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Planted forests are critical to climate change mitigation and constitute a major supplier of timber/
non-timber products and other ecosystem services. Globally, approximately 36% of planted forest 
area is located in East Asia. However, reliable records of the geographic distribution and tree species 
composition of these planted forests remain very limited. Here, based on extensive in situ and remote 
sensing data, as well as an ensemble modeling approach, we present the first spatial database of 
planted forests for East Asia, which consists of maps of the geographic distribution of planted forests 
and associated dominant tree genera. Of the predicted planted forest areas in East Asia (948,863 km2), 
China contributed 87%, most of which is located in the lowland tropical/subtropical regions, and Sichuan 
Basin. With 95% accuracy and an F1 score of 0.77, our spatially-continuous maps of planted forests 
enable accurate quantification of the role of planted forests in climate change mitigation. Our findings 
inform effective decision-making in forest conservation, management, and global restoration projects.

Background & Summary
Planted forests are forest ecosystems established by artificial tree planting or seeding for the provision of 
income and goods, as well as for climate change mitigation and the restoration of ecosystem services and pro-
cesses1,2. According to the Food and Agriculture Organization of the United Nations (FAO)2, planted forests 
globally increased by 41,000 km2 per year between 2000 and 2020 and currently amounted to approximately 
2,930,000 km2. Today, FAO estimates that 36% of the world’s planted forests are distributed in East Asian 
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countries, namely China, Japan, the Republic of Korea (ROK), and the Democratic People’s Republic of Korea 
(DPRK)2. In East Asia, a large proportion of forest area is planted forests (39% in China, 41% in Japan, 36% in 
ROK, and 16% in DPRK in 2020, according to FAO2), while other regions in the world remain well below 20% 
(19% in Africa, 7% in Europe, and 9% in the United States). Unlike Western countries, where planting was tradi-
tionally conducted for silvicultural practices, East Asian countries planted trees for varying purposes with local 
species and unique history3–11.

East Asian countries have implemented a variety of tree-planting policies at different spatial and temporal 
scales. China leads all countries worldwide with the largest estimated plantation area of about 840,000 km2. 
Since the end of the 1970s, China has established several afforestation projects, including the Three-North 
Forest Shelterbelt Program4, the Natural Forest Conservation Program (also known as Natural Forest Protection 
Program), and the Grain to Green Program (GGP; also known as the Sloping Land Conversion Program)5,6. 
Currently, China has committed to preserving and expanding forest cover, aiming at mitigating soil erosion, air 
pollution, and climate change in the coming decades7. Although hundreds of tree species have been used for 
plantation establishment in China, a few species dominate the planted forests across the country, such as Chinese 
fir (Cunninghamia lanceolata) and eucalyptus (Eucalyptus spp.)8. In Japan, most planted forests were established 
after World War II to meet the growing demand for timber and other wood products. Thus, fast-growing and 
highly productive species, such as Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis 
obtusa), were extensively planted9. ROK underwent severe deforestation and forest degradation during World 
War II and the Korean War (1950–1953), followed by active conversion of forests to agricultural lands due to 
post-war poverty10. In response, the government implemented five National Forest Development Plans from 
1973 to 2017. A variety of fast-growing species were planted during this period, and the successful recovery of 
healthy forests and ROK’s sustainable management strategies are internationally recognized10,11.

With active tree planting being implemented throughout the world for climate change mitigation, forest 
restoration, and biological conservation, it has become urgent to establish cost-effective guidelines for all ongo-
ing and upcoming tree-planting projects. Assessment of the costs and benefits of planted forests, the key to 
the development of such cost-effective guidelines, is contingent on knowing where the existing planted for-
ests are distributed12–16 and which tree species are planted17. The geospatial distribution of planted forests in 
East Asia still remains unclear due to a scarcity of complete, transparent, and publicly accessible data records. 
National governments have published some planted forest maps based on site visits, forest inventory, and sat-
ellite data. Yet, the spatial coverage is incomplete for Japan12, and the map produced by the Chinese Forest 
Inventory remains unverified and largely inconsistent with independent studies13,14. The existing large-scale 
maps of planted forests are based on inconsistent data sources with varying reliability and scale13 or solely based 
on satellite images14. Because of these differences in spatial extent, underlying data sources, and methods in 
existing datasets, a database that provides complete, consistent, and ground-truth-based records of the geo-
graphic distribution of planted forests and associated dominant tree species for East Asia constitutes a consistent 
and harmonized product.

Here, we produced the spatial database of planted forests in East Asia at a 1-km resolution and identify 
dominant tree species in these planted forests to the genus level. Our planted forest map encompasses forests of 
all ages planted for various purposes, including forest restoration, commercial plantation, and disaster preven-
tion. These mapping products are based on ensemble machine learning models, data fusion, and multi-source 
data of planted forests. Our multi-source data comprised ~7,000 ground-truth inventory plots in China, five 
independent digitized maps across the study region, as well as 57 auxiliary datasets and layers, including sat-
ellite data such as the Global Ecosystem Dynamics Investigation (GEDI)18 and Moderate Resolution Imaging 
Spectroradiometer (MODIS) data to account for potential differences in forest structure and vegetation charac-
teristics between planted and natural forests. In addition to the main products, we also estimated the upper and 
lower bounds of potential planted forest extent to account for the uncertainty associated with the varied quality 
of multi-source training data. With previous records of planted forests being inconsistent in resolution, quality, 
and accessibility, our map provides a complete, consistent, and in situ data-based estimation of the extent and 
species distribution of planted forests in East Asia.

