the time required to dis-
cover new drugs and to advance the study of newly designed and engineered proteins2. Towards this end, we set 
out to curate a dataset large enough and with enough features to develop computational models that can reliably 
predict the residues that will form the interface between two given proteins. In response to the exponential 
rate of progress being made in applying representation learning to biomedical data, we designed a dataset to 
accommodate the need for more detailed features indicative of interacting protein residues to solve this funda-
mental problem in structural biology, since deep learning models in computational biology often require large, 
feature-rich datasets for model training3–5.

Overall, two main encoding schemes have been proposed for protein interface prediction: modeling protein 
structures at the atomic level and modeling structures at the level of the residue. Modeling protein structures 
in terms of their atoms can yield a detailed representation of such geometries, however, accounting for each 
atom in a structure can quickly become computationally burdensome or infeasible for large structures. On the 
other hand, modeling only a structure’s residues allows one to employ their models on a more computationally 
succinct view of the structure, thereby reducing memory requirements for the training and inference of biomo-
lecular machine learning models by focusing only on the alpha-carbon (Cα) atoms of each residue. The latter 
scheme also enables researchers to curate robust residue-based features for a particular task, a notion of flexibil-
ity quite important to the success of prior works in protein bioinformatics6–9.

Nonetheless, both schemes, when adopted by a machine learning algorithm such as a neural network, 
require copious amounts of training examples to generalize past the training dataset. However, only a handful 
of extensive datasets for protein interface prediction currently exist, DIPS being the largest of such examples, 
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and it is designed solely for modeling structures at the atomic level. If one would like to model complexes at 
the residue level to summarize the structural and functional properties of each residue’s atoms as additional 
features for training, the modest Docking Benchmark 5 (DB5) dataset is currently one of the only datasets with 
readily-available pairwise residue labels that meets this criterion. As such, one of the primary motivations for 
curating DIPS-Plus10 was to answer the following two questions: Must one choose between having the largest 
possible dataset and having enough features for their interface prediction models to generalize well? Is it possible 
for a single dataset to facilitate both protein-encoding schemes while maintaining its size and feature-richness?

As a follow-up to the above two questions, we constructed DIPS-Plus10, a feature-expanded version of DIPS, 
accompanied, with permission from the original authors of DIPS, by a CC-BY 4.0 license for reproducibility 
and extensibility. This dataset can be used with most deep learning algorithms, especially geometric learning 
algorithms (e.g., CNNs, GNNs), for studying protein structures, complexes, and their inter/intra-protein inter-
actions at scale. It can also be used to test the performance of new or existing geometric learning algorithms for 
node classification, link prediction, intrinsically disordered interface region prediction, or similar benchmark-
ing tasks. In the remainder of this work, we will describe how we constructed DIPS-Plus10 and how others can 
use DIPS-Plus10 for training new machine learning models for protein interface prediction.

Methods
Original collection process. The data associated with each entry in DIPS-Plus10 originates from the 
Research Collaboratory for Structural Bioinformatics (RCSB) repository for Protein Data Bank (PDB) pro-
tein complexes, where each complex was screened, inspected, and analyzed by biomedical professionals and 
researchers before being deposited into the RCSB PDB. To determine each protein complex’s 3D structure, X-ray 
diffraction, nuclear magnetic resonance (NMR), and electron microscopy (EM) are the most common experi-
mental methods for ascertaining new complex structures. These techniques are industry standard in biomolecu-
lar research. Such protein structures in the RCSB PDB have been collected diligently over the last 50 years.

Construction of DIPS-Plus. DIPS-Plus10 was developed as an extension of the original DIPS dataset11 by 
first downloading PDB file archives from the RCSB according to the original dataset’s instructions on GitHub. 
All downloaded archive files were then extracted using a Python extraction script. The downloaded entries were 
subsequently converted into a pairwise representation for protein chains within a given complex using a Python 
collation script, after which all pairs were redundancy-reduced using a 30% sequence identity filter to prevent 
data leakage between dataset partitions using a Python filtering script. New features were added to each protein 
complex entry using a script for collecting PSAIA-derived features and a script for organizing HHsuite-derived 
features. In addition to these features, features derived from DSSP and other external tools were added to each 
dataset entry using a dataset formatting script and a feature construction script. Lastly, DIPS-Plus’10 protein com-
plexes were split into training and validation partitions using a partitioning script; were analyzed using a statis-
tics collection script and reporting script; and had missing feature values imputed using a feature imputation 
script. Optionally, using a data conversion script, DIPS-Plus’10 protein complexes were also converted into pro-
tein graphs to train deep learning algorithms on such examples. At the end of the dataset construction process, 
DIPS-Plus10 was subsequently comprised of 42,112 complexes compared to the 42,826 complexes in the original 
DIPS dataset11 after pruning out 714 large and evolutionarily-distinct complexes for which multiple sequence 
alignment (MSA) generation was prohibitively time-consuming and computationally expensive.

Regarding the choice to base the proposed dataset on DIPS11, we made this decision for a variety of reasons. 
The first is that DIPS11 has been widely adopted by the machine learning community for evaluating the behavior 
of different machine learning algorithms for predicting protein-protein interactions. Therefore, extending DIPS11 
should build on top of its recent success and contributions. Another important point of consideration was that, 

Fig. 1 A PyMOL48 visualization for a complex of interacting proteins (PDB ID: 10GS).
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in effect, DIPS11 is one of the largest, high-quality subsets of all complexes in the Protein Data Bank (PDB). By 
employing carefully designed redundancy reduction filters to derive high-quality binary protein complexes, DIPS 
represents a desirable subset of protein complexes for training machine learning models, in that such structures 
are of reasonable structural quality and, importantly, are also limited in size to establish an upper bound on the 
computational complexity of training models on DIPS11. This last point allows one to quickly and effectively exper-
iment with DIPS11 using different kinds of machine learning algorithms that include a variety of inductive biases.

