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Genome-wide identification of 
accessible chromatin regions by 
ATAC-seq upon induction of the 
transcription factor bZIP11 in 
Arabidopsis
Alicia M. Hellens1,2 ✉, Jazmine L. Humphreys1,2,3, Franziska Fichtner1,2,4, Miloš Tanurdžić1,2, 
Christine A. Beveridge  1,2 & François F. Barbier  1,2 ✉

Basic leucine zipper 11 (bZIP11) is a transcription factor that is activated under low energy conditions 
in plants and plays a crucial role in enabling plants to adapt to starvation situations. Although previous 
results indicate that bZIP11 regulates chromatin accessibility based on evidence obtained from 
single genomic loci, to what extent this transcription factor regulates the chromatin landscape at the 
whole genome level remains unknown. Here we addressed this by performing an ATAC-seq (Assay 
for Transposase-Accessible Chromatin with high-throughput sequencing) on Arabidopsis thaliana 
(Arabidopsis) leaf protoplasts to obtain a profile of chromatin patterning in response upon bZIP11 
induction. We identified, on average, 10,000 differentially accessible regions upon bZIP11 induction, 
corresponding to over 8,420 different genes out of the 25,000 genes present in the Arabidopsis genome. 
Our study provides a resource for understanding how bZIP11 regulates the genome at the chromatin 
level and provides an example of the impact of a single transcription factor on a whole plant genome.

Background & Summary
Basic leucine zipper11 (bZIP11) is a transcription factor (TF) which regulates gene expression during 
low-energy conditions in plants and enables plants to adjust their metabolism, growth, and development to such 
unfavourable conditions1–3. In Arabidopsis thaliana (Arabidopsis), bZIP11 belongs to a group of five proteins 
involved in sugar responses, named the S1 bZIP group2,4–8. It is estimated by DNA Affinity Purification with high 
throughput sequencing (DAP-seq) that bZIP11 contains DNA-binding sites in over 7,000 genes in Arabidopsis, 
which is nearly one third of the entire genes in the genome9. The bZIP TFs bind DNA at cis-regulatory ele-
ments (CREs) known as G-boxes, which all have a conserved ACGT core flanked by cytosines or guanines  
(C/GACGTG/C)10. bZIP11 has been demonstrated to promote the expression of specific auxin-related genes by 
recruiting histone acetylation machinery to enhance chromatin accessibility3,11. However, the extent to which 
bZIP11 impacts chromatin accessibility at the whole-genome scale remains unknown.

Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) is a technique 
which can determine genome-wide locations of chromatin accessible to transposase insertion and by extension, 
other proteins, for example TFs12,13. This technique is rapid and can be performed on small quantities of starting 
material. Previous studies have performed ATAC-seq on different plant organs, conditions, or in response to 
different treatments to determine changes in accessibility of those DNA regions that are likely to contain regula-
tory sequences14–17. Here we report ATAC-seq results in response to induction of a single plant TF, with known 
regulatory sequences, to determine the genome-wide effect of this TF on chromatin accessibility in Arabidopsis.
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To achieve a comprehensive profile of accessible chromatin regions and discover new downstream targets 
of bZIP11, we generated 24 chromatin accessibility data sets from wild-type (WT) Arabidopsis protoplast sam-
ples, as well as from transgenic p35S:bZIP11-HBD Arabidopsis plants18. In these p35S:bZIP11-HBD plants, the 
expression of bZIP11 coding sequence is driven by the cauliflower mosaic virus, CaMV35S, promoter (p35S) 
that leads to ectopic gene expression in the whole plant. A rat glucocorticoid receptor, or hormone binding 
domain (HBD), is fused to bZIP11, and retains this TF in the cytoplasm. Upon treatment with dexametha-
sone (DEX), which binds to the HBD, the translocation of bZIP11 to the nucleus is enabled, allowing its TF 
activity to occur19. Four-week-old Arabidopsis plants were used to extract leaf protoplasts from approximately 
six leaves per plant (experiment summarised in Fig. 1a). Protoplasts were treated for 45 minutes after a one hr 
recovery period following protoplast extraction. Four biological replicates were treated with either DEX, which 
induces the translocation of bZIP11 protein into the nucleus, or acetone, the solvent for DEX (Mock control).  
Using protoplasts allows for a rapid and homogeneous chemical uptake which reduces variability between samples20.  
In parallel, the samples were treated, prior to DEX or acetone treatment, with cycloheximide (CHX), a pro-
tein biosynthesis inhibitor21 that enables to discriminate the direct targets of bZIP11 from its indirect targets.  
Approximately 50,000 cells from each replicate of each treatment were used for ATAC-seq. In total, 

