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EUSEDcollab: a network of data 
from European catchments to 
monitor net soil erosion by water
Francis Matthews et al.#

As a network of researchers we release an open-access database (EUSEDcollab) of water 
discharge and suspended sediment yield time series records collected in small to medium 
sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of open-
access data at relevant spatial scales for studies on runoff, soil loss by water erosion and 
sediment delivery. Multi-source measurement data from numerous researchers and 
institutions were harmonised into a common time series and metadata structure. Data reuse 
is facilitated through accompanying metadata descriptors providing background technical 
information for each monitoring station setup. Across ten European countries, EUSEDcollab 
covers over 1600 catchment years of data from 245 catchments at event (11 catchments), 
daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in 
its focus on small to medium catchment drainage areas (median = 43 km2, min = 0.04 km2, 
max = 817 km2) with applicability for soil erosion research. We release this database with the 
aim of uniting people, knowledge and data through the European Union Soil Observatory 
(EUSO).

Background and Summary
Soil erosion by water and sediment delivery to river systems are gaining political importance and scientific atten-
tion for their integral role in issues spanning across the domains of soil health1, food security2, environmental 
pollution3–6, greenhouse gas offsetting7–10, reservoir longevity11, and a range of other ecosystem services12–18. The 
scientific community has responded to these priorities with a continuingly increasing number of model-based 
assessments, ranging across the full spectrum of spatial scales relevant to the end-user19,20. While model applica-
tions have dominated the scientific output, the production and sharing of empirical observations haven’t neces-
sarily kept pace21. Available summarised compilations of long-term annual average rates from monitored areas 
have unravelled large-scale spatial trends in soil loss by water erosion and fluvial sediment yield22–25, but often 
do so with a long-term annual average temporal focus that misses the high temporal variability between soil 
loss events26–28. Quantifications of net soil loss at dynamic timescales arguably form the basis of contemporary 
research priorities, which include, but are not limited to: (1) understanding the variable frequency-magnitude 
relationships of gross and net soil loss through space and time in a changing climate, (2) understanding the 
influences of management practices on the dynamics and magnitude of soil loss, (3) up/down-scaling soil loss 
by water erosion predictions to integrate soil loss by water erosion processes into Earth system models, and (4) 
quantifying uncertainty on model predictions and observational data.

Given the intimate coupling between empirical observations and modelling opportunities (e.g. model devel-
opment, calibration and validation), the open sharing of high resolution time series data from monitoring net-
works is vital to confront modern research questions29–32. For example, while not without criticism33,34, typical 
validation routines for spatially distributed catchment models involve the routing of overland fluxes into stream 
channel outlets in which an integrated comparison can be made35–40. The value of small monitored catchments 
manifests since soil erosion and sediment delivery models require an idealised ‘goldilocks’ spatial scale for such 
confrontations; suitably large to incorporate catchment-scale processes, but without transitioning to scales 
after which fluvial processes mask and confound the signal from hillslope sediment delivery32,41. Among the 
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spectrum of catchment drainage areas monitored in Europe, catchments potentially matching this criteria have 
the lowest relative abundance25.

The limited open availability of suitable catchment measurements is perhaps a key underlying reason for 
broad critiques of model validation efforts42. The cascading value of available centralised monitored catchment 
networks (e.g. USDA-ARS) is evidenced through numerous scientific and technological advancements in soil 
erosion research43–46. In Europe, despite a relative data-richness as a continent, the absence of a multi-national 
network instead requires community collaborations to systematise data in a way that can unite researchers 
with monitoring program operators30. This priority is compounded by the tendency of legacy research data to 
become increasingly unavailable through time47, emphasising the general need for European data conservation 
efforts.

Here we present the EUropean SEDiments collaboration (EUSEDcollab) database, a multi-source platform 
containing over 1600 catchment years of water discharge and sediment yield time series measurements suitable 
for soil erosion, sediment delivery and runoff studies. The dataset originates from collaborative efforts between 
a network of researchers and practitioners across the community with the goal of increasing data accessibility 
and usability. The data collection and harmonisation campaign was undertaken in multiple phases: (1) a call 
of interest for participation was made to the research community, issued by the Joint Research Centre (JRC) 
as part of the erosion working group within the EU Soil Observatory (EUSO), (2) interested collaborators 
were given (meta-)data templates to compile and share time series data to a centralised data repository, and 
(3) following data acquisition, a harmonisation and quality checking effort was undertaken to create a stand-
ardised database from the multiple data contributors. Following this process, we provide the first data release 

