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DUO-GaIt: a gait dataset for 
walking under dual-task and 
fatigue conditions with inertial 
measurement units
Lin Zhou  1 ✉, Eric Fischer1, Clemens Markus Brahms  2,3, Urs Granacher  3 & Bert arnrich  1 ✉

In recent years, there has been a growing interest in developing and evaluating gait analysis algorithms 
based on inertial measurement unit (IMU) data, which has important implications, including sports, 
assessment of diseases, and rehabilitation. Multi-tasking and physical fatigue are two relevant aspects 
of daily life gait monitoring, but there is a lack of publicly available datasets to support the development 
and testing of methods using a mobile IMU setup. We present a dataset consisting of 6-minute walks 
under single- (only walking) and dual-task (walking while performing a cognitive task) conditions in 
unfatigued and fatigued states from sixteen healthy adults. Especially, nine IMUs were placed on the 
head, chest, lower back, wrists, legs, and feet to record under each of the above-mentioned conditions. 
the dataset also includes a rich set of spatio-temporal gait parameters that capture the aspects of 
pace, symmetry, and variability, as well as additional study-related information to support further 
analysis. this dataset can serve as a foundation for future research on gait monitoring in free-living 
environments.

Background & Summary
Gait analysis is an essential part of mobility assessment to support the diagnosis, treatment, or rehabilitation, 
both for injuries and diseases. Clinical gait analyses are usually performed under controlled laboratory condi-
tions, typically using multi-camera or instrumented walkways1,2. However, gait characteristics differ between 
daily life settings and controlled laboratory environments3,4. Inertial measurement unit (IMU) based methods 
enable mobile gait analysis in free-living environments. In recent years, there has been a growing interest in 
developing and evaluating gait analysis algorithms based on IMU data, which has important implications for 
sports science, biomechanics and rehabilitative medicine5.

This dataset aims to contribute to the development of methods for recognizing gait modulations in daily 
life settings. Daily life walking often occurs while concurrently performing additional tasks, such as walking 
while talking on the phone. Although walking is generally considered an isolated and automatic process, there 
is evidence that performing a secondary task during walking (i.e., dual-task condition) significantly changes 
the gait pattern, indicated by a decrease in walking speed and an increase in gait variability6–9. Physical fatigue 
is another relevant factor in daily life walking. There is evidence that muscle fatigue has a negative impact on 
static and dynamic balance, which increases the risk of injury and/or falls in healthy adults10 as well as in vulner-
able populations (e.g., elderly or neurological disease patients)11,12. Understanding gait modulation mechanisms 
using dual-task and fatigue scenarios and being able to recognize the changes in gait characteristics are crucial 
to enabling daily life gait monitoring.

Despite the high relevance of recognizing gait modulations in dual-task settings and in fatigued conditions 
using mobile sensors, few datasets have been made publicly available to allow the testing and development 
of algorithms. Moreover, the combination and interaction of physical fatigue and secondary (cognitive) task 
performance is prominent in real-life settings but less investigated. Table 1 summarizes studies that collected 
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walking data under dual-task or fatigue conditions using IMUs. Most of the datasets consist of recordings with 
only one or two IMUs and short durations of walking, and none of the datasets are publicly available. To fill 
this gap, here we present the dataset DUO-GAIT: A Gait Dataset for Walking under Dual-Task and Fatigue 
Conditions. This dataset contains recordings of 6-minute walks under single (only walking) and dual-task con-
ditions (walking while performing a cognitive task) conditions in an unfatigued (control condition) and fatigued 
state from 16 healthy young adults. In particular, nine IMUs were placed on the head (HE), chest (sternum, ST), 
lower back (sacrum, SA), left and right wrists (LW and RW), left leg and right leg (LL and RL) as well as left and 
right feet (LF and RF) to record tri-axial acceleration and angular velocity. The unique multi-sensor setup opens 
up many possibilities to re-use this dataset. These sensor placements can be used independently or in custom 
combinations for typical IMU gait analysis algorithms quantifying foot movement13,14, arm swing15,16 or for 
full-body pose estimation17. In addition, the dataset also includes a rich set of spatio-temporal gait parameters 
calculated from the IMU data, such as stride length, speed, and their coefficients of variation and symmetry 
values. Apart from the gait-related data, participant demographics, physiological data such as the blood lactate 
concentrations and heart rate as objective indicators of fatigue, and transcripts of the responses from the cogni-
tive task are also included in this dataset for further exploration and analysis.