Assembly of new features. A novel set of statistical and geometric features were compiled for each protein 
complex in DIPS-Plus10. Each of these features was selected carefully and intentionally based on our analysis of 
previous, successful interface prediction models. In this section, we describe each of these new features in detail, 
including why we chose to include them, how we collected or generated them, and the strategy we took for nor-
malizing the features and imputing missing feature values when they arose. These features were derived only for 
standard residues (e.g., amino acids) by filtering out hetero residues and waters from each PDB complex before 
calculating, for example, half-sphere amino acid compositions for each residue. This is, in part, to reduce the com-
putational overhead of generating each residue’s features. More importantly, however, we chose to ignore hetero 
residue features in DIPS-Plus10 to keep it consistent with DB5 as hetero residues and waters are not present in DB5.

DIPS-Plus10, compared to DIPS, not only contains the original PDB features in DIPS such as amino acids’ 
Cartesian coordinates and their corresponding atoms’ element types but now also new residue-level features 
shown in Table 1 following a feature set similar to6–8. DIPS-Plus10 also replaces the residue sequence-conservation 
feature conventionally used for interface prediction with a novel set of emission and transition probabilities 
derived from HMM sequence profiles. Each HMM profile used to ascertain these residue-specific transition and 
emission probabilities was constructed by HHmake12 using MSAs that were generated after two iterations by 
HHblits12 and the Big Fantastic Database (BFD) (version: March 2019) of protein sequences13. Inspired by the 
work of Guo et al.9, HMM profiles were used to create sequence-based features in DIPS-Plus10, as such profiles 
have been shown to contain more detailed information concerning the relative frequency of each amino acid in 
alignment with other protein sequences compared to what has traditionally been done to generate sequence-based 
features for interface prediction (e.g., directly sampling MSAs to assess how conserved each residue is12).

Furthermore, in DIPS-Plus’10 GitHub repository, users are provided with a Jupyter notebook describing how 
they can generate each of the proposed protein features for a protein sequence and structure within a given 
PDB file. In addition, this notebook also shows users how to post-process their generated protein features into 
a graph representation amenable to representation learning with popular graph neural network libraries such 
as the Deep Graph Library (DGL)14. To train new deep learning models using such features, users are also pro-
vided with a Jupyter notebook that allows one to train new models using the proposed feature set. Lastly, using 
DIPS-Plus’ feature insertion script, users are able to add to the dataset any residue-level feature sets provided by 
the Graphein library15, of which there are currently several dozens.

Secondary structure. Secondary structure (SS) annotations were included in DIPS-Plus10 as a categorical vari-
able that describes the type of local, three-dimensional structural segment in which a residue can be found. This 
feature has been shown to correlate with the presence or absence of protein-protein interfaces16. In addition, the 
secondary structures of residues are informative of the physical interactions between main-chain and side-chain 
groups17. This is one of the primary motivations for including them as a residue feature in DIPS-Plus10. As such, 
we hypothesized that adding secondary structure as a feature for interface prediction models could prove ben-
eficial to model performance as it would allow them to more readily discover interactions between structures’ 
main-chain and side-chain groups. Each residue’s SS value was generated using version 3.0.0 of the Database of 
Secondary Structure Assignments for Proteins (DSSP)18, a well-known and frequently-used software package 
in the bioinformatics community. Here, the BioPython interface to DSSP (version 1.78)19 was used to retrieve 
the DSSP results for each residue. Each residue is assigned one of eight possible SS values, ‘H’, ‘B’, ‘E’, ‘G’, ‘I’, ‘T’, 
‘S’, or ‘-’, with the symbol ‘-’ signifying the default value for unknown or missing SS values. Since this categorical 
feature is naturally one-hot encoded, it did not need to be normalized numerically.

Relative solvent accessibility. Each residue can behave differently when interacting with water. Solvent accessi-
bility is a scalar (i.e., type 0) feature that quantifies a residue’s accessible surface area, the area of a residue’s atoms 
that can be touched by water. Polar residues typically have larger accessible surface areas, while hydrophobic 
residues tend to have a smaller accessible surface area. It has been observed that hydrophobic residues tend to 
appear in protein interfaces more often than polar residues20. Including solvent accessibility as a residue-level 
feature, then, may provide models with additional information regarding how likely a residue is to interact with 
another inter-protein residue.

New Features (1) New Features (2)

Secondary Structure Coordinate Number

Relative Solvent Accessibility Profile HMM Features

Residue Depth Amide Normal Vector

Protrusion Index Intrinsic Disorder Region

Half-Sphere Amino Acid Composition

Table 1. Residue features included in DIPS-Plus10.
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Relative solvent accessibility (RSA) is a simple modification of solvent accessibility that normalizes each 
residue’s solvent accessibility by an experimentally-determined normalization constant specific to each residue. 
These normalization constants are designed to help more closely correlate generated RSA values with their res-
idues’ true solvent accessibility21. Subsequently, each residue in each DIPS-Plus10 protein complex was assigned 
an RSA value using BioPython’s DSSP interface. Specifically, the RSA values returned from BioPython were 
pre-normalized according to the constants described in21 and capped to an upper limit of 1.0. Missing RSA val-
ues were denoted by the NaN constant from NumPy22, a popular scientific computing library for Python. Thus, 
users of DIPS-Plus10 may easily impute missing feature values for each feature type; scripts with default parame-
ters to do so were correspondingly compiled with the source code for DIPS-Plus10. By default, NaN values within 
DIPS-Plus10 for numeric features such as RSA were imputed using the feature’s columnwise median value.