Fig. 1 Overview of experimental design and data analysis workflow. (a) Experimental design and ATAC-seq 
library preparation. Arabidopsis protoplasts of four-week-old wild type (Col-0) or p35S:bZIP11-HBD were 
isolated. Protoplasts were then treated with different combinations of 10 µM dexamethasone, acetone, water, 
and 35 µM of cycloheximide (CHX). Each condition was carried out in four biological replicates. After nucleus 
extraction, samples were incubated with a hyperactive Tn5 transposase which adds adapters onto the DNA. 
DNA regions were amplified using primers against the adapters, so only accessible regions are amplified. PCR 
also added sequencing barcodes allowing for samples to be pooled and sent for sequencing. (a) was adapted 
from Buenrostro et al., 2015. (b) The analysis workflow of ATAC-seq orange boxes indicate step was carried out 
using Galaxy Australia. Blue indicates step was carried out in R.
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approximately 10,000 regions of the genome were determined as differentially accessible regions (DARs) upon 
induction of bZIP11 translocation to the nucleus, depending on which control was used (Table 1). These DARs 
are summarised by a core list of 2,553 genes identified to have their chromatin accessibility directly influenced 
by bZIP11.

Methods
Plant materials. Arabidopsis thaliana seeds were stratified for three days at four degrees Celsius then trans-
ferred to growth chambers with 16 h light: 8 h dark, 22 °C day: 20 °C night with 150 ± 20 µmol m−2 s−1 light 
intensity. Plants were grown in UQ23 potting mix (70% composted pine bark (zero to five mm), 30% cocopeat, 
supplemented with dolomite and osmocote).

Protoplast isolation. Four-week-old wild type (WT) Columbia-0 (Col-0) and inducible bZIP11 (p35S:b-
ZIP11-HBD)18 plants were used to extract mesophyll protoplasts via the epidermal leaf peel method22. Six leaves 
were placed in 10 mL of enzyme solution (1% Cellulase ‘Onozuka’ R10, 0.25% maceroenzyme ‘Onozuka’ R10, 0.4 M 
mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl2, 0.1% BSA, adjust to pH 5.7) and digested for 1 h with constant 
gentle agitation. Cells were filtered through 50 μM mesh (CellTrics, Sysmex, Norderstedt, Germany) then washed 
twice in W5 (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES). Protoplasts were then re-suspended in MMg 
(0.4 M mannitol, 15 mM MgCl2, 4 mM MES, adjust to pH 5.7) at a concentration of 200,000 cells per mL. Reactions 
took place in 2 mL, in six-well plastic plates with constant agitation. WT cells were treated with 10 μM DEX, Mock 
plants were treated with acetone, and bZIP11-inducible plants were treated with 10 μM DEX. For CHX-treated 
reactions, CHX was added prior to DEX or acetone treatment at a concentration of 35 μM. 45 min after treatment, 
cells were collected by centrifugation and resuspended at a concentration of approximately 50,000 cells per sample.

rNA extraction and gene expression. Total RNA was extracted (NucleoSpin RNA Extraction, 
MACHEREY-NAGEL, Düren, Germany), reverse transcribed into  cDNA (iScript Supermix, Bio-Rad 
Laboratories, California, USA), and diluted cDNA was used as a template for quantitative Real-Time PCR 
(SensiFASTTM SYBR® No-ROX Kit from Bioline) according to manufacturer’s instructions. Fluorescence was 
measured using a CFX384 TouchTM Real-Time PCR Detection System (Bio-Rad Laboratories, California, USA) 
using the following protocol: 95 °C for 3 min, 40 cycles at 10 s each for 95 °C and 59 °C for 45 s, and 1 min each 
for 95 °C and 55 °C. The ΔΔCt technique was used to determine gene expression and primer efficiency was 
used to correct it. The geomean expression of two technical replicates of each, TUBULIN3 (At5g62700), ACTIN 
(Combination of ACT2, ACT7, and ACT8: At3Gg18780, At5g09810, and At1g49240), and 18 S (18 S rRNA) were 
used to normalise gene expression. Every primer sequence used in this study is outlined in Supplementary Table 1.