In summary, the presented dataset contributes to the testing and development of methods for recognizing 
gait modulations using a mobile IMU setup. We anticipate that this dataset will be used for future research on 
gait monitoring in free-living environments.

Methods
Study participants. Sixteen healthy adults (eight males, eight females) aged 21 to 35 years were recruited 
for this study. All participants were free of any neuromuscular or cardiovascular diseases and did not perform 
strenuous physical exercises 48 hours prior to the data collection. The Physical Activity Readiness Questionnaire 
(PAR-Q) was used to further determine study eligibility. Participants who answered “yes” to any of the questions 
(i.e., indicating limitations for performing physical exercise) were excluded from the study. The International 
Physical Activity Questionnaire (IPAQ, short form) was used to assess the levels of physical activity in the daily 
life of the participants. Table 2 summarizes participant characteristics.

Experimental design. The experimental design consisted of two visits (referred to as visits A and B in 
the following text) that were seven days apart and randomized for each participant. To control for the effects of 
circadian rhythms on physical performance, the times of the two visits were less than an hour apart for the same 
participant. During visit A, participants watched a relaxing nature documentary for 5–10 minutes, and the exper-
imenter measured blood lactate concentration using blood samples from the earlobe twice within an interval of 
5–10 minutes. Subsequently, the participants performed two 6-minute walking sessions before and after a muscle 
fatigue protocol. During the 6-minute walking sessions, the participants were asked to walk at their self-selected 
walking speed up and down a hallway with a 35 m one-way distance. During the fatigue protocol, the participants 
wore a weighted vest matched to 30% of their body mass, and repeatedly stood up from a chair and sat back down 

Dataset Participants Condition IMU Placement
Total Amount 
of Walking

Data 
Availability

34 49 MS patients Fatigue induced by walking 2 IMUs on the feet 6 min On request

35 15 Healthy Fatigue induced by physical 
work one IMU on the right ankle 170 min working 

and walking Not available

36 65 MS patients Fatigue induced by walking 2 IMUs on the feet 6 min walk test 
and 25-foot walk On request

37 17 Healthy Fatigue induced by squatting 2 IMUs on right shank and 
sternum 2 × 15.5 m Not available

38 18 Older adults Fatigue induced by walking one IMU on the heel 1 h Not available

39
11 Older adults, 14 
PD patients, 9 stroke 
patients

Dual-task with numerical 
stroop test 2 IMU on the shanks multiple times 

5 m On request

40 54 PD patients Dual-task with serial 
subtraction

8 IMUs on both feet, shanks, 
wrists, chest, and posterior trunk 2 × 14 m Not available

41 18 Healthy and 21 with 
neck pain Dual-task with head turning 3 IMUs on the forehead, upper- 

and lower thoracic spine 2 × 8 m Not available

42 10 Healthy, 20 frail, 11 
frail with MCI

Dual-task with serial 
subtraction or verbal naming one IMU on the lumbar spine 3 × 7 m Not available

43 20 Healthy Dual-task with holding 
water 2 IMUs on the feet 6 × 14 m On request

44 384 Neurological 
disorder patients

Dual-task with serial 
subtraction or motor task 2 IMUs on the feet 3 × 20 m Not available

This dataset 16 Healthy Fatigue and Dual-task 9 IMUs on the head, chest, lower 
back, wrists, legs, and feet 4 × 6 min Available

