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Genome assembly of the Korean 
intertidal mud-creeper Batillaria 
attramentaria
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& Yong-Jin Won1 ✉

Batillaridae is a common gastropod family that occurs abundantly in the shallow coastal zone of the 
intertidal mudflats of the northwest Pacific Ocean, Australasia, and North America. In this family, 
Batillaria attramentaria is known for its biological invasion and colonization in estuarine and intertidal 
zones. It can endure and adapt the harsh intertidal conditions such as frequent temperature alteration, 
salinity, and air exposure. Therefore, we sequenced and assembled this Korean batillariid genome to 
get insight into its intertidal adaptive features. Approximately 53 Gb of DNA sequences were generated, 
and 863 scaffolds were assembled into a draft genome of 0.715 Gb with 97.1% BUSCO completeness 
value. A total of 40,596 genes were predicted. We estimated that B. attramentaria and Conus consors 
diverged about 230 million years ago (MYA) based on the phylogenetic analysis of closely related 
gastropod species. This genome study sets the footstep for genomics studies among native and 
introduced Batillaria populations and the Batillaridae family members.

Background & Summary
Batillariidae, also called batillariids or mud-creepers are widely distributed in the north-western Pacific region of 
Asia along the complex coastline formed in Japan, Korea, eastern China, and America1–4. Within the Batillaridae 
family, B. attramentaria (Sowerby, 1855) is characterized by its habitats being limited to narrow intertidal zones 
consisting of rocks or sandy mud along coastlines and limited dispersal capacity associated with direct larval 
development5,6. Due to such biological constraints, geographical movement distance is limited, and its popula-
tion structure is also inferred to be influenced by geographical factors6–8. These characteristics hinder them from 
escaping from their originated habitats. However, in the early 20th century, B. attramentaria was introduced into 
the Bay of the Northeast Coast in the United States and Canada by commercial shipment of oyster (Crassostrea 
gigas) aquaculture from Japan9,10. In the new habitat, this invaded species not only flourished but also success-
fully competed with the native gastropod species such as Cerithidea californica11–14.

The mitochondrial lineage of B. attramentaria is primarily subdivided into two, and their geographical dis-
tribution matches the trajectories of two dominant regional seawater currents, Tsushima and Kuroshio, that 
flow separately north and south of the Japanese archipelago2. An analysis of the demographic history of B. 
attramentaria indicates that this species has sharply increased approximately since the last glacial maximum 
(LGM: 26,000–19,000 years ago), directly influenced by the sea level rise and range expansion of habitat in Asia 
following climate change1.

Benthic organisms living in the estuarine intertidal zone are subjected to the most dynamic environmental 
circumstances, with frequently altered salinity and temperature in their habitat due to tidal conditions. Thus, 
estuarine intertidal organisms are continuously exposed daily to the submerged saline seawater and cold tem-
perature during high tide and to the dry, low salinity and high temperature during the low tide. Subsequently, 
continuous exposure to such highly variable environmental conditions has shaped intertidal communities’ 
behavioural and physiological adaptation and genetic variation15,16. Salt stress exposure study on B. attramen-
taria shows that variation in salinity affects their locomotion activity17, which seems to be a typical response 
observed in several intertidal gastropods18–20. Among several studies of molluscs, a survey on intertidal oyster 
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Crassostrea gigas highlights the pathways and genes involved in responding to and adapting to typical tidal 
environmental conditions17. In comparison, a study on terrestrial giant African snails shows the expansion of 
mucus-related gene families to mitigate dry conditions on the land and the doubling of several genes, includ-
ing haemocyanin (a copper-containing respiratory protein) that helps in transporting oxygen and phosphoe-
nolpyruvate carboxykinase gene families during whole genome duplication21. Adaptation to such typical 
intertidal and terrestrial environmental conditions was achieved by regulating water balance, air-breathing, 
nitrogen excretion, neural–immune system interactions, and specific behaviours.

In this context, the genome sequence of B. attramentaria will be beneficial for a deepened understanding 
of its evolution and invasiveness. It could be a suitable model for studying the combined influence of climate 
change and palaeoceanographic change on marine gastropods and other coastal taxa in the Northeast Asian 
region. As well as this study will enrich our knowledge of the genetic features involved in the adaptation to typ-
ical intertidal environmental factors.