Residue depth. Residue depth (RD) is a scalar measure of the average distance of the atoms of a residue from 
its solvent-accessible surface. Afsar et al.6 have found that for interface prediction this feature is complementary 
to each residue’s RSA value. Hence, this feature holds predictive value for determining interacting protein resi-
dues as it can be viewed as a description of how “buried” each residue is. As such, BioPython and version 2.6.1 
of MSMS23 were used to generate each residue’s depth for DIPS-Plus10, where the default quantity for a missing 
RD value is NaN. To make all RD values fall within the range [0, 1], structure-specific min-max normalization 
of each structure’s non-NaN RD values was performed using scikit-learn24. That is, for each structure, the struc-
ture’s RD values were normalized using the expression

X X b
t b

u l l( ) ,
(1)normalized = −

−
× − +

where ∈ ×X n d  represents a specific feature of a protein complex (e.g., RD values); n is the number of residues 
in a protein complex; d is the number of dimensions in the given protein feature; l and u, respectively, represent 
the lower and upper scalar bounds to which to normalize the feature values in X; and b and t, respectively, are the 
original residue-wise minimum and maximum feature values for a given feature X. Here, the values l = 0 and 
u = 1 were used.

Protrusion index. A residue’s protrusion index (PI) is defined using its non-hydrogen atoms. It is a measure of 
the proportion of a 10 Å sphere centered around the residue’s non-hydrogen atoms that is not occupied by any 
atoms. By computing protrusion this way, one ends up with a 1 × 6 feature vector that describes the following six 
properties of a residue’s protrusion: average and standard deviation of protrusion, minimum and maximum pro-
trusion, and average and standard deviation of the protrusion of the residue’s non-hydrogen atoms facing its side 
chain. Version 1.0 of PSAIA25 was used to calculate the PIs for each DIPS-Plus10 structure’s residues collectively. 
That is, each structure had its residues’ PSAIA values packaged in a single .tbl file. Missing PIs defaulted to a 
1 × 6 vector consisting entirely of NaNs. Each PI entry was min-max normalized columnwise to get six updated 
PI values, similar to how RD values were normalized in a structure-specific manner.

Half-sphere amino acid composition. Half-sphere amino acid compositions (HSAACs) are comprised of two 
1 × 21 unit-normalized vectors concatenated together to get a single 1 × 42 feature vector for each residue. The 
first vector, termed the upward composition (UC), reflects the number of times a particular amino acid appears 
along the residue’s side chain, while the second, the downward composition (DC), describes the same measure-
ment in the opposite direction, with the 21st vector entry for each residue corresponding to the unknown or 
unmappable residue, ‘-’. Knowing the composition of amino acids along and away from a residue’s side chain, 
for all residues in a structure, is another feature that has been shown to offer crucial predictive value to machine 
learning models for interface prediction as it can describe physiochemical and geometric patterns in such 
regions26. These UC and DC vectors can also vary widely for residues, suggesting an alternative way of assessing 
residue accessibility6,8. In DIPS-Plus10, missing HSAACs were imputed using a 1 × 42 vector consisting entirely 
of NaNs. Furthermore, since both the UC and DC vectors for each residue were unit normalized before con-
catenating them together, after concatenation all columnwise HSAAC values for a structure still inclusively fell 
between 0 and 1.

Coordinate number. A residue’s coordinate number (CN) is conveniently determined alongside the calcula-
tion of its HSAAC. It denotes how many other residues to which the given residue was found to be significant. 
Significance, in this context, was defined in the same way as6. That is, the significance score for two residues was 
defined as

=
−

s e , (2)
d
st2

2

2

where d is the minimum distance between any of their atoms and st is a given significance threshold which, in 
the context of DIPS-Plus10, defaulted to the constant 1e−3. Then, if two residues’ significance score rose above st, 
they were considered significant. As per the standard convention in DIPS-Plus10, the default value for missing 
CNs was NaN, and the CN for each structure’s residues was min-max normalized.

Profile HMM features. MSAs can carry rich evolutionary information regarding how each residue in a struc-
ture is related to all other residues, and sequence profile HMMs have increasingly found use in representing 
MSAs’ evolutionary information in a concise manner12,27. In previous works on PIP, knowing the conservation of 
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a residue has been beneficial in predicting whether the residue is likely to be found in an interface6–8, and profile 
HMMs capture this sequence conservation information in a novel way using MSAs. As such, to gather sequence 
profile features for DIPS-Plus10, profile HMMs were derived for each structure’s residues using HH-suite3 by 
first generating MSAs using HHblits followed by taking the output of HHblits to create profile HMMs using 
HHmake. From these profile HMMs, each DIPS-Plus10 structure’s residue-wise emission and transition profiles 
could then be calculated. A residue’s emission profile, represented as a 1 × 20 feature vector of probability values, 
subsequently illustrated how likely the residue is across its evolutionary history to emit one of the 20 possible 
amino acid symbols. Similarly, each residue’s transition profile, a 1 × 7 probability feature vector, then depicted 
how likely the residue is to transition into one of the seven possible HMM states.