Table 1. Summary of datasets of walking with fatigue and/or dual-task using IMUs. Most of the datasets consist 
of data from one or two IMUs with a small amount of recording. In contrast, our dataset consists of data from 
nine IMUs with four times 6-minute walks, and is publicly available. MS: Multiple sclerosis, PD: Parkinson’s 
disease, MCI: mild cognitive impairment.
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until they were not able to continue. The task was performed at a self-selected, fast pace. Immediately after the 
fatigue protocol, blood lactate concentration was measured again, and the participants reported their perceived 
fatigue level on the Borg Rating of Perceived Exertion (RPE) scale (referred to as “Borg scale” in the following 
text)18,19. The procedure during visit B was identical to that of visit A, except that while walking, the partici-
pants performed a secondary cognitive task which involved the continuous subtraction of seven from a random 
4-digit starting number (between 3000 and 9000) provided by the experimenter. Participants had to speak out 
the numbers so that we were able to record and analyze their responses. To reduce learning effects, participants 
practiced the dual-task 6-minute walk one time before the actual data recording. In total, four walking sessions 
were recorded for each participant: single-task control (ST-Control), single-task fatigue (ST-Fatigue), dual-task 
control (DT-Control), and dual-task fatigue (DT-Fatigue). Figure 1 provides an overview of the study design.

recording devices. Nine IMU devices (Physilog®5, Gait Up, Switzerland) were attached to the head (HE), 
chest (sternum, ST), lower back (sacrum, SA), left and right wrists (LW and RW), left and right legs (LL and 
RL) as well as left and right feet (LF and RF) of the participants. The IMUs were synchronized before the start of 
recording. Tri-axial acceleration (range: ±16 g) and angular velocity (range: ±1000 degrees/s) data were recorded 
at a sampling rate of 128 Hz. A heart rate sensor (Polar H10, Polar, Finland) was attached to the chest (below the 
sternum) to record the heart rate. During each visit, the IMUs and the heart rate sensor continuously recorded 
data from the start of the first walking session until the end of the second walking session. The chest IMU was 
removed during the fatigue protocol to allow proper positioning of the weighted vest. An audio recorder was 
attached close to the left collar bone for both visits A and B, and recorded responses from the number subtraction 
task during visit B (dual-task condition). Figure 2 shows the experimental setup.

The study was approved by the ethics committee of the University of Potsdam (63/2020) and all experimental 
procedures were in accordance with the latest revision of the Declaration of Helsinki. All participants provided 
written consent prior to the data collection.

Data processing. For each visit, the IMU signals were segmented into three parts: the 6-minute walk under 
control conditions (ST-Control or DT-control), the fatigue protocol and the 6-minute walk under fatigued condi-
tions (ST-Fatigue or DT-Fatigue) by visual examination of the IMU signals. Spatio-temporal gait parameters were 
extracted from walking segments using an algorithm that has been validated in previous studies13,14. Briefly, the 
algorithm takes tri-axial acceleration and angular velocity data as input, uses an error-state Kalman filter, which 
utilizes zero-velocity update to track errors in the sensor signal during stance periods of the foot, and estimates 
the 3D movement trajectory of the foot. Foot-off and initial contact events are identified using features from the 
angular velocity data. Temporal parameters, such as stride time and stance time, are calculated directly from the 

Variable Mean ± SD Min Max

Age (years) 27.1 ± 3.8 21 35

Body Mass (kg) 71.2 ± 12.2 54 103

Height (cm) 173.8 ± 8.6 158 190

Leg Length (cm) 83.9 ± 3.8 78 94

Activity Level* 2 1 3

Table 2. Participant characteristics. *1, 2, 3 means low, medium and high activity levels in IPAQ, respectively. 
The median is reported instead of the mean ± SD, since data contain ordinal values. SD: standard deviation.

6 Minute Walking
Single Task
(ST-Control)

Fatigue Protocol
6 Minute Walking

Single Task
(ST-Fatigue)

6 Minute Walking
Dual Task

(DT-Control)
Fatigue Protocol

6 Minute Walking
Dual Task

(DT-Fatigue)

Visit A

Visit B

Relaxing Video

Relaxing Video

Blood Lactate Measurement Borg Scale of Perceived Exertion

Fig. 1 Study design. Visits A and B are randomized for each participant.