Methods
To estimate the spatial distribution of planted forests over East Asia, we integrated multi-source planted-natural 
forest data from multiple in situ inventories and digitized data sources in a high-level data fusion algorithm 
(Fig. 1). For each observation, we first created a response variable explicitly labeled as either “planted” or “natu-
ral” forests. We then obtained data on 57 potential predictor variables encompassing forest structure, vegetation 
characteristics, bioclimate, topography, anthropogenic information, and soil characteristics, and merged these 
layers with the response variable layer based on spatial coordinates. The training dataset was then masked to the 
forested area in 2020 and separated into three biomes based on the Nature Conservancy Terrestrial Ecoregions 
map19. For each biome, we selected the optimal machine learning classification model and fine-tuned hyper-
parameters. Finally, we mapped planted forest distribution and the distribution of the dominant tree species in 
these forests to the genus level. Our study area covers China, Japan, ROK, and DPRK.

Data fusion. We collected and integrated in situ and digitized planted-natural forest data from multiple inde-
pendent sources using a high-level data fusion algorithm (Fig. 1). Observations from China came from published 
literature20–265 (Fig. 2a), which included 2,542 and 4,394 in situ records of confirmed locations of planted and 
natural forests, respectively. The in situ planted forest observations include the plantation of commercial species, 
such as pine (Pinus spp.) and eucalyptus (Eucalyptus spp.), and forests planted for restoration purposes. We also 
obtained the national planted forest map of China (Fig. 2b)15, which depicts the distribution of planted forests 
in 2000. Data specific to Japan was obtained from the national vegetation map created based on site visits and 
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satellite images, where “planted forest” was one of the attributes of vegetation types (Fig. 2b)12. This “planted 
forest” attribute includes restoration-oriented forests composed of broadleaf species, commercial forests dom-
inated by productive species like Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis 
obtusa), and disaster prevention planting, such as Japanese black pine (Pinus thunbergii) from coastal erosion and 
tropical species (e.g., Acacia confusa) as windbreaks. The national vegetation map has been gradually developed 
and improved since 2005. Finally, data specific to ROK was a polygon map of planted and natural forests from 
the national forest cover map (Fig. 2b)16. The ROK maps depict the distribution of planted and natural forests 
from 2009 to 2013, depending on the province. In addition to the country-specific data, we obtained the Spatial 
Database of Planted Trees covering China, Japan, and ROK (SDPT version 1.0; Fig. 2c)13 and a global extent of 
planted trees 201514, which includes the land use classes of planted forest, woody plantations, and agroforestry 
of the global forest management map266 (Fig. 2d). There is no data specific to DPRK used in this study due to the 
lack of available data.

To prepare a training dataset for machine learning classification models, we prepared a 0.009° by 0.009° grid 
(approximately 1 km2) for the study region in East Asia. National planted forest maps of China15, Japan12, and 
ROK16, as well as SDPT13 and the Global Extent of Planted Trees14 were extracted to the centroid of each grid 
cell using the “sf ” or “raster” packages in R267,268. China’s in situ observations were associated with each grid 
cell by taking the majority vote of in situ points within each grid cell to determine whether that cell is a planted 
or natural forest. Grid cells with a 50/50 vote were removed from the training dataset. We then derived the 
response variable – a label of “planted” or “natural” forest – based on these underlying datasets following the 
Quality-Oriented Data Integration (QODI).

Quality-oriented data integration (QODI). Since the underlying datasets differed in data sources and 
estimation methods, we developed a quality-oriented data integration approach in which the response variable 
was defined in three different levels of integration (Fig. 3). For each level of integration, we trained a separate set 
of machine learning models, so that we can quantify the potential range in estimated planted forest areas.

The first level of integration took the most conservative approach in deriving the lower bound of our esti-
mation. Since China’s in situ observations20–265, Japan’s national vegetation map12, and ROK’s national planted 
forest map16 were largely based on in situ observations, we labeled a unit forest area (i.e., grid cell) as planted if 
and only if the grid cell was identified as a planted forest by either of these in situ-based datasets or identified by 
at least three other datasets as a planted forest.

The second level of integration took a midway approach in which, in addition to planted forests identified in 
the first level of integration, a given grid cell was also labeled as a planted forest if two out of the national planted 
forest maps of China15, SDPT13, and Global Extent of Planted Trees14 datasets agreed so.

The third level of integration took the most liberal approach in deriving the upper bound of our estimation, 
in which we assumed all underlying data sources were equally reliable and labeled a given grid cell as planted 
forest if it was identified as a planted forest by either of these datasets.

Fig. 1 Workflow for developing the spatial database of planted forests. The top section (yellow) represents the 
data fusion algorithm we used to integrate multi-source data into coherent training datasets. The bottom section 
(green) represents the ensemble model we developed to predict the spatial patterns of planted forests.
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We also compiled 57 predictor variables for the supervised learning of the classification models (Fig. 1, 
Supplementary Table S1). The predictor variables consisted of five forest structure attributes269,270, seven 
MODIS-derived vegetation characteristics, 21 bioclimatic attributes271–274, 13 topographic attributes275, four 
anthropogenic attributes276–279, and seven soil attributes280. We obtained four forest structure attributes from 
the most recent Global Ecosystem Dynamics Investigation (GEDI) dataset, namely canopy height (rh100), 
plant area index (pai), foliage height diversity (fhd_normal), and total canopy cover (cover) (see Supplementary 
Table S1)18,269. We downloaded the raw footprint-level GEDI data (L2B), among which only full-power lasers 
were used in this study to ensure the accuracy of the measurement. GEDI data was processed using the “rGEDI” 
package in R281. Another forest structure attribute, tree height270, represents the 90th or 95th percentile of energy 
return height relative to the ground.