Here, we present a first draft of reference genome assembly for B. attramentaria constructed using long reads 
generated by the Pacific Biosciences (PacBio) DNA sequencing platform Sequel and short paired-end reads gen-
erated by Illumina. The genome was assembled into 863 scaffolds (N50 = 1.28 Mb), with a total size of 0.715 Gb, 
with 97.2% assembly completeness analysed by BUSCO. The genome completeness is on par with the mollusc 
genomes sequenced to date. Structural annotation of the genome yielded 40,596 genes. Of the total genes pre-
dicted, 15,755 genes were functionally annotated with InterProScan. Based on phylogenetic analysis of related 
gastropod species, B. attramentaria diverged from Conus consors during the Early Mesozoic era, i.e., about 230 
MYA. We have detected genes responsible for adapting to intertidal environments22 (Supplementary Table 1) 
such as the Na+/H+ exchanger family, Na+/K+ ATPase (for ionic regulation), acyltransferase, proline dehydro-
genase (for osmotic regulation), haemocyanin beta-sandwich, animal haem peroxidase, protein-tyrosine phos-
phatase (for improving terrestrial respiratory function), and galactosyltransferase, Ependymin, TNF(Tumour 
Necrosis Factor) family, C1q domain (for immune defense), as observed in terrestrial and marine gastropods in 
previous studies15,16,21,22.

Methods
Sample collection and purification of DNA.  To construct a draft of the reference genome for the Korean 
batillariids, we collected samples from B. attramentaria (Sowerby, 1855) from Hajeon-ri, Cheollabuk-do, South 
Korea (on November 2018 at 35°32′N, 126°33′E). The samples were kept alive in seawater during the transporta-
tion to the laboratory. To obtain high quality and molecular weight of DNA, we dissected fresh tissues from the 
foot to muscle part of the alive samples and quickly froze them at −80 °C. We did not include the gut part to avoid 
the snail’s intestinal microbiome contaminant to the snail DNA. Genomic DNA was extracted using the Dneasy® 
Blood & Tissue kit (Qiagen, Hilden, Germany), and the integrity was checked using an agarose gel.

Short-read DNA sequencing and genome size estimation.  We constructed a library with an insert 
size of 350 bp using a Truseq Nano DNA Library kit (Illumina, SD, USA) following random fragmentation and 
adaptor ligation to DNA sequences. Paired-end (PE) sequencing with 101 bp was carried out using the Hiseq. 
4000 sequencing system (Illumina, CA, USA), which generated a total of 731,221,132 PE reads (73.9 Gbp) 
(Supplementary Table 2). The JELLYFISH tool23 was used to estimate the genome size of B. attramentaria, which 
resulted in approximately 0.64 Gbp based on k-mer distribution value (K = 61). The main peak at k-mer depth 34 
was used for genome size estimation (Fig. 1).

PacBio sequencing.  The genomic DNA was sheared to generate ~20Kb fragments using the Covaris g-TUBE 
(Covaris) according to the manufacturer’s instructions. Small fragments were removed by the AMpureXP bead 
purification system (Beckman Coulter). A total of 5 μg DNA for each sample was used to prepare the library 
using SMRTbell® Express Template Prep Kit v2.0 (Pacific Biosciences, Menlo Park, CA, USA). Small fragments 
were removed from the library by BluePippin Size selection system for the large-insert library. Then the sequenc-
ing primer v4 was annealed to the SMRTbell template, followed by the binding of DNA polymerase to the com-
plex (Sequel Binding kit 3.0). The excess primer and polymerase were removed from the complex using AMPure 

Fig. 1  B. attramentaria genome size estimation by k-mer distribution.
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purification system before sequencing. Finally, the SMRT library was sequenced using the PacBio Sequel System 
with the Sequel Sequencing Kit v3.0 chemistry. A total of ~53.3 Gbp of subreads were obtained (Supplementary 
Table 3).

Genome assembly and polishing.  Initially, cleaned PacBio long-read sequences were assembled using 
FALCON-Unzip assembler24, which generated a contiguous assembly of 844 Mbp (N50 = 1.08 Mbp). The larger 
size of the assembly than the estimated genome size suggested a high number of duplicate haplotypes25. The 
highly heterozygous genome assembly was curated by Purge Haplotigs26 to generate a de-duplicated haploid 
genome assembly. Further, the assembled genome was polished by Pilon 1.2.3 (with default parameters)27 by 
using aligned Illumina PE reads (57.5 Gb), resulting in a final assembly of 863 contigs with a total length of 
715 Mb and an N50 length of 1.28 Mb (Table 1).