To derive each structure’s emission and transition probabilities, for a residue i and a standard amino acid k 
the profile HMM entry (i, k) (i.e., the corresponding frequency) was extracted and the frequency (Freq) was 
converted into a probability value with the equation

= −p 2 , (3)ik
m

Freq ik

where m is the number of MSAs used to generate each profile HMM (m = 1,000 by default).
After doing so, a 1 × 27 vector of probability values was obtained for each residue. Similar to other features in 

DIPS-Plus10, missing emission and transition probabilities for a single residue were set to a 1 × 27 vector com-
prised solely of NaNs. Moreover, since each residue was assigned a probability vector as its sequence features, 
we did not need to normalize these sequence feature vectors columnwise. We chose to leave out three profile 
HMM values for each residue representing the diversity of the alignment concerning HHmake’s generation of 
profile HMMs from HHblits’ generated MSAs for a given structure. Since we did not see any predictive value in 
including these as residue features, we left them out of both DIPS-Plus10 and DB5-Plus10. Additionally, for users’ 
convenience, we also collected for each chain in DIPS-Plus10 MSAs that were generated using Jackhmmer28 and 
AlphaFold’s small version of the BFD3 as an alternative source of sequence-based data, and we have stored such 
alignments in DIPS-Plus’ supplementary Zenodo data repository29.

Amide normal vector. Each residue’s amide plane has a normal vector (NV) that can be derived using the 
expression

= → − → × → − →
α β βNV x x x x( ) ( ) , (4)C C C N

where →αxC , →βxC , and xN
→  are the Cartesian coordinates of a residue’s Cα, Cβ, and nitrogen atoms, respectively, 

and × represents the cross product of two vectors.
As shown in Eq. 4, if users opted to encode the complexes in DIPS-Plus10 as pairs of graphs, such NVs can 

then be used to define rich edge features such as the angle between the amide plane NVs for two residues7. 
Similar to how other missing feature vectors were imputed, the default value for an underivable NV (e.g., for 
Glycine residues that do not have a beta-carbon atom) was a 1 × 3 vector consisting of NaNs. Further, since these 
vectors represent residues’ amide plane NVs, we left them unnormalized for, at users’ discretion, additional 
postprocessing (e.g., custom normalization) of these NVs.

Intrinsically disordered regions. To allow one to study or predict disordered protein interface regions more 
readily, the residues in each complex in DIPS-Plus10 were annotated according to whether a given residue prob-
abilistically resides in an intrinsically disordered region (IDR). Such annotations were generated using flDPnn30, 
a state-of-the-art IDR prediction method. Each annotation is provided as both a scalar disorder propensity value 
between 0 and 1 as well as a binary classification (i.e., integer) value of 0 or 1, with 1 indicating a given residue 
likely resides in an IDR and 0 otherwise. Such annotations are stored in the dataset’s supplementary Zenodo 
data repository29.

Preprocessing, cleaning, and labeling. Important to note is that all nine of the residue-level features 
added in DIPS-Plus10 were missing values for at least one residue. This is because not all residues had, for exam-
ple, DSSP-derivable secondary structure (SS) values18 or profile hidden Markov models (HMMs) that are deriva-
ble by HH-suite312, the software package used to generate multiple sequence alignments (MSAs) and subsequent 
MSA-based features. A similar situation occurred for the seven other residue features. That is, not all residues 
had derivable features for a specific feature column, governed either by DIPS-Plus’10 feature parsers or by the 
external feature parsers used in constructing DIPS-Plus10. Missing feature values were denoted for all features 
as NumPy’s NaN constant, except for residues’ SS value, in which case ‘-’ was used as the default missing feature 
value22. In the case of missing features, NumPy’s NaN constant was substituted for the missing feature value. 
Also provided with DIPS-Plus10 were postprocessing scripts with which users may perform imputation of miss-
ing feature values (e.g., replacing a column’s missing values with the column’s mean, median, minimum, or 
maximum value or with a constant such as zero) depending on the type of the missing feature (i.e., categorical 
or numeric).

Also important to note is that the version of each DIPS-Plus10 protein complex before any postprocessing was 
performed was saved separately in DIPS-Plus’10 dedicated Zenodo data repository10. That is, each pruned pair 
from DIPS was stored in the data repository before the addition of any DIPS-Plus10 features. Subsequently, the 
raw complexes from which DIPS complexes were derived can be retrieved from the RCSB PDB individually or 
in batch using FTP or similar file-transfer protocols (from the PDB).
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Novel use cases for DIPS-Plus. The original DIPS dataset, being a carefully curated PDB subset, contains 
almost 200× more protein complexes than the modest 230 complexes in DB5, which is still considered to be a 
gold standard of protein-protein interaction datasets. Other protein binding datasets such as PDBBind31 (con-
taining 5,341 protein-protein complexes) and that which was used in the development of MaSIF32 (containing 
roughly 12,000 protein-protein complexes in total) have previously been curated for machine learning of protein 
complexes. However, to the best of our knowledge, DIPS-Plus10 now serves as the single largest database of PDB 
protein-protein complexes incorporating novel features such as profile HMM-derived sequence conservation and 
half-sphere amino acid compositions shown to be indicative of residue-residue interactions, as described in our 
technical validation study. Our data pipeline can be used to extend DIPS-Plus10 to include any new complexes in 
PDBBind or MaSIF.