Variable Descriptor Type % populated in database

Catchment ID Catchment property Assigned (num) 100

Catchment name Catchment property Open (text) 100

Latitude (4 decimal places) Catchment property Open (num) 100

Longitude (4 decimal places) Catchment property Open (num) 100

Country Data record property Assigned (text) 100

Drainage area (ha) Catchment property Open (num) 98

Stream type Catchment property Cat (text) 100

Data type Data record property Assigned (text) 100

Land use: % agriculture Catchment property Open (num) 52

Land use: % pasture Catchment property Open (num) 10

Land use: % shrubland Catchment property Open (num) 9

Land use: % forest Catchment property Open (num) 49

Land use: % built-up Catchment property Open (num) 47

Land use: % other (specify in optional column) Catchment property Open (num) 4

Measurement start date (DD/MM/YYYY) Data record property Open (date) 100

Measurement end date (DD/MM/YYYY) Data record property Open (date) 100

Major data gaps (DD/MM/YYYY - DD/MM/YYYY, ….) Data record property Open (date) 4

Average number of station checks per month Quality control property Open (num) 95

Water depth measurement method Water discharge Cat (text) 93

Number of water depth measurements per day Water discharge Open (num) 92

Stage-discharge conversion method Water discharge Cat (text) 94

Includes precipitation Data record property Assigned (bool) 13 (n = 32)

Suspended sediment sampling method Sediment (direct) Cat (text) 100

Sampling frequency (n per day or n Q-SSC pairs) Sediment (direct) Open (num) 81

Sampling regime Sediment (direct) Cat (text) 96

Suspended sediment extrapolation method Sediment (indirect) Cat (text) 96

Estimated bedload contribution (eg < x %) Sediment Open (num) 1

Includes sediment rating curve data Data record property Assigned (bool) 2 (n = 7)

Relevant references with full details Literature Open (text) 100

Contact name Dataset inquiries Open (text) 100

Contact email Dataset inquiries Open (text) 100

Table 1.  The standardised metadata template issued to the collaborating data producers of EUSEDcollab in 
the data collection campaign. Each time series of water discharge and sediment yield has an accompanying 
metadata file to allow the filtering based on method or catchment attributes and provide the user with relevant 
contextual information (e.g. method descriptors and published work). Metadata identifiers were open or 
categorical for the data producer, or otherwise assigned during the database harmonisation process. The ‘% 
populated’ column refers to the % completeness of each metadata field for the entire collected database. For 
Boolean variables, the % populated column gives the database % with an accompanying count of the cases with 
a true value (i.e. containing precipitation or sediment rating curve data).
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(EUSEDcollab.v1) of a continuing collaboration and data collation campaign through the EUSO, with the 
broad objective of converging scientific knowledge, people and data for research and policy-related objectives 
in Europe48.

Catchment ID Catchment name Country Start date End date Drainage area (ha) Data type Literature references

1 Chastre-P1 BE 2012-10-05 2021-07-13 4 Event data - aggregated 65,66

2 Chastre-P2 BE 2013-07-27 2021-12-24 85 Event data - aggregated 65,66

3 Chastre-P3 BE 2017-12-31 2021-12-24 112 Event data - aggregated 65,66

4 Chastre-P4 BE 2013-06-20 2021-06-03 356 Event data - aggregated 65,66

5 Ganspoel BE 1997-03-01 1999-03-01 117 Event data - variable timestep 35,67–69

6 Kinderveld BE 1996-07-01 1999-11-01 250 Event data - variable timestep 35,67–69

8 BRVL FR 2007-09-01 2018-08-31 1045 Event data - aggregated 70–74

9 FDTL FR 2011-11-01 2018-08-31 145 Event data - aggregated 70–74

10 Pommeroye FR 2016-03-31 2018-02-01 54 Event data - fixed timestep 75

16 Cannata 2 IT 1996-10-08 2006-03-18 130 Event data - aggregated 76

17 SPA1 IT 1997-12-24 2020-04-27 4 Event data - aggregated 77,78

Table 2.  An overview of database entries with individual event measurements and their respective assigned IDs 
and classified temporal structure. The associated timeseries data contains either a variable or fixed sub-event 
timestep, or the data is aggregated per event. The ‘Literature references’ column gives the corresponding studies 
on the catchment undertaken before the data submission phase.