We extracted predictor variables to the centroid of each grid cell using the “sf ” or “raster” packages in R267,268. 
GEDI footprint-level data was associated with each grid cell by taking the mean value of each attribute. We kept 
only grid cells with a minimum of 5 m tree height in accordance with FAO’s definition of “forest”2,270. Our final 
training dataset encompassed more than 1.5 million grid cells for the upper bound dataset, 1.0 million grid 
cells for the midpoint dataset, and 0.9 million grid cells for the lower bound dataset, consisting of one response 
variable labeled as either “planted” or “natural” and 57 predictor variables. Finally, to account for the differences 
in terrestrial ecoregions, we divided the overall training dataset into three biomes (Fig. 2e). Based on the global 
terrestrial biome map19, Temperate Grassland/Savanna and Montane and Flooded Grassland were grouped into 
“Temperate Grassland”. Temperate Broadleaf and Mixed and Temperate Conifer were grouped into “Temperate 
Forest”, and Tropical Moist, Tropical Dry, and Tropical Grassland/Savanna were grouped into “Tropical Forest 
and Savanna.” The three biomes remained separated for the upper bound dataset, but Temperate Grassland and 
Temperate Forest were merged for the midpoint and lower bound datasets to form the “Temperate Forest and 
Grassland” biome due to low sample size in Temperate Grassland.

For mapping purposes, we prepared another 0.009° by 0.009° grid (approximately 1 km2), covering forested 
area (≥5 m tree height)2,270 in the study region with all predictor variables (new data; Fig. 2f). We chose the 
resolution 0.009° to align with most of the predictor variables (Supplementary Table S1). After a machine learn-
ing classification model was trained, estimation was made for each grid cell of this new data. For ROK and a 

Fig. 2 Training data consists of a series of in situ and digital maps of planted-natural forest data from multiple 
independent sources. (a) The in situ data in China encompass 2,542 and 4,394 ground observations20–265, which 
represent confirmed locations of planted and natural forests, respectively, by previously published articles.  
(b) National maps of planted forests were obtained for China15, Japan12, and ROK16. (c) The Spatial Database 
of Planted Trees (SDPT version 1.0)13. (d) An estimated Global Extent of Planted Trees 201514. (e) Distribution 
of the three biomes in our study area. We developed a machine learning classification model for each biome 
to predict planted forests. Note that forests are distributed in the Temperate Grassland according to the FAO’s 
definition of forest (≥5 m tree height)2,270 although the area is limited. (f) Distribution of planted forests was 
estimated mainly for China, DPRK, and small areas in Japan. For the ROK and the majority of Japan, the 
national planted forest maps12,16 (b) were used as a final label.
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majority of areas in Japan, however, we utilized the existing planted forest maps, namely the national forest 
cover map of ROK16 and the national vegetation map of Japan (Fig. 2b)12, respectively, to label the grid cells. 
Since reliable planted forest data already exist for these areas, we used our estimation only for the remaining 
areas in China, DPRK, and a small portion of Japan (Fig. 2f). Nevertheless, the existing data for ROK and a 
majority of areas in Japan were converted to the 0.009° resolution within the forested area for consistency. For 
the areas where our estimation is used, we imputed missing values in predictor variables of the new data using 
the “Hmisc” package in R282 to provide a spatially continuous map. For the GEDI attributes (Supplementary 
Table S1), however, we imputed missing values by training random forest (RF) models (see below for details of 
RF) with seven MODIS attributes due to a large number of missing values (22%, 34%, and 44% of the sample size 
for the upper bound, midpoint, and lower bound dataset, respectively). For the midpoint and lower bound data-
sets, we used the average predicted values from 10 repetitions of random forest models using 200,000 data points 
to minimize computational time (Table 1). To assess the performance of the RF model in imputing missing 
values in GEDI attributes, we performed cross-validation using bootstrapping. For the upper bound dataset, we 
randomly sampled the dataset into the training (90%) and testing (10%) sets with replacement. For the midpoint 
and lower bound datasets, we randomly sampled 200,000 data points for the training sets with replacement, and 
the remaining was used as the testing dataset (Table 1). Based on 20 random iterations, we calculated the 95% 
confidence interval (CI) of the root mean square error (RMSE) and R-squared (R2). We calculated a 95% CI 
using the t0.975 value with 19 degrees of freedom.

Ensemble machine learning model. We developed an ensemble model to estimate the spatial distribu-
tion of planted forests, with three candidate machine learning models: RF, support vector machines (SVM), and 
XGBoost. RF is a non-parametric ensemble learning approach283, which combines a variant of decision trees and 
an additional level of randomness by bootstrapping sub-data and different sets of predictor variables to mitigate 
potential multicollinearity issues often encountered in multidimensional machine learning models284. We used 
the “randomForest” package in R285. SVM is a supervised learning model which constructs a hyperplane or set 
of hyperplanes in a high- or infinite-dimensional space to help data analysis286. We used the “e1071” package in 
R287. XGBoost is a gradient-boosted decision tree machine learning, designed to accommodate large data at high 
speed. We used the “xgboost” package in R288. The three candidate models are frequently used in ecological and 
biological research with satisfactory performance266,289. Other potential candidate models include artificial neural 
networks, k-nearest neighbor, Naïve Bayer, etc., which are not necessarily superior290. All modeling processes 
were conducted in R291.

To assess the performance of the three candidate models in estimating planted forests, we conducted 
cross-validation using bootstrapping. Due to data size, we randomly sampled 50,000 points (25,000 for each 
class) for the upper bound and midpoint datasets and 80% of the sample points for the lower bound dataset 
for each of the ten repetitions to create the training set and the rest composed the testing set (Table 1). Default 
hyperparameter values were used for the three candidate models. Based on 10 iterations, we calculated the 

Fig. 3 The response variable (“planted” or “natural” forest) was defined in a quality-oriented data integration 
approach based on multiple underlying data sources. Underlying datasets a-d correspond to Fig. 2a–d. Upper 
and lower bound models represent the most liberal and conservative approaches in labeling planted forest, 
respectively. The grey area was removed from the respective training dataset. All areas outside of the Venn 
diagrams were labeled natural forest. DPRK is not included in this figure due to the absence of training data 
associated with the country.
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95% CI of classification accuracy and F1 score. We calculated a 95% CI using the t0.975 value with 9 degrees of 
freedom. Classification accuracy shows the proportion of overall correct prediction. While accuracy is the most 
widely used and intuitive evaluation metric of a classification problem, it overestimates the performance of 
imbalanced data. F1 score is an equal measure of precision and recall and is more appropriate for imbalanced 
data292. Precision represents the correct prediction of the positive class (i.e., planted) among all positive predic-
tions, and recall represents the correct prediction of the positive class among all actual positive cases293. Since 
precision and recall are in an inverse relationship, the combined metric, F1 score, provides a better evaluation 
perspective of incorrectly predicted cases. Using both accuracy and F1 score, we present a suite of evaluation 
metrics of our candidate models for both correct and incorrect predictions of an imbalanced dataset. Other 
potential evaluation metrics include Cohen’s Kappa. However, we did not use it in our study due to the contro-
versy of its use294. Compared with SVM and XGBoost, the RF model was 0.7–8.1% more accurate in terms of 
overall classification accuracy and 1.4–4.5% more reliable in terms of F1 score (Fig. 4). Thus, we chose RF as the 
final model.