Data records
As contained in the dataset’s primary Zenodo data repository10 and referenced in its supplementary Zenodo 
data repository29, DIPS-Plus’10 primary data records are comprised of binary protein complexes (i.e., bound 
ligand and receptor protein structures) extracted from the RCSB PDB33. Both protein structures in the complex 
are differentiable in that they are stored in their own Pandas DataFrame objects34. Each structure’s DataFrame 
contains information concerning the atoms of each residue in the structure such as their Cartesian coordinates 
and element type. For the alpha-carbon atoms of each residue (typically the most representative atom of a res-
idue), each structure’s DataFrame also contains residue-level features like a measure of amino acid protrusion 
and solvent accessibility.

Each data record, consisting of a pair of DataFrames containing a series of alpha-carbon (CA) atoms 
and non-CA atoms with residue and atom-level features, respectively, is stored in both a Python dill file and 
a Hierarchical Data Format (HDF) file for data compression and convenient file loading35. These pairwise 
DataFrames subsequently contain a combination of numeric, categorical, and vector-like features describing 
each atom. In total, there are 42,112 data records for binary protein complexes in DIPS-Plus10 after completing 
all data pruning.

The data records contain the labels of which pairs of CA atoms from opposite structures are within 6 Å of 
one another (i.e., positives), implying an interaction between the two residues, along with an equally-sized list 
of randomly-sampled non-interacting residue pairs (i.e., negatives). For example, if a complex in DIPS-Plus10 
contains 100 interacting residue pairs (i.e., positive instances), there will also be 100 randomly-sampled 
non-interacting residue pairs included in the complex’s dill file for optional downsampling of the negative class 
during the training of machine learning models.

As shown in the directory structure diagram in Fig. 2, the relationships between individual data records (i.e., 
protein complexes) are made explicit by the directory and file naming convention we adopt for DIPS-Plus10. 
Complexes’ DataFrame files are grouped into directories by shared second and third characters of their PDB 
identifier codes (e.g., 1x9e.pdb1_0.dill and 4x9e.pdb1_5.dill reside in the same directory 
project/datasets/DIPS/final/raw/x9/).

Since DIPS-Plus10 is relatively large (i.e., contains more than 10,000 complexes), we provide a 
randomly-sampled 80%-20% dataset split for training and validation data, respectively, in two dif-
ferent forms of text file pairs located in the directory project/datasets/DIPS/final/raw/: 
pairs-postprocessed-train.txt and pairs-postprocessed-val.txt correspond-
ing to the dataset’s default structure-based splits (as discussed in the following Technical Validation sec-
tion), and pairs-postprocessed-train-before-structure-based-filtering.txt and 
pairs-postprocessed-val-before-structure-based-filtering.txt corresponding to the 
dataset’s original 30% sequence identity splits (also discussed in the following Technical Validation section). 
The file pairs-postprocessed.txt is a master list of all complex file names from which we derived 
pairs-postprocessed-train.txt and pairs-postprocessed-val.txt for cross-validation. 
It contains the file names of 42,112 complex DataFrames, filtered down from the original 42,826 complexes in 
DIPS-Plus10 to complexes having no more than 17,500 CA and non-CA atoms, to match the maximum possible 
number of atoms in DB5-Plus structures and to create an upper-bound on the computational complexity of 
learning algorithms trained on DIPS-Plus10. However, we have also included the scripts necessary to conven-
iently regenerate pairs-postprocessed.txt with a modified or removed atom-count filtering criterion 
and with different cross-validation ratios.

Note that, to generate each data record, DIPS-Plus10 relies on feature generation using external tools such 
as DSSP and PSAIA. However, in our Zenodo data repository for DIPS-Plus10, we provide either a copy of 
the external features generated using these tools or the exact version of the tool with which we gener-
ated features (e.g., version 3.0.0 of DSSP for generating SS values using version 1.78 of BioPython). Each of 
these externally-generated features is represented by the external_feats directory in Fig. 2. The most 
time-consuming and computationally-expensive features to generate, profile HMMs and protrusion indices, are 
included in our Zenodo repository for users’ convenience. We also provide the final, postprocessed version of 
each DIPS-Plus10 complex in our Zenodo data bank, shown as the final/raw directory in Fig. 2.

technical Validation
Data quality. Regarding the quality and validity of the complexes in DIPS-Plus10, we employed a similar 
pruning methodology as36 to ensure data integrity. DIPS-Plus, along with the works of others31,32,37, derives its 
complexes from the PDB which conducts statistical quality summaries in its structure deposition processes and 
post-deposition analyses38. Nonetheless, recent studies on the PDB have discovered that the quality of its struc-
tures can, in some cases, vary considerably between structures39. As such, in selecting complexes to include in 
DIPS-Plus10, we performed extensive filtering and processing after obtaining the initial batch of 180,000 protein 
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structures available in the PDB. Such filtering included (1) selecting only structures that contain at least two 
chains (i.e., complex structures); (2) removing PDB complexes containing a protein chain with more than 30% 
sequence identity with any protein chain in DB5-Plus per40,41; (3) selecting complexes with an X-ray crystallogra-
phy or cryo-electron microscopy resolution greater than 3.5 Å (i.e., a standard threshold in the field); (4) choosing 
complexes containing protein chains with more than 50 amino acids (i.e., residues); (5) selecting for complexes 
with at least 500 Å2 of buried surface area; and (6) picking only the first model for a given complex. Lastly, for 
each of the complex structures we retained after such filtering steps, we then found all unique pairs of chains in 
each complex and represented them as individual protein complexes (i.e., as binary complexes) for training and 
cross-validation of machine learning models. The motivation for the second filtering step was to ensure that we 
did not allow training datasets built from DIPS-Plus10 to bias the DB5-Plus test results of models trained on DIPS-
Plus10, with the remaining steps carried out to follow standard practices in the field of protein bioinformatics.