Catchment ID Catchment name Country Start date End date Drainage area (ha) Data type Literature references

34–245 Denmark - multiple DK 1997-01-01 2009-12-01 38–81682 Monthly data 56

246–252 Slovenia - multiple SI 1967-01-01 2011-12-31 9200–59300 Q and rating curve data only 93

Table 4.  An overview of database entries with monthly data or only daily discharge and sediment rating curve 
data. ‘Q and rating curve data only’ signifies that the dataset contains continuous water discharge records and 
matching Q-SSC pairs, but no extrapolation has been performed. The ‘Literature references’ column gives the 
corresponding studies on the catchment undertaken before the data submission phase.

Catchment ID Catchment name Country Start date End date Drainage area (ha) Data type Literature references

7 Nučice CZ 2014-01-13 2021-07-27 53 Daily data - fixed timestep 79–81

11 Airport Rasina GR 2000-01-01 2011-09-30 Daily data - fixed timestep 82,83

12 Kelefina Kladas GR 2000-01-01 2011-09-30 14980 Daily data - fixed timestep 82,83

13 Koumousta Rasina GR 2000-01-01 2011-09-30 Daily data - fixed timestep 82,83

14 Vasaras GR 2000-01-01 2011-09-30 16440 Daily data - fixed timestep 82,83

15 Vivari GR 2000-01-01 2011-09-30 39410 Daily data - fixed timestep 82,83

18 Szeszupa 1- Lopuchowo PL 1987-01-11 2010-10-31 1420 Daily data - fixed timestep 84–87

19 Szeszupa-Udziejek PL 1987-11-01 1999-10-31 1580 Daily data - fixed timestep 84–87

20 Stara Rzeka (Gróbka) PL 1993-11-01 2019-12-31 2240 Daily data - fixed timestep 88,89

21 Macieira PT 2010-11-09 2014-09-18 94 Daily data - fixed timestep 90,91

22 Odeaxere PT 2001-12-01 2005-12-31 1887 Daily data - fixed timestep 92

23 Mislinja SI 2016-09-29 2019-12-31 23100 Daily data - fixed timestep 93

24 Rižana SI 2017-01-01 2019-12-31 20400 Daily data - fixed timestep 93

25 Sora_t SI 2016-01-01 2019-12-31 56600 Daily data - fixed timestep 93

26 Arnas ES 1999-10-01 2008-09-30 284 Daily data - fixed timestep 93

27 El Salado ES 2005-10-03 2021-06-05 670 Daily data - fixed timestep 94

28 La Tejeria ES 2007-10-01 2016-09-30 169 Daily data - fixed timestep 95,96

29 Landazuria ES 2007-10-01 2016-09-30 480 Daily data - fixed timestep 95,97

30 Latxaga ES 2007-10-01 2016-09-30 207 Daily data - fixed timestep 96,98,99

31 Oskotz forestal ES 2007-10-01 2016-09-30 434 Daily data - fixed timestep 95,100

32 Oskotz principal ES 2007-10-01 2016-09-30 1688 Daily data - fixed timestep 95,100

33 Vernega ES 1994-10-01 2012-09-30 257 Daily data - fixed timestep 101,102

Table 3.  An overview of database entries with a daily timestep and their respective assigned IDs. The ‘Literature 
references’ column gives the corresponding studies on the catchment undertaken before the data submission 
phase.
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Methods
Data collection: scope.  The initial scope of EUSEDcollab on conception was to identify and unite high 
value research data in predominantly agricultural landscapes across Europe. Binary conditions were not set dur-
ing the data collation phase, rather holistic criteria were made to be reflected in the compiled database, such as: (1) 
a significant contribution of rill and inter-rill erosion to the total sediment yield among the other relevant erosion 
processes (i.e. landslides, gullying and river bank erosion), and (2) a small to medium spatial scale (<1000 km2) 
in which the signal of hillslope sediment delivery is reflected in the sediment yield dynamics. Following this, an 
inclusionary approach is taken to maximise the number of catchment datasets in the repository, allowing a user 
to later subset the data repository based on their needs.