Genotype Treatment Sample ID Raw Reads Clean Reads Mapped Reads Called Peaks Accession DiffBound Peaks

Col -0 Dex AH025 14,017,763 11,559,584 7,335,921 19,874 SAMN34226419

10,140 (8,843 genes)
Col -0 Dex AH028 10,143,097 7,007,692 4,925,970 18,618 SAMN34226420

Col -0 Dex AH027 11,313,278 7,305,956 4,891,108 19,857 SAMN34226421

Col -0 Dex AH028 9,972,594 6,476,678 4,631,287 19,814 SAMN34226422

35 S:bZIP11 -HBD Mock AH029 23,738,704 8,984,170 6,593,699 19,301 SAMN34226423

11,236 (9,664 genes 
3339 gained 2518 lost)

35 S:bZIP11 -HBD Mock AH030 23,487,379 19,317,810 11,256,808 21,167 SAMN34226424

35 S:bZIP11 -HBD Mock AH031 11,564,134 8,689,856 6,144,551 20,210 SAMN34226425

35 S:bZIP11 -HBD Mock AH032 10,904,533 5,642,758 4,334,768 19,474 SAMN34226426

35 S:bZIP11 -HBD Dex AH033 51,908,821 31,990,286 16,607,717 21,979 SAMN34226427

35 S:bZIP11 -HBD Dex AH034 22,101,174 21,768,988 12,416,405 22,757 SAMN34226428

35 S:bZIP11 -HBD Dex AH035 26,803,740 25,482,872 14,052,875 22,081 SAMN34226429

35 S:bZIP11 -HBD Dex AH036 26,846,853 24,840,140 13,471,482 22,638 SAMN34226430

Col - 0 CHX + dex AH037 8,242,523 5,100,362 3,816,207 18,200 SAMN34226431

8,154 (6,689 genes)
Col - 0 CHX + dex AH038 9,959,240 6,938,240 4,974,236 18,479 SAMN34226432

Col - 0 CHX + dex AH039 22,104,359 11,316,082 7,326,410 21,035 SAMN34226433

Col - 0 CHX + dex AH040 20,066,853 11,752,986 7,625,434 20,872 SAMN34226434

35 S:bZIP11 -HBD CHX + mock AH041 11,576,489 7,333,816 5,443,565 19,553 SAMN34226435

11,483 (8,967 genes 
2,021 lost 4,319 gained)

35 S:bZIP11 -HBD CHX + mock AH042 9,287,775 5,451,356 4,190,938 17,891 SAMN34226436

35 S:bZIP11 -HBD CHX + mock AH043 13,856,888 8,288,610 6,010,492 20,168 SAMN34226437

35 S:bZIP11 -HBD CHX + mock AH044 7,820,098 6,459,694 4,927,170 18,343 SAMN34226438

35 S:bZIP11 -HBD CHX + dex AH045 32,518,073 15,864,764 9,527,833 22,393 SAMN34226439

35 S:bZIP11 -HBD CHX + dex AH046 32,036,847 28,842,408 15,347,729 22,072 SAMN34226440

35 S:bZIP11 -HBD CHX + dex AH047 15,953,569 13,695,372 8,699,347 21,386 SAMN34226441

35 S:bZIP11 -HBD CHX + dex AH048 23,280,510 20,464,908 11,939,899 22,177 SAMN34226442

Table 1. Summary of ATAC-seq sequencing, mapping, and peak calling. DiffBound peaks were determined 
by comparing bZIP11-induced samples with each control (WT + Dex treated and bZIP11-inducibe + Mock 
treated) for both with and without CHX.
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ATAC-seq protocol. ATAC-seq library preparation was performed as modified from Buenrostro et al.12,13,23. 
Following protoplast extraction, nuclei were isolated from approximately 50,000 cells per reaction by sucrose 
sedimentation, using a method modified from Bajic et al.14. Freshly extracted cells were centrifuged at 500 × g 
at 4 °C. The following steps were all carried out on ice. Supernatant was discarded and pellet was resuspended 
in 1 mL of ice-cold nuclei purification buffer (20 mM MOPS, 40 mM NaCl, 90 mM KCl, 2 mM EDTA, 0.5 mM 
EGTA, 0.5 mM spermidine, 0.2 mM spermine 1 × protease inhibitors, adjust to pH 7). Cells were then filtered 
through 30 μM mesh (CellTrics, Sysmex, Norderstedt, Germany). Nuclei were then spun down at 1200 × g for 
10 min at 4 °C and pellet was resuspended in 1 mL of ice-cold nuclei extraction buffer 2 (0.25 m sucrose, 10 mM 
Tris-HCl pH8, 10 mM MgCl, 1% Triton X-100, 1 × protease inhibitors). This step was repeated but this time pellet 
was resuspended in 300 μL of NPB and this resuspension of nuclei was carefully layered over 300 μL of ice-cold 
nuclei extraction buffer 3 (1.7 M sucrose, 10 mM Tris-HCl pH 8, 2 mM MgCl, 0.15% Triton X-100 1 × protease 
inhibitor). The two layers were then spun down at 300 × g for 20 min at 4 °C following which, supernatant was 
removed. Nuclei were resuspended in 50 μL of tagmentation reaction mix, as per manufacturer instructions 
(TDE1, Illumina) and incubated at 37 °C for 30 min with gentle agitation every 5 min. Reactions were purified 
following manufacturer’s instructions using a QIAGEN MinElute PCR purification kit (catalogue number 28004) 
and eluted in 11 μL of elution buffer. DNA was amplified by PCR using ATAC barcoded primers and NEB Next 
High-Fidelity PCR Master Mix (5 min 72 °C, 30 sec. 98 °C, then 5 × (10 sec. 98 °C, 30 sec. 63 °C, 1 min 72 °C) held 
at 4 °C). 5 μL of the PCR reaction was then further amplified by quantitative PCR (qPCR) (30 sec. 98 °C, then 
20 × (10 sec. 98 °C, 30 sec. 63 °C, 1 min 72 °C)) to determine the required number of additional cycles. Additional 
cycle number for each reaction was determined by the cycle number for which a reaction has reached one third 
of its maximum, using the linear fluorescence vs cycle number graph from the qPCR. All libraries were purified 
with AMPure XP beads at a ratio of 1.5:1 beads:PCR reaction. Final elution in 20 μL of 10 mM Tris pH 8. Libraries 
were sequenced using Illumina HiSeq paired end 150 bp by NovoGene, Singapore.