In addition to offering a standardized sequence-based split of the dataset’s complexes, the dataset also 
provides a default structure-based split of these complexes. In particular, DIPS-Plus offers a standardized 
train-validation partitioning of the dataset’s complexes using FoldSeek42, such that there are no complexes (i.e., 
chains) within the dataset’s original sequence-based training or validation splits that are structurally similar 
to any chain within the DB5 dataset’s test split. To create such structure-based splits, FoldSeek was run using 
DIPS-Plus’ data partitioning script in exhaustive search mode between all chains in the training and validation 
dataset and the chains in the DB5 test dataset. In this context, a chain was considered structurally similar to 
another chain if FoldSeek assigned a 50% or greater probability to the two chains belonging to the same SCOPe 
superfamily, while permitting E-values up to 0.1. Note that the default E-value upper limit for FoldSeek is 0.001, 
which means that the use of an increased upper limit on E-values in DIPS-Plus’ FoldSeek searches modified 
the similarity searches for all chain pairs to report more distant potential homologs compared to FoldSeek’s 
default search settings. After performing this exhaustive search, FoldSeek removed 3,727 of the 33,159 origi-
nal sequence-filtered chain pairs within the DIPS-Plus training split, resulting in 29,432 chain pairs remaining 
for training. Similarly, FoldSeek removed 890 of the 8,290 original sequence-filtered chain pairs within the 
DIPS-Plus validation split, resulting in 7,400 chain pairs remaining for validation. Nonetheless, if one desires 
to customize FoldSeek’s data splitting behavior further, one can use DIPS-Plus’ data partitioning script to do so.

Fig. 2 An overview of the directory structure of our proposed datasets.
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To inspect DIPS-Plus’ training and validation complexes further, we additionally provide within DIPS-Plus’ 
GitHub repository a complex experiment analysis script that uses the Graphein library’s latest PDBManager 
utility15 to collect and organize detailed metadata associated with the protein chains in DIPS-Plus. This metadata 
includes not only each chain’s experiment type and resolution for structure determination but also its PDB name 
(e.g., “Adipocyte Lipid Binding Protein”), sequence, the PDB identifiers of ligands originally in complex with the 
chain, the source of the chain (e.g., “homo sapiens”), and its PDB deposition date. We provide this metadata for 
DIPS-Plus within the latest version of its supplementary Zenodo data record29.

In particular, Fig. 3 visualizes the distribution of each DIPS-Plus chain’s experiment resolution values along 
with its experiment resolution method. As Fig. 3 shows, the training and validation DIPS-Plus data splits have 
very similar distributions in terms of experiment resolutions achieved and experiment methods used, with 
both splits having a similar spread of resolution values between 1.4 and 3.5 Angstrom. Across both splits, the 
average resolution of diffraction-derived chains is approximately 2.3 Angstrom, and the average resolution of 
electron microscopy (EM)-derived chains is approximately 3.2 Angstrom. Given that diffraction-derived chains 
comprise approximately 99% of the chains in DIPS-Plus, this analysis suggests that, on average, the quality of the 
interfaces present within DIPS-Plus is reasonable and well-balanced between both its training and validation 
splits, with each split containing mostly lower-resolution diffraction-derived chains but also containing some 
intermediate-resolution EM-derived chains.

Another perspective through which to validate the dataset’s quality is through an analysis of its original num-
ber of water atoms present in each protein-protein interface, prior to removal of water atoms to closely mirror 
the DB5 dataset. Towards this end, included within DIPS-Plus’ GitHub repository is a complex interface water 
analysis script that allows users to plot the distribution of how many atoms associated with a water molecule 
(e.g., an ‘HOH’ residue) are located within 10 Angstrom of any residue residing in given protein-protein inter-
face for each complex. An analysis performed using this script, as shown in Fig. 4, demonstrates that around 656, 
652, and 655 water atoms, on average, are present in each protein-protein interface within DIPS-Plus’ training, 
validation, and training with validation complexes, respectively. This indicates, in mimicking the lack of waters 
present in the DB5 dataset, that certain amino acid-water interactions within each DIPS-Plus complex may have 
to be inferred by machine learning methods trained on DIPS-Plus (or on DB5, consequently) for downstream 
protein interface prediction.

However, the discussion in the following Usage Notes section highlights, using the new feature pipeline 
introduced with DIPS-Plus’ source code, that users of DIPS-Plus are able to add to the dataset a rich new set of 
descriptors, such as hydrophobicity embeddings, that can help characterize the various amino acid-water inter-
actions that can occur at protein-protein interfaces. Since this feature pipeline allows users to featurize protein 
graphs constructed from PDB file inputs at the level of amino acids or all atoms, users now can customize how 
they would like to featurize each protein-protein complex in DIPS-Plus to capture different characteristics of 
amino acid-water interactions from the perspective of either amino acid sequences or protein tertiary structures.