To improve the performance of the model while minimizing the time it takes to compute, we adjusted two 
hyperparameters of the RF algorithm: the number of decision trees and the number of predictor variables. 
Similar to the cross-validation described above, we randomly sampled 50,000 points (25,000 for each class) for 
the upper bound and midpoint models and 80% of the sample points for the lower bound model for each of the 
ten repetitions to assess RF performance using different hyperparameter values (Table 1). Specifically, we cal-
culated the classification accuracy and F1 score for different hyperparameter values. Based on 10 iterations, we 
chose the number of 100 decision trees for the upper bound and midpoint models and 200 for the lower bound 
model where both accuracy and F1 score converged (Fig. 5). We used the default number of predictor variables 
(seven) for all biomes for the upper bound model. We chose 26 and 42 for Temperate Forest and Grassland and 
Tropical Forest and Savanna, respectively, for the midpoint model (Fig. 6). We chose 20 and 40 for Temperate 
Forest and Grassland and Tropical Forest and Savanna, respectively, for the lower bound model (Fig. 6).

For the final RF model, we ensured that the training set had an equal number of points for each class (i.e., 
50% planted forest and 50% natural forest) by randomly under-sampling the dominant class. The prediction of 
our classification model was the percent planted forest based on how many decision trees returned the “planted” 
prediction. We built 20 models to derive the mean percentage for each biome and model (upper bound, mid-
point, and lower bound) (Table 1). Finally, we calculated the mean percentage of the three models as a final 
value, while upper and lower bounds serve as a potential range (Fig. 7). Grid cells with a predicted percentage 
≥50% are considered planted forest (Fig. 8). Using the spatially continuous dataset of 57 predictor variables (see 
Data fusion), we created a map covering the entire forested area in East Asia using model prediction.

Mapping dominant tree species of the planted forests. Over the planted forest expanse in East Asia 
identified by the final RF classification model, we predicted the dominant tree species (to the genus level) of the 
planted forest for each criterion (Fig. 9). For the training set, we combined 2,481 in situ records in China20–265 with 
the tree-level records of Japan295 and ROK296 National Forest Inventories (NFI). Specifically, we calculated impor-
tance value for each species for each NFI plot within the predicted planted forest expanse and identified the species 

Model objective Machine learning Level of integration Response Predictors Training size Testing size Iterations

To impute GEDI attributes 
in new data for mapping 
purposes (final model)

Random forests 
(RF)

Upper Bound
Each GEDI 
attribute Seven MODIS attributes

All NA 1

Midpoint 200,000 data points NA 10

Lower Bound 200,000 data points NA 10

To impute GEDI attributes 
in new data for mapping 
purposes (cross-validation)

RF

Upper Bound
Each GEDI 
attribute Seven MODIS attributes

90% 10% 20

Midpoint 200,000 data points Remaining points 20

Lower Bound 200,000 data points Remaining points 20

To determine the best 
machine learning model to 
predict planted forest

RF, support vector 
machines (SVM), 
and XGBoost

Upper Bound
Planted or 
natural

All listed in 
Supplementary Table S1

50,000 Remaining points 10

Midpoint 50,000 Remaining points 10

Lower Bound 80% 20% 10

To fine-tune hyperparameters 
of the final RF model to 
predict planted forest

RF

Upper Bound
Planted or 
natural

All listed in 
Supplementary Table S1

50,000 Remaining points 10

Midpoint 50,000 Remaining points 10

Lower Bound 80% 20% 10

To predict planted forest 
(final model) RF

Upper Bound
Planted or 
natural

All listed in 
Supplementary Table S1

All NA 20

Midpoint All NA 20

Lower Bound All NA 20

To predict dominant tree 
genus (final model) RF

Upper Bound

Genus
All listed in 
Supplementary Table S1 
except for roadless areas 
and GEDI

All NA 1

Midpoint All NA 1

Lower Bound All NA 1

To predict dominant tree 
genus (cross-validation) RF

Upper Bound

Genus
All listed in 
Supplementary Table S1 
except for roadless areas 
and GEDI

90% 10% 100

Midpoint 90% 10% 100

Lower Bound 90% 10% 100

Table 1. Summary of tasks conducted in this study.
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with the highest importance value as the dominant species for the given plot. Importance value is the sum of the 
percent basal area and the percent number of individuals of each species and represents the overall dominance of 
the species297,298. After identifying the dominant species for each NFI plot, we aggregated the plots into the 0.009° 
by 0.009° grid cells by taking the majority vote of the dominant species. We retained the genus names of the dom-
inant species, and only genera with 60 or more samples were included to ensure a sufficient size of training data.

We trained an RF classification model using the same package in R, with the default hyperparameter setting 
and an identical set of predictor variables, except for roadless areas and GEDI attributes due to a substantial 
number of missing values (86% and 34% of the sample size, respectively). We ensured that the training set had 
an equal number of points for each class (i.e., genus) by combining random under-sampling and oversampling 
using the “UBL” package in R299. To assess the performance of the RF model in mapping dominant genera across 
the planted forest expanse in East Asia, we performed a 90/10 cross-validation using bootstrapping. In each 
iteration, we used stratified sampling to split the entire training dataset into the training (90%) and testing (10%) 
sets using the “caret” package in R300 and conducted a combination of under-sampling and oversampling of the 
training set to address the class imbalance (Table 1). Based on 100 random iterations, we calculated the 95% CI 
of overall classification accuracy and precision, recall, and F1 score for each class.