The assembled genome is much smaller than the closest sequenced genome of Conus consors (3.025 Gb)28. 
Due to high heterozygosity levels and repetitiveness, the assembly processes of molluscs are found to be com-
plicated. Such instances were observed in oysters and other invertebrates29. The repeat content was estimated to 
be (314 Mb) 43.87% of the genome assembled (Table 2). Most invertebrate genomes, including molluscs, exhibit 
high heterozygosity and repetitiveness, complicating the assembly process. Genome completeness estimated by 
using BUSCO (Benchmarking Universal Single-Copy Orthologs) v3.0.2 detected a total of 927 (97.2%) of the 
954 genes in the metazoan gene set30 (Table 3). Genome completeness is par with other mollusc genome assem-
bly available till date (Fig. 2b)

Gene prediction and annotation.  Before predicting genes, transposable elements (TEs) in the genome 
were identified using homology-based (RepeatMasker31, RepeatScout32, RepBase33, and RMBlast34) and by de novo 
using RepeatModeler35. Tandem Repeats Finder36 was used to predict consensus sequences and to gain classifica-
tion information for each repeat. Annotation of repetitive elements resulted in 313,966,700 bp of repetitive DNA, 
amounting to 43.87% of the genome assembly (Table 3). The majority of the repetitive elements were unclassified 
(20.41%), followed by Simple repeats (7.38%), SINEs (5.55%), LINEs (4.83%), and DNA elements (3.81%). By 
using the SSRMMD tool37, we identified 1,518,868 simple sequence repeats (SSRs) distributed throughout the 
genome (Supplementary Table 4). A total of 3,304,085 SNPs has been detected in the B. attramentaria genome 
(Supplementary Table 5), after aligning sequence reads with the BWA tool38 and using bcftools39 to identify 
variants. Repetitive elements in the genome were masked before proceeding with the gene prediction. We used 
EvidenceModeller gene predicting tool for predicting protein-coding genes from the draft genome by combining 
evidence from ab initio gene predictions, transcripts, and protein homologues. We used Augustus40 for ab initio 

FALCON-Unzip Purge_haplotigs Final

Number of contigs 1,758 863 863

Total size of contigs 844,056,538 717,569,005 715,684,482

Longest contig size 9,185,056 9,185,056 9,161,156

Number of contigs >1 K nt 1,758 863 863

Number of contigs >10 K nt 1,758 863 863

Number of contigs >100 K nt 1,257 799 799

Number of contigs >1 M nt 243 242 241

Mean contig size 480,123 831,482 829,298

Median contig size 204,571 575,946 570,111

N50 contig length 1,079,716 1,290,776 1,288,332

L50 contig count 212 158 158

GC Contents (%) 45 45 45

Table 1.  Statistics of genome assembly of B. attramentaria.

Number of elements Length occupied (bp) Percentage of sequences (%)

SINEs 231,812 39,739,927 5.55

LINEs 137,704 34,564,778 4.83

LTR elements 48,216 7,903,640 1.1

DNA elements 156,856 27,301,116 3.81

Unclassified 787,378 146,106,066 20.41

Small RNA 73,161 10,762,653 1.5

Satellites 37,148 4,270,032 0.6

Simple repeats 909,136 52,830,592 7.38

Low complexity 68,230 3,915,780 0.55

Total 313,966,700 43.87

Table 2.  Statistics of repeat elements of B. attramentaria.
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gene prediction. Additional supports for gene prediction came from two different data sets of transcripts gener-
ated by Trinity41 from our previous study by Ho et al.22 and homologous protein sequences of related species to B. 
attramentaria by PASA42 and Exonerate43. Finally, we used EVidenceModeller42 to merge and improve the ab initio 
predictions with the evidence of transcripts and protein sequences with weights of evidences. The predicted genes 
were annotated using InterProScan with Pfam44. A sensitive HMM scanning method on the known Pfam func-
tional domains with an e-value of 0.05 was also used to classify the gene families. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) annotation was performed using the KEGG Automatic Annotation Server (https://www.
genome.jp/kegg/kaas/)45 with the bi-directional best hit (BBH) method. Homology-based and ab initio-based 
gene prediction resulted in the identification of 40,596 protein-coding genes (i.e., a total of 29.8% of the genome) 
with an average gene length of 5,248 bp from the B. attramentaria genomes (Table 4). Functional annotation of 
all predicted protein-coding genes by InterpRoscan resulted in 15,756 (38.8%) genes by Pfam and 17,922 (44.1%) 
genes by Gene Ontology46. A total of 11,074 (27.3%) genes were annotated by KEGG database46.