Data collection: time series and metadata structure.  The monitoring of suspended sediment loads 
(SSL) at gauging stations requires quantifications of water discharge (Q) and suspended sediment concentration 
(SSC) through time. These spatial and temporal extrapolation exercises inevitably associate appreciable uncer-
tainty with the final estimated quantity49. Uncertainties depends on:(1) the proficiency of Q and SSC measure-
ment methods in capturing lateral and vertical gradients of sediment transport rate within the stream profile, 
(2) the timing and frequency of these measurements, and (3) the strategy used to extrapolate discrete measure-
ments into (nearly) continuous time series. Such extrapolation is commonly undertaken using water depth-Q 
and Q-SSC rating curves to continuously approximate Q and SSC respectively50,51. In the case of SSC, surro-
gate approximators such as water turbidity and acoustic signals are also used to proxy changes in SSC at fine 
temporal resolutions based on calibrated relationships52. Minimising uncertainty is context-dependent based 
on the system dynamics53–55, requiring a strategic SSC sampling technique using random, calendar-based, or 
flow-proportional sampling schemes. Particularly at small spatial scales, a high number of SSC samples over 
time and using flow-proportional sampling regimes typically associates lower uncertainties with time-integrated 
sediment load approximations49.

Fig. 1  A statistical overview of the EUSEDcollab database. Catchment records are categorised into ‘Monthly’ 
data, with quantifications of sediment yield per month, and ‘Daily/event’ data, including all other data time 
structures with daily timesteps or time-distributed and time aggregated event data. The plotted overviews include: 
(a) the number of datasets belonging to each classified time-structure type, (b) the distribution of measurement 
record lengths within the database, (c) the number of datasets with coverage in each year, and (d) boxplot 
distributions of catchment drainage areas within the dataset for monthly and daily/event time series records.

https://doi.org/10.1038/s41597-023-02393-8


5Scientific Data |          (2023) 10:515  | https://doi.org/10.1038/s41597-023-02393-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Given the method dependency of SSL quantifications, we invited data contributors to add descriptive meta-
data properties of the water discharge and SSC measurement methods to provide users with background context 
for each timeseries (Table 1). Additionally, for the popular case in which a sediment rating curve was used for 
the extrapolation of SSC, we invited the contributing scientists to include the original data in order for a user to 
reproduce the time series of SSL.

Each data entry has a standardised format with a column for the datetime, water discharge (Q: volume 
time−1), suspended sediment concentration (SSC: mass volume−1) and the derived suspended sediment load 
(SSL: mass time−1) accompanied by the relevant units. A metadata file accompanies each catchment entry to 
allow data contextualisation using open or categorical properties (Table 1). Input fields predominantly define 
descriptive properties of the catchment (e.g. monitoring station location, catchment drainage area and land 
cover), the data record (e.g. temporal extent) and the methods used to measure and quantify the water discharge 
and sediment yield. Land cover information is included as a metadata field since it gives the opportunity for 
data contributors to add and qualify primary descriptive catchment properties with more localised detail than is 
possible with auxiliary large-scale landcover datasets.

At minimum, each catchment entry contains a Q and SSL timeseries with a metadata file providing the geo-
graphic coordinates of the monitoring station location. However, for the majority of catchment entries the pop-
ulation of each metadata field within EUSEDcollab is relatively high (Table 1). Where possible, we also include: 
(1) precipitation time series data and rain gauge location information, (2) accompanying literature references 
from relevant publications for each dataset, and (3) a readme file to give expert-based contextual information 
to the end-user and qualify any necessary considerations within the time series data. For catchments without 
an associated English language publication, the submission of this file is emphasised in order to supplement the 
metadata with sufficient background information.

Data Records
The EUSEDcollab repository contains 245 catchments with time series of Q and SSL (Tables 2–4). We include a 
further seven catchment records with full Q time series and intermittent SSC measurements for a user to define 
their own extrapolation method, since no prior extrapolation was completed in these cases. These records are 
not considered in the subsequent summary but are included in the data release with accompanying metadata 
files. The combined dataset covers over 1600 catchment years of water discharge and suspended sediment load 

Fig. 2  Histogram charts of the elevation (a) and mean annual precipitation in mm (b) of the monitoring 
stations included in EUSEDcollab. The distribution of the % cover of each land use type within the database is 
given for catchments with metadata inputs (c). Elevation is extracted from the SRTM global digital elevation 
layer and total annual average precipitation from Worldclim103.
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records. Based on time-structure, this repository is divided into 22 daily data records, 212 monthly records, 1 
event record with a fixed timestep, 2 event records with variable timesteps, and 8 event records with event aggre-
gations (Fig. 1). A large addition of data was made available from monitored Danish catchments56, which have 
a comparatively lower temporal resolution (monthly) than other individual or small collections of monitored 
catchments (Tables 2–4).