Fig. 3 Displays the distribution of experiment types and resolutions across DIPS-Plus’ training and validation 
examples.
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To further investigate data quality, we also looked at whether certain features in the dataset are highly cor-
related with one another, implying feature redundancy. In particular, Fig. 5 quantitatively and qualitatively 
shows the relationship between relative solvent accessibility (RSA) and residue depth (RD) within DIPS-Plus. 
As shown in Fig. 5, the two features are moderately correlated with each other, yet not entirely, with a Pearson’s 
correlation of −0.55 across the training and validation splits. As Fig. 4 further illustrates, there are regions in the 
two features’ distributions where they do not strongly overlap (e.g., between 0.01 and 0.2 for RD values), suggest-
ing that there is still information to glean from processing these two features as separate values.

Similarly, we also investigated the correlation between RSA values and each residue’s coordinate number 
(CN) values as well as RD values and each residue’s CN values, to span each of the dataset’s single-valued scalar 
features. The results of these two additional investigations are shown below in Figs. 6, 7, respectively. In short, we 
find that RSA values and CN values are also moderately correlated with each other, yet not fully correlated, and 
similarly, yet less so, for RD values and CN values. These results, along with a qualitative analysis of each feature’s 
distribution, suggest that there is still predictive value to be found in treating each of these features as a separate 
column within the dataset. Note that users of the dataset may use its provided complex feature correlation anal-
ysis script to run additional or customized feature correlation analysis studies as desired.

Computational benchmark results. To measure the effect that DIPS-Plus10 has on the performance of 
existing machine learning methods for PIP, we trained one of the latest SOTA methods, NeiA, for 10 epochs 
on our standardized 80%-20% cross-validation split of DIPS-Plus’10 complexes to observe NeiA’s behavior on 
DB5-Plus’s test complexes thereafter. In line with previous PIP studies, we ran this experiment three times, each 
with a random seed and a single GNN layer, for a fair comparison of the experiment’s mean (before ±) and stand-
ard deviation (after ±) in terms of MedAUROC. Our results from this experiment are shown in the last row of 
Table 2. For the experiment, we used the following architecture and hyperparameters: (1) 1 NeiA GNN layer; (2) 
3 residual CNN blocks, each employing a 2D convolution module, ReLU activation function, another 2D con-
volution module, followed by adding the block input’s identity map back to the output of the block (following a 
design similar to that of 8); (3) an intermediate channel dimensionality of 212 for each residual CNN block; (4) a 
learning rate of 1e-5; (5) a batch size of 32; (6) a weight decay of 1e-7; and (7) a dropout (forget) probability of 0.3.

All baseline results on the DB5 test complexes in Table 2 (i.e., complexes comprised of original DB5 res-
idue features)7,8,43–45 are taken from8, except for SASNet’s results from training on the original DIPS dataset. 
These results are denoted by an asterisk in Table 2 to indicate that they were instead taken from36. The best 
performance is in bold. Note that, for fair comparisons with prior methods for protein interface prediction, the 
computational benchmark results described in this section are all based on a 30% sequence identity split of each 
baseline method’s training data with respect to the DB5 test dataset’s chains.

In Table 2, we see that a simple substitution of training and validation datasets enhances the MedAUROC 
of NeiA when adopting its accompanying high-order pairwise interaction (HOPI) module for learning 
inter-protein residue-residue interactions. For reference, to the best of our knowledge, the best performance 
of a machine learning model trained for PIP on only the atom-level features of protein complexes is SASNet’s 

Fig. 4 An investigation of the distribution of the number of interface water atoms interacting with interface 
residues across the complexes within DIPS-Plus.
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MedAUROC of 0.885 averaged over three separate runs36. Such insights suggest the utility and immedi-
ate advantage of using DIPS-Plus’10 residue feature set for PIP over the original DIPS’ atom-level feature set. 
Additionally, we deduce from Table 2 that the performance of previous methods for PIP is likely limited by 
the availability of residue-encoded complexes for training as all but one method36 used DB5’s 230 total com-
plexes for training, validation, as well as testing. This hypothesis is supported by the results in Table 2 in that 
NeiA + HOPI trained and tested on DB5-Plus achieves a MedAUROC of 0.9415, whereas NeiA + HOPI trained 
on DIPS-Plus10 and tested on DB5-Plus achieves a new SOTA MedAUROC of 0.9473, demonstrating the impor-
tance of increasing the amount of residue-encoded complex data for PIP.

Usage Notes
The standardized task for which DIPS-Plus10 is designed is the pairwise prediction of all possible interactions 
between inter-protein residues (e.g., M × N possible interactions where M and N are the numbers of residues 
in a complex’s first and second structure, respectively)8. One of the most common metrics used to score com-
putational methods for PIP is the median area under the receiver operating characteristic curve (MedAUROC) 
to prevent test results for extraordinarily large complexes from having a disproportionate effect on the algo-
rithm’s overall test MedAUROC6–8,36. To facilitate convenient training of future methods trained on DIPS-Plus10, 

Fig. 5 An investigation of the correlation between per-residue relative solvent accessibility (RSA) and residue 
depth (RD) values across DIPS-Plus’ training and validation examples.
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DIPS-Plus10 includes a standardized 80%-20% cross-validation split of its complexes’ file names. For these splits, 
we a priori filtered out 663 complexes containing more than 1,000 residues to mirror DB5 in establishing an 
upper bound on the computational complexity of algorithms trained on the dataset. As is standard for inter-
face prediction6–8,36, we defined the labels in DIPS-Plus10 to be the IDs (i.e., Pandas DataFrame row IDs34) of 
inter-protein residue pairs that, in the complex’s bound state, can be found within 6 Å of one another, using 
each residue’s non-hydrogen atoms for performing distance measurements (since hydrogen atoms are often not 
present in experimentally-determined structures).