https://doi.org/10.1038/s41597-023-02391-w


4Scientific Data |          (2023) 10:543  | https://doi.org/10.1038/s41597-023-02391-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

gait events. Spatial parameters, such as stride length and clearance, are calculated by segmenting the 3D foot 
trajectories using the gait events. Subsequently, outlier strides were identified and excluded from further analyses 
using the following steps: turning strides at the ends of the walkway were identified using a manual threshold 
on the change of foot orientation, acceleration, and deceleration strides were identified as two strides before and 
after the turning strides, interrupted strides (when the participants were disturbed during the 6-minute walk) 
were excluded using manually documented timestamps. Additional outlier strides were identified using a z-score 
threshold at three and excluded for further analyses. The stride-by-stride gait parameters from each participant 
and each foot were then aggregated into mean and coefficient of variation (CV, defined as the ratio between stand-
ard deviation and mean). In addition, gait parameters from both feet of each participant were aggregated into 
mean, CV, and symmetry index (SI). The symmetry index is defined as in Eq. 1, where XLF and XRF are the mean 
gait parameters of the left and right foot, respectively.:

∣ ∣
=

−
. ∗ +

SI
X X

X X0 5 ( ) (1)
LF RF

LF RF

Data records
The dataset can be downloaded at the Zenodo platform20. The dataset is divided into three top-level folders 
“raw”, “interim”, and “processed” as illustrated in Fig. 3. The “raw” folder contains the raw IMU recordings, heart 
rate recordings, transcripts of responses from the number subtraction cognitive task, responses from the IPAQ 
questionnaire, and demographic and anthropological information. Raw IMU data and heart rate data were con-
tinuously recorded from the start of the first walking session to the end of the second walking session, resulting 
in one recording for each visit and each participant. Therefore, the “OG_st_raw” folder contains the data from 
the entire single task visits (i.e., ST-Control and ST-Fatigue) and the “OG_dt_raw” folder contains the data from 
the entire dual task visits (i.e., DT-Control and DT-Fatigue) for each participant. The IMU data were saved in.csv 
format, which was extracted from the original binary (.BIN) format using the Physilog RTK software. Heart rate 
data and transcripts of cognitive task responses were saved in.csv format. Due to technical issues, heart rate data 
from two recording sessions (out of 32 recording sessions for all participants and visits) are not available.

The “interim” folder includes IMU data that were manually segmented into the two walking sessions and 
the sit-to-stand fatigue protocol for each visit by visual inspection of raw IMU signals. For quality control, the 
segmented accelerometer and gyroscope data of each sensor was plotted, resulting in 18 plots per participant. 
In addition, during the first execution of gait parameter extraction, calculated 3D feet trajectories were cached 
in the “interim” folder, so that for future executions, the cached trajectories can be loaded directly, sparing the 

Fig. 2 Experimental setup. Left: sensor placements and orientations. Right: sit-to-stand fatigue protocol.
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computational efforts for re-calculation. The file “interruptions.csv” documents time periods where the walk 
was briefly interrupted, for example, when a second person enters the walking area. The strides during the 
interrupted time periods were marked as outliers and removed from subsequent analyses. The file “stance_mag-
nitude_thresholds_manual.csv” documents the angular velocity thresholds used to identify stance phases for 
the gait analysis algorithm for each participant. The thresholds were determined by visual observation of the 
angular velocity signals.

The “processed” folder contains stride-by-stride spatio-temporal gait parameters extracted for each of the 
four walking conditions, and aggregated gait parameters in terms of coefficients of variation and symmetry for 
all walking conditions for each participant.

technical Validation
technical validation of the IMU data. In our previous study, we performed technical validation on the 
raw data quality by comparing seven different IMU models13. The IMU model Physilog®5 exhibited the best 
overall data quality and was therefore selected for creating the present dataset. Our other previous study also 
validated the gait analysis algorithm used to extract the spatio-temporal gait parameters for this dataset using 
two independent reference systems21. The results demonstrate the high quality of both the IMU raw data and 
the extracted gait parameters, with root mean square error of 0.05 m for stride length and 0.02 s for stride time.