Data Records
The spatial database of planted forests consists of maps of estimated planted forest distribution (Figs. 7, 8) and 
dominant tree species (Fig. 9) of East Asia, available at https://doi.org/10.6084/m9.figshare.21774725.v3301. The 
database is in shapefiles where each polygon is 0.009° by 0.009° in size within the forested area of 2020 (≥5 m 
tree height) based on the FAO’s definition of “forest”2,270. Each polygon contains the following attributes:

ID: Polygon ID
Biome: Biome classes used in the study
Country: Country

Fig. 4 Performance of three candidate machine learning models to map planted forests. Classification 
accuracy and F1 score of random forest (RF), support vector machine (SVM), and XGBoost imputation models 
are shown. Mean values from 10 repetitions and 95% confidence intervals are shown for each biome. RF 
outperformed SVM and XGBoost in all cases, and thus RF was used to model planted forests in our study.

https://doi.org/10.1038/s41597-023-02383-w
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 Prc_Pln: Percent planted forest. The values represented the average of the three models (upper bound, 
midpoint, and lower bound). NA for ROK and a majority of areas in Japan, where national planted forest 
maps12,16 were used as the final planted/natural label (Fig. 2f).
 Prc_P_U: Percent planted forest predicted by the upper bound model. NA for ROK and a majority of areas in 
Japan, where national planted forest maps12,16 were used as the final planted/natural label (Fig. 2f). Note that 
values are not always higher than Prc_Pln.
 Prc_P_L: Percent planted forest predicted by the lower bound model. NA for ROK and a majority of areas in 
Japan, where national planted forest maps12,16 were used as the final planted/natural label (Fig. 2f). Note that 
values are not always lower than Prc_Pln.
 Type: “Planted” or “Natural” forests based on the main result (i.e., the average of the three models). For 
our predicted percent planted forest, “Planted” if Prc_Pln ≥ 0.5 and “Natural” if Prc_Pln < 0.5. For Prc_
Pln = NA, national planted forest maps12,16 were used to determine if the given polygon is a planted forest, 
and if not, “Natural.”
Typ_Upp: “Planted” or “Natural” forests based on the upper-bound model.
Typ_Lwr: “Planted” or “Natural” forests based on the lower-bound model.
Genus: For Type = “Planted”, this attribute indicates the predicted dominant genus. NA for Type = “Natural”.
 Gns_Upp: For Typ_Upp = “Planted”, this attribute indicates the predicted dominant genus. NA for 
Typ_Upp = “Natural”.
 Gns_Lwr: For Typ_Lwr = “Planted”, this attribute indicates the predicted dominant genus. NA for 
Typ_Lwr = “Natural”.
 Besnard_Yr: Estimated planted year based on forest age302 (https://doi.org/10.17871/ForestAgeBGI.2021). 
See Usage Notes.
 Du_Yr: Estimated planted year based on the map of planting year of plantations303,304 (https://doi.
org/10.6084/m9.figshare.19070084.v2). A value of 1981 indicates the planting year was before 1982, and 
values from 1982 to 2019 correspond to the planting years. See Usage Notes.
Area_m2: Area of the planted forest polygons in square meters.

Fig. 5 Performance of random forest models in terms of classification accuracy and F1 score with different 
numbers of decision trees. For each biome (Fig. 2e), we tested a different number of decision trees in the random 
forest ranging from 2 to 750. The solid lines represent the mean of 10 repetitions, and the bands represent the 
standard deviation. The number of trees = 100 for the upper bound and midpoint models and 200 for the lower 
bound model were chosen to maximize the model performance while minimizing computational time.
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Raster layers are also available for percent planted forest, type (planted or natural forest), and dominant 
genus, at https://doi.org/10.6084/m9.figshare.21774725.v3301.

Based on our prediction, the total area of planted forests in East Asia was 948,863 km2, ranging between 
600,529 and 1,277,549 km2. China shared 87% of the planted forest area in East Asia, most of which is in the low-
land subtropical and tropical regions, and Sichuan Basin (Fig. 8). More than half of China’s planted forest area 
was dominated by Cunninghamia (Table 2) in the subtropical region and Sichuan Basin (Fig. 9). Larch (Larix 
spp.), black locust (Robinia spp.), and pine (Pinus spp.) were widely observed in northern and central China, and 
eucalyptus dominated planted forests in tropical regions.

In Japan and ROK, planted forests were uniformly distributed across the country (Fig. 8). More than half of 
Japan’s total planted forest area was Chamaecyparis- or Cryptomeria-dominant (Table 2), while other coniferous 
genera (e.g., Abies and Pinus) covered northern planted forests (Fig. 9). ROK’s planted forests were characterized 
by diverse genera; more than half of planted forest areas were dominated by pine, followed by deciduous trees 
including oak (Quercus spp.) and chestnut (Castanea spp.). DPRK’s planted forests were mainly distributed in 
the south, largely composed of oak, larch, and pine.