The distribution of catchment drainage areas (median = 43 km2, min = 0.04 km2, max = 817 km2) included in 
EUSEDcollab reflects the overall focus on small to medium monitored catchment areas relevant for soil erosion 
and hydrological research (Fig. 1). These catchments distribute across a range of elevation settings and climatic 
regions but contain an overall dominance of agricultural land uses (Fig. 2). Excluding catchment entries with 
monthly resolution data, this median drainage area reduces to 3.6 km2 (min = 0.04 km2, max = 566 km2). The 
mean measurement length of all records is 6.7 years and 9.7 years for only high temporal resolution (exclud-
ing monthly data) records. These years of data coverage are predominantly concentrated from the year 1995 
onwards (Fig. 1).

Of the total repository, 32 catchment entries contain additional time series measurements of precipitation 
depth at varying temporal resolutions for their respective location depending on the method employed. This 
precipitation file gives additional information on the rain gauge type and spatial coordinates. A total of 228 
catchments have catchment boundary polygons added as additional information by the data provider (Fig. 3). 
Some monitored catchments, such as Kinderveld and Ganspoel35, contain additional geospatial information 
on land use as well as erosion surveys. In these cases we include the data in the original format and structure in 
which it was made available by the data producers. A full overview of all catchment locations is given in Fig. (4).

Technical Validation
Technical validation of each original record is done in a decentralised manor by the data producer. The 
multi-source nature of EUSEDcollab means that measurements of Q and SSL measurements were acquired 
with varying apparatus set-ups, temporal structures and post-processing methods (Tables 2–4). Acknowledging 
varying degrees of data heterogeneity requires end-users to make a judgement on the inter-comparability of 
catchment records for a particular use-case, based on differing measuring extents, sampling resolutions and 
uncertainty sources. As a data integration and harmonisation exercise, we aimed to facilitate this user-side 
assessment by providing necessary metadata properties, namely: (1) water discharge method descriptors, (2) 
sediment flux measurement and quantification methods, and (3) quality control properties describing the fre-
quency of monitoring station checks, (4) literature references, and (5) dataset contact information (Table 1).

Data evaluation: quality and completeness assessment.  To give a centralised assessment of the 
completeness and consistency of each submitted time series record, a ready-to-use evaluation was made of miss-
ing data inputs (Fig. 5). For example, missing inputs could be due to temporary technical issues, incomplete 

Fig. 3  Google Earth satellite image examples of monitored catchments in EUSEDcollab with included 
catchment boundary polygons: (a) Kinderveld, BE (including parcel boundary information), and (b) Nučice, 
CZ. The point markers represent the registered monitoring locations in EUSEDcollab.
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measurements or periodic discontinuation. Depending on the use-case, missing data may limit the applicability 
of a catchment dataset to a certain task and therefore may be useful for a user to know a priori.

The compiled time series entries in EUSEDcollab contain continuous measurements (e.g. with a daily or 
monthly timestep) in perennial streams or episodic measurements (e.g. time-aggregated or time-distributed 
events) in discontinuous streams. Based on these structural data characteristics, adapted evaluation routines 
were used to summarise data presence/absence through time (Fig. 5). Each time series entry is initially classified 
into one of five structures: (1) daily data series with a fixed timestep, (2) monthly data series with a fixed time-
step, (3) event data with a fixed timestep within each event, (4) event data with a variable timestep within each 
event, or (5) event data that is temporally-aggregated per event. Thereafter, evaluations of each time series are 
made to give the total % completeness of the instances for both Q and SSL. For data containing fine-resolution 
measurements during episodic events, within-event evaluations are additionally generated to quantify the com-
pleteness of each individual event making up the entire time series (Fig. 5). A full description of each evaluation 
parameter is given in S.(1) for each classified time series structure.

Fig. 4  Top: A geographical overview of EUSEDcollab.v1 data entries per climate (EnZ) region in Europe104 (a). 
Bottom: summary-level empirical relationships found within the database entries, showing a) the relationship 
between catchment area (km2) and specific sediment yield (t km2 yr−1), and (b) the relationship between mean 
annual discharge (m3 yr−1) and the mean annual sediment yield (t yr−1) for all high temporal resolution datasets 
(excluding monthly data). The error bars show the variation of the annual sediment yield values around the 
mean annual average.
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Usage Notes
Data opportunities.  EUSEDcollab is the first database of its kind in Europe, intended as a resource for a 
non-exhaustive range of applications relating to runoff, soil loss by water erosion and sediment delivery research 
at singular or multiple sites. These opportunities can include a range of research domains seeking to under-
stand the system dynamics of catchment-scale runoff, erosion and sediment fluxes (Figs. 4, 6). These may include 
modelled and analytical developments in frequency-intensity relationships26,27,57,58, spatial and temporal scale-ef-
fects25,59–61, or internal (e.g. topography, geology, soil characteristics), external (e.g. meteorological conditions) 
and anthropogenic (e.g. land use and land cover) drivers of sediment variability62.