Effectiveness of fatigue and dual-task protocols. The Borg scale and blood lactate measurements 
both confirm that all participants were fatigued after performing the sit-to-stand protocol, as illustrated in Fig. 4. 
All participants reported ratings of perceived exertion (RPE) values larger than 15.5 on the Borg scale. For all 
participants, the average blood lactate concentrations at baseline (averaged across two measurements for each 
person and visit) were below 2 mmol/L, which is in agreement with previously reported levels at rest22. After the 
fatigue protocol, the blood lactate concentration increased significantly for all participants, indicating muscle 
fatigue23. There were no significant differences between ST and DT conditions for both Borg scale (p = 0.76) and 
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Fig. 3 Data Structure. The dataset has three top-level folders: “raw,” “interim,” and “processed”. The “raw” 
folder contains continuous recordings of the entire walking sessions from the IMU devices and the heart rate 
sensor, as well as additional information such as cognitive task transcripts, IPAQ questionnaire responses, and 
demographics. The “interim” folder contains IMU data segmented into individual 6-minute walking sessions 
and the sit-to-stand fatigue exercise. The “processed” folder contains spatio-temporal gait parameters calculated 
from the feet IMU data.
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blood lactate level after the fatigue protocol (p = 0.92), indicating that the fatigue levels during the two visits are 
comparable.

Dual-task costs (DTC, %) were used to assess the effects of dual-task walking on gait characteristics24. DTC 
describes the change of a gait parameter between single- and dual-task walking, and is defined as in Eq. 2:

=
−

∗DTC
X X

X
100

(2)
ST DT

ST

where X is the gait parameter of interest, XST and XDT represent the parameter (averaged value of the left and 
right foot) under the single-task and dual-task walking conditions, respectively. Dual-task costs of example gait 
parameters are summarized in Table 4.

Statistical summary of raw IMU data. To validate the completeness of the collected data, we present 
statistical parameters for the acceleration and angular velocity (gyroscope) data as an example. Since all IMUs 
are synchronized and the recordings are started and stopped simultaneously, the recording duration is identical 
among all IMUs in the same recording session. Table 3 summarizes the statistical parameters for different record-
ing segments. The recordings “ST Full Recording” and “DT Full Recording” are the original non-segmented 
recordings from the entire single-task or dual-task visits, which include the baseline 6-minute walk (non-fatigued 
condition), the sit-to-stand fatigue protocol, and the 6-minute walk in a fatigued state. The recordings 
“ST-Control”, “ST-Fatigue”, “DT-Control” and “DT-Fatigue” are recording segments of only the 6-minute walks 
under the respective conditions. The recording durations of these recordings are all above six minutes, confirm-
ing that all participants completed the 6-minute walking sessions and the data was complete. The recordings “ST 
Fatigue Protocol” and “DT Fatigue Protocol” are recording segments of only the sit-to-stand fatigue protocol. 
The amount of data indicates that all participants performed the exercise, and the effectiveness of the exercise in 
inducing physical fatigue is confirmed by results in the section “Effectiveness of Fatigue and Dual-task Protocols”. 
The magnitude of acceleration (Acc. Magnitude) and angular velocity (Gyro. Magnitude) are also within the 
expected range for walking and squat-like exercises for the respective sensor placements. In addition, all raw IMU 
signals have been visually inspected to ensure data quality.

Statistical summary of gait parameters. Since all participants successfully completed the 6-minute walk 
sessions, the amount of data is balanced for all participants and the four walking conditions. In total, seven tem-
poral and spatial stride-by-stride gait parameters (stride length, minimum clearance, maximum clearance, stride 
time, stance time, swing time and stance ratio) and 27 aggregated parameters (mean, coefficient of variation and 
symmetry index for speed, cadence, stride length, minimum clearance, maximum clearance, stride time, stance 
time, swing time and stance ratio) were calculated from the IMU data. In studies investigating the effects of 
fatigue or dual-task walking on gait performance, stride length and walking speed are among the most reported 
gait parameters8,11. As an example, we summarized these parameters from our dataset. The mean stride length of 
1.32 m to 1.44 m and the mean speed of 1.15 m/s to 1.30 m/s are within the normal range for healthy young adults 
reported in other studies25. Moreover, the algorithm used to calculate these gait parameters has been validated 
against gold standard reference systems in previous studies13. Table 4 summarizes the total number of strides, 
stride length, speed in each walking session, and dual-task costs under control or fatigue conditions.