The input training data, including the response variable and predictor variables, used in this study are avail-
able at https://doi.org/10.6084/m9.figshare.21774812.v2305. Underlying data included in situ and digitized 
planted-natural forest data:

The in situ observational data of China20–265

The Japan Vegetation Map12 (http://gis.biodic.go.jp/webgis/sc-025.html?kind=vg67)
The national planted forest map of China15

The national planted forest map of ROK16

SDPT version 1.013 (https://www.wri.org/research/spatial-database-planted-trees-sdpt-version-10)
Global planted trees extent 201514 (https://doi.org/10.5281/zenodo.3931930)

Fig. 6 Performance of random forest models in terms of classification accuracy and F1 score with different 
numbers of predictor variables. For each biome (Fig. 2e), we tested a different number of predictor variables 
in the random forest ranging from 2 to 56. The solid lines represent the mean of 10 repetitions, and the bands 
represent the standard deviation. We used the default number of predictor variables (seven) for all biomes 
for the upper bound model. We chose 26 and 42 for Temperate Forest and Grassland and Tropical Forest and 
Savanna for the midpoint model. We chose 20 and 40 for Temperate Forest and Grassland and Tropical Forest 
and Savanna for the lower bound model.

https://doi.org/10.1038/s41597-023-02383-w
https://doi.org/10.6084/m9.figshare.21774725.v3
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Japan National Forest Inventory295 (http://forestbio.jp/datafile/datafile.html)
ROK National Forest Inventory296

The predictor variables used in this study are all available through open sources as follows:
GEDI L2B269 (https://search.earthdata.nasa.gov/search)
Tree height (https://glad.umd.edu/dataset/GLCLUC2020)
MODIS (https://modis.gsfc.nasa.gov/)
Corrected precipitation: PBCOR271 (http://www.gloh2o.org/pbcor/)
Bioclimate data: CHELSA272,273 (https://chelsa-climate.org/bioclim/)
 Global aridity index and potential evapotranspiration: CGIAR-CSI v.2274 (https://doi.org/10.6084/
m9.figshare.7504448.v3)
Topography: EarthEnv275 (http://www.earthenv.org/topography)
Global cattle distribution276 (https://doi.org/10.7910/DVN/GIVQ75)
Roadless area277 (https://doi.org/10.1126/science.aaf7166)
Protected area: UNEP-WCMC278 (https://www.protectedplanet.net/en)
Human footprint279 (https://doi.org/10.5061/dryad.052q5)
Soil characteristics: WISE30sec v1.0280 (https://www.isric.org/explore/wise-databases)
Other data used in this study include:
 The Nature Conservancy (TNC) Terrestrial Ecoregions map19 (https://geospatial.tnc.org/datasets/
b1636d640ede4d6ca8f5e369f2dc368b/about)
All the data listed above are open access, except the national planted forest map of China15, the national 

planted forest map of ROK16, and the ROK National Forest Inventory296. The sensitive information in these 
datasets will be available upon request via Science-i (https://science-i.org/) and approval from data contributors.

Fig. 7 Spatial distribution of percent planted forest in East Asia. Our main prediction was the mean percent 
planted forest from the three models (upper bound, midpoint, and lower bound), while upper and lower 
bounds present potential ranges. Prediction was made for China, DPRK, and small portions of Japan. National 
planted forest maps of Japan12 and ROK16 were used for the remaining areas in ROK and the majority of areas 
in Japan, indicated in gray. The data is in a vector format with each polygon representing a 0.0090° by 0.0090° 
(approximately 1 km) grid in the WGS84 datum.
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Technical Validation
Model validation in imputing GEDI missing values. We conducted cross-validation with boot-
strapping to evaluate the model in imputing the missing values in GEDI attributes for the high-latitude areas 
(Supplementary Table S1; see Quality-Oriented Data Integration (QODI) in Methods). R2 was within the range 
of 31% and 42% for all the GEDI attributes in Temperate Grassland and Temperate Forest (Table 3). For Tropical 
Forest and Savanna, canopy height showed R2 of 22%, and the rest of the attributes showed R2 of almost 30%. 
Foliage height diversity showed the highest R2 and total canopy cover showed the lowest root mean square error 
(RMSE) among all GEDI attributes in all groups (Table 3).

Model validation in estimating planted forests. To evaluate the performance of our mapping product 
of East Asia, we compared our main prediction (Fig. 8) with the planted/natural labels of the midpoint dataset for 
China. We calculated classification accuracy, precision, recall, F1 score, and four elements of confusion matrices 
in percentage (true positive, false positive, false negative, and true negative, where positive class represented 
planted, and negative class represented natural forest). Our prediction is characterized by a high recall (0.99), 
indicating that 99% of the observed planted forests were correctly predicted as planted forest (Table 4). Our preci-
sion was 0.63, which indicates that approximately two out of three positive predictions are actually planted forests. 
This level of accuracy is similar to those of other large-scale forest mapping studies (0.60–0.80)306–308.

While precision is often negatively associated with recall, the F1 score, 0.77, indicates that our model is 
well-balanced between precision and recall. The low precision is attributable to the imbalanced distribution 
of positive and negative classes in the validation set (the midpoint dataset for China). The number of samples 
for natural forests was almost 10 times greater than that of planted forests in our validation set (Table 4). While 
we maximized the predictive performance by balancing the training data, high accuracy and low precision are 
inevitable due to the imbalanced validation set.

To further validate the quality of our prediction, we also compared our estimated total area of planted for-
ests against the reported values from the FAO Global Forest Resources Assessment (FRA)2 and the National 

Fig. 8 Spatial distribution of planted forests in East Asia. The map shows the estimated areas where the percent 
planted forest is greater than 50%. For ROK and most areas in Japan, national planted forest maps12,16 were used 
to determine the distribution of planted forest. The data is in a vector format with each polygon representing a 
0.0090° by 0.0090° (approximately 1 km) grid in the WGS84 datum.
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Forest Inventory dataset from China309 (Table 5). Our total predicted area of planted forests in East Asia was 
948,863 km2 with a range between 600,529 and 1,277,549 km2, which is consistent with the FRA estimate 
(981,390 km2). The predicted area of China’s planted forests was 825,751 km2 (475,566–1,159,009 km2), while 

Fig. 9 Spatial distribution of dominant tree species to the genus level across the planted forest range in East 
Asia (Fig. 8).