ATAC-seq data analysis. A summary of the ATAC-seq data analysis workflow used in this study is repre-
sented in Fig. 1b. Processing was carried out using Galaxy Australia24 and R with RStudio (Version 4.2.2) with 
the following steps. In Galaxy, raw reads were trimmed using Trimmomatic25 with the following settings: a 10 bp 
HEADCROP, a SLIDINGWINDOW with an average quality of 30 over every 6 bp, and an ILLUMINACLIP 
NexteraPE. Reads shorter than 30 bp and longer than 1000 bp were discarded. Reads were mapped against 
Arabidopsis thaliana TAIR10 reference genome (https://www.arabidopsis.org) using Bowtie226, with paired end, 
dovetailing, and a maximum fragment length of 1000. Reads smaller than 30 bp, duplicate reads, reads with a 
quality score of <30 phred, and those which were mapped to the chloroplast or mitochondrial genome were dis-
carded. Peaks were called with MACS227, using the inputs: single-end BED, effective genome size 1.2e8, an exten-
sion size of 200 and a shift size of 100. BED and BAM and index files were then imported into RStudio and DARs 
were determined using the package DiffBind28. Peaks were read with peakCaller = “narrow”, minOverlap = 3 and 
dba.contrast function was specified to compare bZIP11-induced samples to either WT or Mock-treated samples. 
The package rtracklayer was used to convert the DARs determined by DiffBind into BED format. The peaks 
report was then imported back into Galaxy where differential peaks were annotated to the Arabidopsis reference 
genome using ChIPseeker29. The coordinates of peaks were compared with the annotated genome to determine 
the distribution of the peaks. ChIPseeker was also used to retrieve the nearest genes around differentially acces-
sible peaks between the treatments. The resulting BED file of annotated DARs was imported into the Interactive 
Genome Viewer (Broad Institute, University of California)30 along with BED files DARs from MACS2 output for 
visualisation. STREME31 from the MEME suite was used to identify overrepresented motifs in the DAR sequences 
(minimum width = 4, maximum width = 15, p-value threshold = 0.05). Overrepresented motifs were then com-
pared with DAP-seq motifs9 using TOMTOM32 to search for motifs overlapping by at least 5 bp.

Fig. 2 Validation of bZIP11 activity induction. Expression of the bZIP11 direct target ASN1 in response to DEX 
treatment, Data are mean ± s.e.m (n = 4). Letters on the graph indicate statistical differences determined by 
one-way ANOVA using Tukey correction for multiple comparisons.
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Data records
ATAC-seq reads and peak files have been submitted to the National Center for Biotechnology 
Information Sequence Read Archive (NCBI SRA, PRJNA956597)33. https://trace.ncbi.nlm.nih.gov/
Traces/?view=study&acc=SRP433061.

Technical Validation
To validate the induction of bZIP11 activity upon DEX treatment, we measured the expression of ASPARAGINE 
SYNTHASE1 (ASN1), a known direct target of this TF18. ASN1 expression was nearly 350-fold upregulated in 
the DEX-treated p35S:bZIP11-HBD samples compared to the DEX-treated WT samples and the Mock-treated 
p35S:bZIP11-HBD samples (Fig. 2), confirming that DEX treatment efficiently induced bZIP11 activity in the 
p35S:bZIP11-HBD samples.