In addition, using stride length and speed as an example, we performed two-way repeated measures ANOVA 
to investigate the ability of these gait parameters to distinguish walking under fatigue and unfatigued states, as 
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Fig. 4 All participants reached sufficient levels of fatigue, as confirmed by Borg Rating of Perceived Exertion 
Scale (left) and blood lactate level (right). Fatigue levels after the sit-to-stand protocol are comparable for both 
single-task and dual-task visits. ST: single-task, DT: dual-task, Lac: blood lactate concentration.
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well as under single- and dual-task conditions. The main effect of fatigue is significant (p < 0.05) for stride length 
(F(1,15) = 6.62, p = 0.02, η2 = 0.01), but not for speed (F(1,15) = 0.70, p = 0.41, η2 = 0.003). The main effect of dual-task 
is significant (p < 0.05) both for stride length (F(1,15) = 17.03, p = 8.95 × 10−4, η2 = 0.14) and speed (F(1,15) = 23.75, 
p = 2.05 × 10−4, η2 = 0.31). Detailed results of the statistical tests are summarized in Table 5. No significant interaction 
effects between fatigue and dual-task were found. The results indicate that the change in gait patterns induced by 
dual-tasking is much larger than the change induced by fatigue. Our recently published study explores this aspect in 
more detail and demonstrates how the effects of fatigue on gait patterns can be investigated in depth26.

Usage Notes
Depending on the research question, each of the three data subsets (raw, intermediate, and processed) can be 
used independently or selectively combined for further analysis. The raw IMU signals from the entire recording 
sessions can be potentially used for developing and validating algorithms for recognizing walking bouts27. More 
generally, the data can also be used with segmentation algorithms28 and time-series motif identification algo-
rithms29 to recognize different daily-life activities from wearable devices.

The raw IMU signals during walking can be further processed into clinically-relevant parameters for quanti-
fying gait. Our dataset provides a rich set of data from different IMU body placements to capture the gait charac-
teristics. Typical sensor placements used for such analyses include: using feet or lower back IMUs to extract gait 
parameters such as stride length, stride time, walking speed, symmetry and variation13,14,30, using wrist IMUs 
to quantify arm swing angles15,16, or using a sparse IMU combination (head, lower back, wrists, legs) to obtain 
full-body joint angles and pose estimation17. These clinically-relevant parameters can then be used to evaluate 
gait classification algorithms. Multiple IMU placements from this dataset enable identification of optimal mini-
mized sensor setup for daily life gait monitoring31. In addition, the raw IMU signals during the fatigue protocol 
can be combined with the heart rate data, the Borg scale of perceived exertion and the blood lactate concentra-
tion to study exercise-related kinematics and its effects on fatigue levels32.

The gait parameters provided in this dataset can be used for developing gait classification and visualiza-
tion methods for refined gait changes33. The demographic and anthropometrical characteristics included in the 
dataset (raw/subject_info.csv) help to further analyze the data. For example, to identify changes in gait patterns 

Walking Session Num. of Strides* Stride Length (m) Speed (m/s) Stride Length DT Cost (%) Speed DT Cost (%)

ST-Control 601.19 ± 39.39 1.44 ± 0.11 1.30 ± 0.13 — —

DT-Control 580.19 ± 36.29 1.35 ± 0.10 1.16 ± 0.08 6.06 ± 5.56 10.47 ± 8.43

ST-Fatigue 604.00 ± 38.24 1.41 ± 0.12 1.29 ± 0.13 — —

DT-Fatigue 579.75 ± 33.02 1.32 ± 0.11 1.15 ± 0.08 5.83 ± 5.90 10.23 ± 8.40

Table 4. Statistical summary of example gait parameters. *Number of valid strides per person. ST = Single 
Task, DT = Dual Task. Summary of gait parameters are expressed as mean standard deviation.