Genus

Predicated area in km2 (%)

East Asia China Japan ROK DPRK

Cunninghamia 480,913 (50.7) 480,901 (58.2) 12 (0.0) 0 (0.0) 0 (0.0)

Pinus 151,749 (16.0) 142,031 (17.2) 2,334 (2.2) 5,692 (60.0) 1,691 (21.2)

Eucalyptus 137,318 (14.5) 137,318 (16.6) 0 (0.0) 0 (0.0) 0 (0.0)

Larix 40,487 (4.3) 32,400 (3.9) 5,383 (5.1) 525 (5.5) 2,179 (27.3)

Chamaecyparis 35,267 (3.7) 3,117 (0.4) 32,115 (30.4) 35 (0.4) 0 (0.0)

Cryptomeria 22,772 (2.4) 798 (0.1) 21,973 (20.8) 1 (0.0) 0 (0.0)

Robinia 14,046 (1.5) 13,858 (1.7) 87 (0.1) 100 (1.1) 1 (0.0)

Abies 11,695 (1.2) 211 (0.0) 11,455 (10.8) 0 (0.0) 29 (0.4)

Alnus 11,140 (1.2) 10,438 (1.3) 697 (0.7) 4 (0.0) 0 (0.0)

Quercus 10,793 (1.1) 21 (0.0) 4,510 (4.3) 2,402 (25.3) 3,860 (48.3)

Castanopsis 10,367 (1.1) 3,032 (0.4) 7,333 (6.9) 2 (0.0) 0 (0.0)

Fagus 5,892 (0.6) 4 (0.0) 5,887 (5.6) 0 (0.0) 0 (0.0)

Castanea 3,669 (0.4) 0 (0.0) 3,089 (2.9) 561 (5.9) 19 (0.2)

Carpinus 3,530 (0.4) 437 (0.1) 2,748 (2.6) 143 (1.5) 203 (2.5)

Ilex 3,515 (0.4) 8 (0.0) 3,507 (3.3) 0 (0.0) 0 (0.0)

Acer 2,640 (0.3) 1 (0.0) 2,637 (2.5) 1 (0.0) 2 (0.0)

Betula 1,979 (0.2) 885 (0.1) 1,092 (1.0) 2 (0.0) 0 (0.0)

Picea 681 (0.1) 289 (0.0) 392 (0.4) 0 (0.0) 0 (0.0)

Tilia 410 (0.0) 0 (0.0) 381 (0.4) 26 (0.3) 3 (0.0)

Total 948,863 (100.0) 825,751 (100.0) 105,633 (100.0) 9,493 (100.0) 7,986 (100.0)

Table 2. Predicted area of planted forest for each dominant genus based on the main model. East Asia is the 
sum of all four countries. The numbers in parenthesis represent percent area in each country or region.
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the FRA reports 846,960 km2 and the Ninth National Forest Inventory of China reports 795,428 km2. For Japan, 
the range of estimated areas of planted forests was between 103,447 and 105,633 km2, while the FRA reported 
value is 101,840 km2. Our estimated area of planted forests in DPRK was 7,986 km2 (5,601–11,648 km2), while 
the FRA reported value is 9,870 km2. Overall, our estimate was consistent with those reported by the FRA and 
the National Forest Inventory of China.

Model validation in estimating dominant tree species. Our 90/10 bootstrapping cross-validation 
in estimating the dominant tree species across planted forests showed an overall classification accuracy of 0.396 
(±0.003 95% CI). Among all the planted tree species, Cunninghamia and Eucalyptus had the highest F1 score 
(0.745 and 0.733, respectively), with high recall (0.893 and 0.802, respectively) and satisfactory precision (0.644 
and 0.403, respectively) (Table 6). Meanwhile, Carpinus and Castanea showed the lowest F1 score (0.124 and 
0.136, respectively), which likely resulted from a small sample size compared to other genera. Acer, Alnus, Betula, 

Biome Response variable (unit) RMSE (mean±95%CI) R2 (mean±95%CI)

Temperate Grassland

Canopy height (rh100) (cm) 560.80 ± 1.57 0.35308 ± 0.00226

Plant area index (pai) (-) 0.73181 ± 0.00093 0.38590 ± 0.00158

Foliage height diversity (fhd_normal) (-) 0.29674 ± 0.00058 0.42148 ± 0.00167

Total canopy cover (cover) (%) 0.15642 ± 0.00018 0.39395 ± 0.00166

Temperate Forest

Canopy height (rh100) (cm) 614.98 ± 0.21 0.31465 ± 0.00021

Plant area index (pai) (-) 0.88935 ± 0.00016 0.39003 ± 0.00013

Foliage height diversity (fhd_normal) (-) 0.29609 ± 0.00006 0.41618 ± 0.00012

Total canopy cover (cover) (%) 0.16938 ± 0.00002 0.39714 ± 0.00012

Tropical Forest and Savanna

Canopy height (rh100) (cm) 716.28 ± 0.38 0.22118 ± 0.00025

Plant area index (pai) (-) 1.01696 ± 0.00032 0.28806 ± 0.00017

Foliage height diversity (fhd_normal) (-) 0.30687 ± 0.00009 0.29766 ± 0.00024

Total canopy cover (cover) (%) 0.16035 ± 0.00004 0.29317 ± 0.00018

Table 3. Evaluation in imputing missing data of GEDI attributes for mapping purposes. We conducted cross-
validation with bootstrapping. The mean and 95% confidence interval (CI) from 20 iterations are shown for root 
mean square error (RMSE) and R-squared (R2).

Evaluation metrics Value

Accuracy 0.945

Precision 0.633

Recall 0.990

F1 score 0.772

True positive 0.093

False positive 0.054

False negative 0.001

True negative 0.853

Table 4. Evaluation metrics and elements of confusion matrices of the main prediction of planted forest 
distribution. Our final prediction was evaluated against the planted/natural labels of the midpoint dataset in 
China. The elements of confusion matrices are represented in percentages. The positive class represents planted, 
and the negative class represents natural forests. Accuracy shows the proportion of overall correct prediction, 
precision represents the correct prediction of the positive class (i.e., planted) among all positive predictions, 
recall represents the correct prediction of the positive class among all actual positive cases, and F1 score 
represents a balanced score of precision and recall.

