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Pulmonary embolism has a high incidence and mortality, especially if undiagnosed. the examination 
of choice for diagnosing the disease is computed tomography pulmonary angiography. as many 
factors can lead to misinterpretations and diagnostic errors, different groups are utilizing deep learning 
methods to help improve this process. the diagnostic accuracy of these methods tends to increase by 
augmenting the training dataset. Deep learning methods can potentially benefit from the use of images 
acquired with devices from different vendors. To the best of our knowledge, we have developed the 
first public dataset annotated at the pixel and image levels and the first pixel-level annotated dataset 
to contain examinations performed with equipment from Toshiba and GE. This dataset includes 40 
examinations, half performed with each piece of equipment, representing samples from two medical 
services. We also included measurements related to the cardiac and circulatory consequences of 
pulmonary embolism. We encourage the use of this dataset to develop, evaluate and compare the 
performance of new aI algorithms designed to diagnose PE.

Background & Summary
Pulmonary embolism (PE) has a high incidence and mortality. It occurs when a blood clot, most commonly 
from the deep venous system, moves into the pulmonary arterial circulation1. Up to 300,000 deaths per year are 
estimated to occur in the United States due to PE2. Less than 10% of deaths occur among diagnosed and treated 
patients, indicating a potential reduction in mortality by improving the diagnostic accuracy for the disease3.

Computed tomography pulmonary angiography (CTPA) is the examination of choice for evaluating patients 
with PE4,5. After intravenous infusion of iodinated contrast medium, CT is performed when there is optimal 
opacification of the pulmonary arterial circulation, and the thrombus is identified as an intraluminal filling 
defect.

CTPA image interpretation is a complex task: radiologists must carefully search for contrast filling defects in 
the entire pulmonary arterial vasculature across a large number of images. Technical problems, patient-related 
factors, anatomical issues and the presence of other pathologies6 can lead to misdiagnosis.

Computer-aided diagnosis (CAD) programs aimed at reducing these errors can reduce mortality. Several 
approaches have already been proposed7–48; however, a definitive solution has not yet been reached. More 
recently, there has been increased interest in the creation of artificial intelligence (AI) techniques, especially 
using artificial neural networks (ANNs), for addressing this problem.

The diagnostic performance of these techniques is highly dependent on the dataset used for training them, as 
it must contain examinations as diverse as those in real applications. The diagnostic accuracy of these methods 
tends to increase by augmenting the training dataset49.

Obtaining reliable datasets is a considerable obstacle encountered by researchers, as it is time-consuming, 
requires radiologists with experience to recognize PE and depends on medical center cooperation. Furthermore, 
to be suitable for supervised learning applications, the dataset must be annotated. Two different annotation 
approaches have been used in the three public datasets available: a pixel-level annotation, in which all pixels of 
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the thrombus are demarcated as a ground truth, and annotations at the image and study levels50, in which images 
with a visible PE receive a label, but the thrombus itself is not demarcated. The first approach is more versatile 
and can be converted into an annotation at the image level, but the opposite is not true.

The pixel-level annotation may help the algorithm to predict the exact region in which the embolus is located 
and to verify if this was the region used by the algorithm to generate the diagnostic output. It is especially useful 
for evaluating CADs designed to diagnose PE, as a high false-positive rate is a notable challenge for many of 
these algorithms.

To date, there are only two public datasets containing CTPA examinations with pulmonary emboli annotated at 
the pixel level. The first one contains 91 examinations of patients with PE obtained using SIEMENS CT scanners51,  
and the second contains 35 examinations, 33 of which were conducted in patients with PE, obtained with CT 
scanners from PHILIPS and Neusoft Medical System Co52. The information published from these datasets does 
not disclose the examination selection process or the inclusion and exclusion criteria.

A recently published guide for research on AI53 highlights the importance of using datasets containing 
images from devices from multiple vendors due to the variability inherent in such images.

There is a shortage of public datasets with a representative sample of examinations annotated at the pixel level 
that the AI algorithm can process in a real clinical setting. In medical practice, there is great variability among 
CTPA images, which occurs due to patient-related factors, such as different biotypes and comorbidities that can 
obscure PE, and technical factors, such as delays in image acquisition following infusion of the contrast media 
or with inadequate infusion flow, that lead to suboptimal image quality.

We developed a dataset with a sample of cases of acute PE annotated at the pixel and image levels, making 
it suitable for algorithms developed using both approaches (Fig. 1). Our dataset contains 40 examinations per-
formed with multidetector scanners, half from a Toshiba CT and the other half from a GE CT54.

The dataset was primarily used in conjunction with the two public datasets of CTPA examinations with pul-
monary emboli annotated at the pixel level51,52 to develop a program for the diagnosis of PE48. A method capable 
of finding and segmenting PEs in CT images using deep learning was subsequently developed.

We encourage the use of this dataset to develop, evaluate and compare the performance of AI algorithms 
designed to diagnose PE.