IMU Placement Recording Recording Duration (s) Acc. Magnitude (m/s) Gyro. Magnitude (deg/s)

LF ST-Control 380.97 ± 3.81 16.64 ± 1.12 199.03 ± 19.65

LF DT-Control 384.54 ± 10.72 15.52 ± 0.77 180.47 ± 16.04

LF ST-Fatigue 382.63 ± 2.61 16.93 ± 0.99 200.12 ± 18.42

LF DT-Fatigue 381.23 ± 4.99 15.79 ± 0.79 183.26 ± 16.06

LF ST Fatigue Protocol 812.49 ± 440.11 9.7 ± 0.04 10.47 ± 2.75

LF DT Fatigue Protocol 895.23 ± 661.78 9.68 ± 0.04 10.63 ± 2.46

LF ST Full Recording 2628.67 ± 509.79 11.92 ± 0.51 69.27 ± 12.76

LF DT Full Recording 2840.06 ± 726.96 11.5 ± 0.39 61.92 ± 9.69

SA ST-Control 380.97 ± 3.81 10.14 ± 0.11 47.6 ± 9.24

SA DT-Control 384.54 ± 10.72 10.1 ± 0.09 43.83 ± 10.97

SA ST-Fatigue 382.63 ± 2.61 10.2 ± 0.13 53.62 ± 10.77

SA DT-Fatigue 381.23 ± 4.99 10.16 ± 0.12 53.41 ± 12.13

SA ST Fatigue Protocol 812.49 ± 440.11 9.9 ± 0.10 36.73 ± 10.03

SA DT Fatigue Protocol 895.23 ± 661.78 9.94 ± 0.12 36.56 ± 10.48

SA ST Full Recording 2628.67 ± 509.79 9.98 ± 0.06 32.67 ± 5.29

SA DT Full Recording 2840.06 ± 726.96 9.97 ± 0.05 31.33 ± 4.35

Table 3. Statistical summary of IMU raw data from different recording segments with left foot (LF) and sacrum 
(SA) sensors as examples. All values are expressed as mean ± standard deviations per person. The recordings 
“ST Full Recording” and “DT Full Recording” are the original non-segmented recordings from the entire 
single-task or dual-task visits. The recordings “ST-Control”, “ST-Fatigue”, “DT-Control” and “DT-Fatigue” are 
recording segments of only the 6-minute walks under the respective conditions. The recordings “ST Fatigue 
Protocol” and “DT Fatigue Protocol” are recording segments of only the sit-to-stand fatigue protocol. Acc.: 
acceleration, Gyro.: angular velocity measured by the gyroscope.
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caused by fatigue or dual-task performance, the gait parameters could be normalized to the body height or leg 
length of each person.

For researchers who intend to use their custom gait analysis algorithms to extract the gait parameters for 
further analyses, it is important to first evaluate the quality of the extracted gait parameters. We have previously 
published our gait analysis pipeline along with a dataset to validate the quality of the calculated gait parameters 
against two independent reference systems21. The pipeline was built in a modular way so that new algorithms 
could be inserted and tested using the accompanying dataset.

Limitations and future works
This dataset consists of data obtained from young healthy participants using nine different IMU placements to 
capture the whole body gait changes. These data serve as a valuable resource for exploring methods to analyze 
gait changes induced by physical fatigue and cognitive task performance. However, it is important to note that 
to increase the dataset’s usefulness for specific target groups, further studies are required to collect data from 
diverse populations that are more susceptible to external factors affecting their gait stability, such as the elderly 
or patients with neurological diseases or movement disorders. For a more comprehensive understanding of the 
gait changes, additional data modalities should be incorporated, including electromyography (EMG) and force 
data from pressure sensors. Continuous recordings of various daily life activities at home are also of interest for 
research on mobility-related issues.

Code availability
All data processing procedures described in this paper were performed using Python 3.7. The code repository and 
more detailed usage instructions can be found at https://github.com/HPI-CH/fatigue-dual-task-data. The main 
functionalities of the code are as follows:

• Segment the IMU recordings into walking sessions and fatigue exercise
• Calculate spatio-temporal gait parameters from the IMU signals
• Summarize gait parameters and other study-related information
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