Country or 
region

Predicted area 
main (km2)

Predicted area upper 
bound model (km2)

Predicted area lower 
bound model (km2)

FAO’s FRA 
2020 (km2)2

The Ninth National Forest 
Inventory of China (km2)309

East Asia 948,863 1,277,549 600,529 981,390 NA

China 825,751 1,159,009 475,566 846,960 795,428

Japan 105,633 103,447 103,823 101,840 NA

DPRK 7,986 5,601 11,648 9,870 NA

Table 5. Predicted area of planted forest for each country and the entire region and estimated area by other 
sources. ROK is not shown here as the national planted forest map16 was used in the final map. East Asia 
includes China, Japan, ROK, and DPRK.
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Cryptomeria, Picea, Pinus, Quercus, and Tilia showed low recall compared to precision, indicating that true labels 
for these genera tended to be classified as other genera. Abies, Carpinus, Castanea, Castanopsis, Chamaecyparis, 
Cunninghamia, Eucalyptus, Fagus, Ilex, Larix, and Robinia had lower precision than recall due to the overpredic-
tion of these genera (Table 6).

Genus Precision (mean ± 95%CI) Recall (mean ± 95%CI) F1 score (mean ± 95%CI)

Abies 0.393 ± 0.007 0.679 ± 0.013 0.497 ± 0.008

Acer 0.203 ± 0.018 0.125 ± 0.012 0.154 ± 0.013

Alnus 0.039 ± 0.028 0.011 ± 0.007 0.182 ± 0.005

Betula 0.288 ± 0.020 0.187 ± 0.014 0.223 ± 0.015

Carpinus 0.086 ± 0.013 0.129 ± 0.018 0.124 ± 0.011

Castanea 0.078 ± 0.012 0.152 ± 0.023 0.136 ± 0.012

Castanopsis 0.163 ± 0.008 0.522 ± 0.027 0.246 ± 0.011

Chamaecyparis 0.404 ± 0.007 0.525 ± 0.012 0.456 ± 0.008

Cryptomeria 0.541 ± 0.008 0.352 ± 0.008 0.425 ± 0.007

Cunninghamia 0.644 ± 0.018 0.893 ± 0.014 0.745 ± 0.014

Eucalyptus 0.694 ± 0.030 0.802 ± 0.030 0.733 ± 0.024

Fagus 0.403 ± 0.008 0.771 ± 0.015 0.527 ± 0.009

Ilex 0.131 ± 0.011 0.436 ± 0.034 0.200 ± 0.016

Larix 0.437 ± 0.011 0.502 ± 0.014 0.465 ± 0.011

Picea 0.265 ± 0.043 0.190 ± 0.031 0.282 ± 0.024

Pinus 0.584 ± 0.010 0.445 ± 0.010 0.504 ± 0.009

Quercus 0.389 ± 0.013 0.151 ± 0.006 0.216 ± 0.008

Robinia 0.460 ± 0.035 0.527 ± 0.037 0.479 ± 0.029

Tilia 0.057 ± 0.024 0.031 ± 0.012 0.168 ± 0.010

Table 6. Evaluation of the random forest classification model in mapping the dominant tree species across the 
planted forest expanse in East Asia. We conducted a rigorous 90/10 bootstrapping cross-validation. The mean 
and 95% confidence interval (CI) are shown for the precision, recall, and F1 score of each class (i.e., genus) 
based on 100 random iterations.

Fig. 10 Density plot showing the concentration of estimated planted forests in the range of planted year for 
each country. (a) planted year was estimated based on forest age302 with a maximum value of 2010. (b) planted 
year was estimated based on the map of planting year of plantations303,304.
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Uncertainties. While this study advances the current understanding of planted forests in East Asia based 
on multi-source data consisting of in situ, digitized, and modeled datasets, uncertainties arose from two main 
sources. First, limited in situ data, especially from Japan, ROK, and DPRK constitute one of the largest sources 
of uncertainties. The limited in situ data from these countries could lead to lower accuracy in our planted forests 
prediction. Nevertheless, to mitigate this uncertainty, we integrated different data sources for modeling (e.g., 
SDPT13 and the Global Planted Trees Extent 201514), and the final map product for these countries relied on 
external sources12,16.

Secondly, our map of planted tree species depicts the spatial distribution of the dominant tree species to 
the genus level across the range of planted forests. However, it is beyond the scope of this study to identify the 
spatial distribution of monoculture planted forests versus mixed-species planted forests, the latter of which 
are common in certain regions310. This uncertainty in tree species richness can be mitigated by integrating the 
mapping products presented here with recent global high-resolution maps of local tree species richness and 
co-limitation289. Furthermore, some genera predicted in our study had low F1 scores, which can be mitigated 
by increasing the sample size for these species. Nevertheless, it is not realistic to achieve perfectly balanced data, 
and differences in predictive performance among genera are inevitable.

Usage Notes
Our final maps of planted forest range (Fig. 8) for Japan and ROK consist of data directly obtained from the 
national planted forest maps of Japan12 and ROK16. Users of these particular maps should cite these sources 
accordingly.

Planted forests in this study include forests of all ages that have been planted for ecological restoration, com-
mercial plantation, and other purposes, such as landscape and disaster prevention.

Since the underlying training datasets differ by planting years, we were only able to quantify a roughly esti-
mated range of underlying years. Specifically, we overlaid our final map with two existing map layers with esti-
mated fore

st age302 and planted year303,304 values. Based on these two sources, some planted forests were planted more 
than 100 years ago, while other planted forests are less than five years in age (Fig. 10). Estimation based on forest 
age302 presents consistency with planting history in each country; the majority of planted forests were established 
post-war in Japan, followed by efforts in the Korean peninsula, while planted forests in China come from more 
recent planting (Fig. 10a). We included planted year information in our map product (see Data Records).

Code availability
The R code, saved RF models, and training datasets to reproduce the results of this study are available at https://
doi.org/10.6084/m9.figshare.21774812.v2305.
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