Phylogenomics.  We performed an extensive comparison of orthologous genes among 19 gastropod 
genomes (Batillaria attramentaria, Conus consors28, Lanistes nyassanus47, Marisa cornuarietis47, Pomacea can-
aliculata47, Aplysia californica, Elysia chlorotica48, Plakobranchus ocellatus49, Biomphalaria glabrata50, Bulinus 
truncates51, Achatina immaculata21, Lottia gigantea52, Chrysomallon squamiferum53, Haliotis rubra54, Crassostrea 
gigas55, Agropecten purpuratus56, and Octopus bimaculoides57) using OrthoFinder v3.058. With all species present, 
3,532 orthogroups were formed, with 36 of those consisting of one-copy genes. With the fasttree tool provided 
in OrthoFinder, we constructed a tree of rooted species using 573 orthogroups, where at least 81.8% of species 
had single-copy genes in any orthogroup with Octopus bimaculoides as the outgroup. Divergence time was calcu-
lated using the species tree generated by using RelTime methods in MEGA-X59 with the Jones–Taylor–Thornton 

Number of BUSCOs Percentage of BUSCOs

Complete BUSCOs 950 97.1

Complete Single-Copy BUSCOs 894 91.4

Complete Duplicated BUSCOs 56 5.7

Fragmented BUSCOs 5 0.5

Missing BUSCOs 23 2.4

Table 3.  BUSCO assessment of B. attramentaria genome assembly (Metazoa).

Fig. 2  (a) Divergence time tree among gastropods. Divergent times were estimated using RelTime methods 
with an ML phylogenomic tree, and the unit of time was scaled in millions of years. Bars around each node 
represent 95% confidence intervals. (b) Genome assembly completeness comparison estimated by BUSCO 
(metazoan_odb10). The genome assembly accession number is mentioned next to the plot. Assembly of  
A. purpuratus was analyzed from http://gigadb.org/dataset/100419. Star marks represent the chromosome-level 
assemblies.
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model (Fig. 2a). The timetree was computed using two calibration constraints with confidence interval (CI) 
of Haliotis rubra–Chrysomallon squamiferum (414–596.9 MYA) and of Elysia chlorotica–Aplysia californica  
(58.3–278.9 MYA) that were taken from the TimeTree database60 for the calibration of time trees. The divergence 
time between B. attramentaria and C. consors was approximately 230 MYA, i.e., during the Early Mesozoic era.

Comparative genomic analysis.  A comparison of orthologous gene groups shared among related gas-
tropods of C. consors, L. nyassanus, M. cornuarietis, and P. canaliculata analysis by OrthoVenn261 showed a 
core set of 5,679 gene groups and a unique set of 1,724 gene groups was specific to B. attramentaria (Fig. 3). 
Gene ontology (GO) enrichment analysis of the gene groups unique to B. attramentaria showed the top five 
over-representation of GO terms mostly related to protein poly-ADP-ribosylation, GTP binding, and innate 
immune response (Supplementary Table 6).

Data Records
All DNA and RNA raw reads have been deposited in the NCBI SRA. All short and long read DNA sequences 
are available under the NCBI SRA accession number SRP26999662, genome assembly with accession number 
GCA_018292915.163 and the whole genome shotgun sequencing project was deposited in GenBank accession 
JACVVK00000000064 under the BioProject no. PRJNA640962. Supplementary materials which include all sup-
plementary tables, results of comparative genomics and phylogenomic analysed by OrthoFinder, SNPs and SSRs 
are deposited to Figshare repository46: https://doi.org/10.6084/m9.figshare.22309195.v4.

Technical Validation
Quality assessment of the DNA and purification.  High-quality DNA with bands around and above 
10 kb in the agarose gel was selected for sequencing. The quality of the genomic DNA was measured using 
Bioanalyzer 2100 (Agilent Technologies, CA, USA), and the quantity was measured by a NanoDrop-1000 
microspectrophotometer.

Sequencing read quality validation.  FastQC quality control (http://www.bioinformatics.bbsrc.ac.uk/
projects/fastqc/) was used to assess the quality of raw high-throughput DNA sequencing datasets. Low-quality 
sequence PE-reads (<Q20) were filtered out by v.0.3265 before assembly46.

Gene prediction and annotation validation.  Final gene model prediction of the B. attramentaria 
genome assembly were considered by Evidence Modeler and assessed with the BUSCO (metazoa_odb10). The 
final predicted gene set consisted of 40,596 genes with (Table 4) with BUSCO value of 81.6%.

Feature Number of features Total length (bp) Average length (bp)

Gene 40,596 213,066,832 5,248

CDS 40,596 41,324,867 1,018

Exon 205,270 41,324,867 201

Intron 164,674 172,071,313 1,045

Table 4.  Statistics of predicted protein-coding genes of B. attramentaria.

Fig. 3  Venn diagram showing the amount of common orthologous gene clusters shared among B. attramentaria 
and its closet relative mollusks including C. consors, L. nyassanus, M. cornuarietis, and P. canaliculata.
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Code availability
In this study, software tools used according to the description mentioned in the materials and method section. 
No custom code was used.
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