By uniting data from across a European scientific network, we aim to: (1) release an open-access data 
resource hosted on the European Soil Data Centre (ESDAC) with the goal of continued database growth in 
a standardised manor, (2) mitigate data loss from discontinued research projects, (3) build a repository upon 
which a broad range of analytical and modelling methods can be built to advance scientific knowledge, and (4) 
allow cross-domain intercomparisons to assess the generalisation of empirical relationships and model predic-
tion systems.

Data limitations.  Data users are advised to consider the applicability of each utilised dataset for their applica-
tion. These considerations range from the spatial scale (drainage area) of the catchment in its context-dependent 
environmental setting, to the temporal detail and measurement-richness underlying the dataset. The data quality 
evaluation gives additional relevant information on the time series completeness in order for initial evaluations 
to be made (Fig. 5).

The EUSEDcollab.v1 repository has a significant spatial bias in its coverage due to a large number of data 
additions from small to medium sized catchments from a national monitoring campaign in Denmark56. These 
data have evidenced usage in erosion modelling36 but may not meet the requirements of certain high temporal 
resolution research applications due to infrequent underlying suspended sediment sampling. We envisage that 
continued catchment data inputs from national monitoring campaigns fitting the motivations of EUSEDcollab 
will improve the overall spatial coverage and reduce this spatial bias.

Data platform and continued community contributions.  The EUSEDcollab repository is openly 
accessible via the European Soil Data Centre63 (ESDAC) platform (https://esdac.jrc.ec.europa.eu/content/
EUSEDcollab) and Figshare64. All files are provided in .csv format in their relevant folders and are identifiable 
based on the assigned ID listed in the overview file (Catchment_ID_assignment.csv). In the case of database-wide 
applications, users are requested to cite this article as the reference for the entire repository. In cases of individual 
catchment applications, users should refer to the reference studies for each catchment provided in the metadata 
and summarised in Tables 2–4.

EUSEDcollab.v1 is intended as the first version of a continued effort to gather and platform data through 
collaborative efforts from across the community. Future data collection efforts will seek to extend the size and 
scope of the repository through including a wider diversity of catchment types (e.g. pristine forests, badlands 
etc.) across a wider range of elevation settings.

Further contributions can be made to the database by downloading and completing the data and meta-data 
template files available in the ESDAC data portal (https://esdac.jrc.ec.europa.eu/content/EUSEDcollab). Data 

Fig. 5  An overview of the data quality control procedure to include an evaluation of missing data entries within 
each time series record. A modified evaluation is made according to the time series structure of each data 
record. The output of the quality control procedure provides an accompanying JSON file for each data entry 
within EUSEDcollab.
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submissions can be included in future data releases by contacting the listed data manager through the contact 
details listed in the ESDAC data portal.

Code availability
All code can be found at: https://github.com/matfran/EUSEDcollab.git. We include the R language code to 
perform the quality control procedure on each time series entry to produce the JSON time series evaluation files 
for each record. Additionally, a Python language Jupyter notebook is included to demonstrate simple operations 
that can be undertaken using the database, such as reading and filtering the database, calculating metadata 
statistics and importing specific time series for analysis.

Received: 20 February 2023; Accepted: 17 July 2023;
Published: xx xx xxxx

Fig. 6  Example syntheses of time series data from the Kinderveld catchment, BE (250 ha) and the Nučice 
catchment, CZ (53 ha) in the EUSEDcollab repository. Note that the data is not area-normalised and the data 
from the Kinderveld catchment (a) is presented in tonnes per aggregated event, while the Nučice catchment 
(b) is made available and presented in tonnes per day. Additionally, it is important to consider the following 
contextual factors: (i) The Nučice measurements include periods with baseflow carrying sediments, whereas 
in the Kinderveld, only runoff events are included. This difference in sediment sources (rill and interrill, 
bank erosion and gullying) between the two catchments, explained in the related literature (Tables 2, 3), may 
contribute to variations in the observed values. (ii) In Nučice, the low number of days in the data record for 
specific years (e.g., 2015, 2017, 2018, 2021) is due to exceptionally dry years when the discharge was zero or very 
low, limiting the availability of sediment data.
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