Similar to36, in the version of DB5 we updated with new features from DIPS-Plus10 (i.e., DB5-Plus), we 
recorded the file names of the complexes added between versions 4 and 5 of Docking Benchmark as the final test 
dataset for users’ convenience. The rationale behind this choice of test dataset is given by the following points: 
(1) The task of interface prediction is to predict how two unbound (i.e., not necessarily conformal) proteins will 
bind together by predicting which pairs of residues from each complex will interact with one another upon bind-
ing; (2) DIPS-Plus10 consists solely of bound protein complexes (i.e., those already conformed to one another), 
so we must test on a dataset consisting of unbound complexes after training to verify the effectiveness of the 
method for PIP; (3) Each of DB5-Plus’ unbound test complexes are of varying interaction types and difficulties 

Fig. 6 An investigation of the correlation between per-residue relative solvent accessibility (RSA) and 
coordinate number (CN) values across DIPS-Plus’ training and validation examples.

https://doi.org/10.1038/s41597-023-02409-3


1 2Scientific Data |          (2023) 10:509  | https://doi.org/10.1038/s41597-023-02409-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 7 An investigation of the correlation between per-residue residue depth (RD) and coordinate number 
(CN) values across DIPS-Plus’ training and validation examples.

Method MedAUROC

NGF (DB5)43 0.865 ± 0.007

DTNN (DB5)44 0.867 ± 0.007

Node and Edge Average (DB5)7 0.876 ± 0.005

BIPSPI (DB5)45 0.878 ± 0.003

SASNet* (DIPS)36 0.885 ± 0.009

NeiA + HOPI (DB5)8 0.902 ± 0.012

NeiWA + HOPI (DB5)8 0.908 ± 0.019

NeiA + HOPI (DB5-Plus)10 0.9415 ± 0.000

NeiA + HOPI (DIPS-Plus)10 0.9473 ± 0.001

Table 2. Effect of training on DIPS-Plus10 and DB5-Plus10 for NeiA, a state-of-the-art PIP algorithm.
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for prediction (e.g., antibody-antigen, enzyme substrate), simulating how future unseen proteins (e.g., those 
discovered at the outset of an epidemic) might be presented to the model following its training; (4) DB5’s test 
complexes (i.e., those added between DB4 and DB5) represent a time-based data split also used for evaluation 
in7,8,36, so for fair comparison with previous SOTA methods we chose the same complexes for testing.

In general, DIPS-Plus10 can be used with most machine learning algorithms, especially geometric deep learn-
ing algorithms, for studying protein structures, complexes, and their inter/intra-protein interactions at scale. 
This dataset can also be used to test the performance of new or existing geometric learning algorithms for node 
classification, link prediction, intrinsic disorder prediction, or similar benchmarking tasks. Important to note is 
that this data is collected solely in the domain of proteomics, so systems trained on it may or may not generalize 
to other tasks in the life sciences.

To allow users of DIPS-Plus to add new features to the dataset as desired, included within DIPS-Plus’ GitHub 
repository is a feature insertion script that one can use to include new features of arbitrary data types. For exam-
ple, one may use the script to insert new scalar-valued features for each residue (or atom) by inserting the new 
features within each example’s ‘sequences’ object (i.e., dictionary) mapping string keys to arbitrary data types 
such as a list of scalar values. If one would like to assign new vector-valued features to each dataset example, 
one can instead insert use this feature insertion script to insert such vector feature values as a column vector 
associated with each row in an example’s ‘df0’ or ‘df1’ Pandas DataFrame. Here, ‘df0’ represents the first protein 
partner in a protein-protein interface, and likewise ‘df1’ represents the second partner in the interface. Since the 
Pandas Python library34 allows users to store vector values as column values, this script is able to integrate both 
new scalar and vector-valued features within each dataset example.

To show users how to do so for custom descriptors they might want to integrate into the dataset, we have 
provided in this feature insertion script an example use case that adds each of Expasy’s residue-level protein 
scale annotations for each residue type in the dataset. Moreover, included with the dataset’s source code is the 
ability for users to add any residue-level features currently available within the Graphein Python library (e.g., 
https://graphein.ai/modules/graphein.protein.html). As Graphein provides several different collections of useful 
residue-level features for users’ convenience, one can then add arbitrary Graphein features to each DIPS-Plus 
complex to significantly enhance the usability and extensibility of the dataset.

Code availability
Preprocessed data for DIPS-Plus10 as well as its associated source code and instructions for data processing and 
reproducibility can be found on Zenodo and GitHub, respectively. The GitHub instructions illustrate how users 
can install the Python programming language46 and build an Anaconda virtual environment47 containing the 
software dependencies required to preprocess and analyze DIPS-Plus10 using the provided Python scripts. Lastly, 
the GitHub instructions show users how to run such scripts and the order in which to do so to successfully rebuild 
DIPS-Plus10 from scratch, to featurize a given PDB file, or to train new machine learning models (e.g., NeiA) 
for protein interface prediction. For provenance, the original DIPS dataset’s source code36 can also be found on 
GitHub, along with a corresponding DOI.
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