We then evaluated the quality and content of the entire ATAC-seq dataset. Most reads were less than 150 bp, 
consistent with being shorter than one nucleosome (Fig. 3a,b)34 and most peaks showed a -log10 P-value score 
greater than 20, indicating the low likelihood of the peak calling occurring by chance (Fig. 3c,d). Samples where 
bZIP11 was induced cluster together in a hierarchical ranking plot, depicted by orange (-CHX) and red (+CHX) 
samples (Fig. 4a). Using differentially accessible peaks, we plotted chromatin accessible signals around genes 
in response to bZIP11 induction. The regions around transcription start sites are enriched, which is expected 
for a TF (Fig. 4b). Over 90% of DARs are found in promotor regions of genes, which is expected for a small 
genome like Arabidopsis (Fig. 4c). In addition, the DAR sequences identified in response to bZIP11 induc-
tion, both with and without CHX, were found to be highly enriched in the bZIP CRE, G-box motif (Fig. 4d).  

Fig. 3 Quality metrics of ATAC-seq reads. (a,b) Fragment size distribution of ATAC-seq reads for two 
representative samples: sample AH025 and AH035 respectively. (c,d) Peak score (-log10 (P-value)) distribution 
for representative samples: sample AH025 (c) and AH035 (d).
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This motif closely resembles to the motif identified through DNA Affinity Purification and sequencing 
(DAP-seq) in response to bZIP11 (Fig. 4d)9, supporting that these DARs are regulated by bZIP11. Finally, we 
tested whether bZIP11 induction efficiently made chromatin more accessible on expected targets. To do so, 
we visualised the result of the ATAC-seq on GH3.3 locus, known to be directly regulated at the chromatin 
level by bZIP1111. The results indicate that the chromatin is more accessible when bZIP11 is induced in the 

Fig. 4 Features of ATAC-seq peaks identified in this dataset. (a) Hierarchical clustering of samples based on 
sample genotype, treatment and replicate number. (b) Schematic representation of the distribution of DAR 
positions upstream and downstream from the TSS of the nearest annotated genes. (c) DAR Classification into 
genic region, based on their location to the nearest gene. (d) Motif enrichment analysis obtained in this ATAC-
seq (top logo) compared to motif enrichment obtained from DAP-seq data (bottom logo). (e) Genome browser 
views showing chromatin accessibility around GH3.3 locus in response to bZIP11 in different samples of this 
experiment. (f) Overlap of differentially accessible regions (DARs) determined when bZIP11 induced samples 
were compared to both wild type (WT) and Mock-treated samples both without cycloheximide (-CHX bubble) 
and with CHX (-CHX bubble).
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p35S:bZIP11-HBD samples in absence or presence of CHX (Fig. 4e), consistent with the fact that bZIP11 reg-
ulates GH3.3 at the chromatin level and that the induction of bZIP11 successfully regulated chromatin acces-
sibility in this experiment. Altogether, these data indicate that bZIP11 regulates chromatin to enhance the 
accessibility of cis elements to trans regulatory factors, and that this regulatory mechanism concerns a large 
portion of bZIP11 targets.

To validate direct bZIP11-induced regions of chromatin accessibility, this experiment was repeated both with 
and without CHX. Without CHX, ATAC-seq determined 10,140 bZIP11-induced DARs, compared to WT, and 
11,236 DARs, compared to Mock-treated samples (Table 1). Using ChIPseeker29, non CHX DARs were mapped 
to 6,325 genes (Supplementary Fig. 1a). In the presence of CHX, ATAC-seq determined 8,154 bZIP11-induced 
DARs, compared to WT, and 11,483 DARs, compared to Mock-treated samples (Table 1). With CHX, DARs 
were mapped to 4,649 genes (Supplementary Fig. 1b). There are fewer genes made accessible in the presence 
of CHX, indicating that the treatment worked. Interestingly, in the presence of CHX, there are 3,772 lost genes 
and 2,095 gained genes (Fig. 4f). This is expected as often multiple proteins are required for both increasing 
and decreasing chromatin accessibility. To determine which genes are likely to be made accessible directly by 
bZIP11, the genes corresponding to DARs in CHX-treated and non-treated samples were compared (Fig. 4f). 
Genes which were annotated in both data sets provide a list of 2,553 genes which are likely to have chromatin 
accessibility regulated by bZIP11 directly (Supplementary Table 2).

Code availability
All codes used for this study are available on GitHub (https://github.com/AliciaHellens/bZIP11_ATAC-seq).
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