Fig. 1 Steps for producing the dataset. First step: definition of inclusion and exclusion criteria. Second and 
third steps: selection of 20 examinations performed with each machine on patients with acute PE. Fourth step: 
image annotation at the pixel and image levels. Fifth step: evaluation of features related to right heart strain and 
pulmonary artery hypertension.

https://doi.org/10.1038/s41597-023-02374-x


3Scientific Data |          (2023) 10:518  | https://doi.org/10.1038/s41597-023-02374-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Methods
The study was approved by the Research Ethics Committee of Hospital de Clínicas-Federal University of Paraná. 
Given the retrospective nature of the study, only retrospective access to anonymized scan files was necessary, 
and so the need for informed consent was waived by the ethics committee. Aiming to preserve the identity of the 
participants, the examinations were deidentified by deleting patients’ personal information, such as names, date 
of birth and identification numbers from the CT scans. Fields corresponding to time or numbers were replaced 
by “000000.00”. Fields corresponding to dates were replaced by “00010101”. Written Fields were replaced by 
“Anonymized” or removed.

Imaging. Twenty CTPA scans were performed in a public university hospital with a 64-channel Toshiba 
Aquilion CT scanner, with a tube voltage of 120 KVp, slice thickness of 1.0 mm, gantry rotation time of 0.5 sec-
onds, beam pitch of 1.485 and dose modulation protocol.

The other twenty scans were performed in a private imaging practice with a GE Revolution 512 CT scanner, 
with a tube voltage of 120 KVp, slice thickness of 0.625 mm, slice interval slice thickness of 0.625 mm, gantry 
rotation time of 0.5 seconds, beam pitch of 0.9 and dose modulation protocol.

Image segmentation. All CTPA scans were used to make a diagnosis of acute PE by a staff radiologist. The 
diagnosis and location of the acute pulmonary embolism were confirmed by a thoracic radiologist with 32 years 
of experience. After this, a third-year resident generated the pixel-level ground-truth masks, which were revised 
by a certified radiologist.

The examinations were segmented using manual mode in ITK-SNAP55, generating the ground-truth mask 
in which the thrombus pixels are demarcated (Fig. 2). Based on this mask, image-level segmentation was per-
formed, labeling slices containing the thrombi.

CtPa features related to right heart strain and pulmonary artery hypertension. Obstruction 
of the pulmonary vasculature due to PE can increase vascular resistance, leading to an increase in pulmonary 
arterial pressure and right cardiac strain. Indirect signs such as pulmonary artery dilatation, right ventricular 
enlargement (increase in the right ventricle-to-left ventricle diameter ratio), inferior vena cava (IVC) contrast 
reflux, and abnormal positioning of the interventricular septum (flattening or even paradoxically bowing toward 
the left ventricle), can be observed on CTPA scans (Fig. 3).

In all CTPA scans, we evaluated the largest artery involved, inferior vena cava reflux, interventricular septum 
flattening or paradoxical bowing, pulmonary artery trunk diameter (PAD), transverse diameters of the right 
ventricle (RV) and left ventricle (LV)—measured between the endocardial surfaces in the largest place perpen-
dicular to the longitudinal axis—and right ventricle-to-left ventricle diameter ratio (Tables 1, 2).

Data records
All data records described in this paper are available on a Figshare repository54. This repository contains three 
folders. The first contains CTPA images in Digital Imaging and Communications in Medicine (DICOM) 
format. The second contains the ground-truth pixel-level segmentation of the location of the pulmonary 
embolus in Neuroimaging Informatics Technology Initiative (NiFTI) format. The segmentations consist of a 
three-dimensional matrix in which each element corresponds to a voxel of the CT scan: the elements corre-
sponding to the embolus have a value of “1”, and the others have a value of “0”. The third is in comma separate 
values (CSV) format, in which each element corresponds to a slice of the CT scan. The first element represents 

Fig. 2 Pixel level annotation. Column (a) shows CTPA images of pulmonary emboli in different anatomical 
locations. In column (b), pixel-level annotations show all pixels of the embolus of the corresponding 
CTPA image in column (a) in white. In column (c), the corresponding images of columns (a) and (b) are 
superimposed, and the thrombus is shown in red.
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Fig. 3 CTPA features related to right heart strain and pulmonary artery hypertension. (a) Exam TS04 without 
IVC reflux. (b) Exam TS19 with IVC reflux. (c) Exam TS19 showing the interventricular septum in its normal 
position. (d) Exam TS02 showing a flattened interventricular septum. (e) Exam TS10 showing paradoxical 
interventricular septal bowing.

Case Sex Age PAD (mm) RV (mm) LV (mm) RV/LV IVC Reflux IV Septum Largest affected vessel

1 F 63 24 43 57 0.75 Present Normal Lobar

2 F 11 20 37 40 0.92 Absent Flattened Trunk bifurcation

3 F 77 29 45 35 1.29 Absent Flattened Main pulmonary artery

4 F 38 34 52 29 1.79 Present Paradoxically bowed Main pulmonary artery

5 F 68 29 41 43 0.95 Absent Flattened Trunk bifurcation

6 F 54 28 39 54 0.72 Present Flattened Main pulmonary artery

7 F 58 35 33 35 0.94 Present Normal Lobar

8 F 64 31 37 48 0.77 Absent Flattened Segmental

9 M 29 28 23 31 0.74 Absent Flattened Segmental

10 M 68 26 52 35 1.49 Present Paradoxically bowed Main pulmonary artery

11 F 81 27 29 42 0.69 Present Normal Lobar

12 F 84 31 52 41 1.27 Present Normal Trunk bifurcation

13 F 41 24 32 38 0.84 Absent Normal Segmental

14 F 48 34 43 51 0.84 Present Normal Segmental

15 F 45 20 40 45 0.89 Absent Normal Main pulmonary artery

16 F 75 31 33 46 0.72 Present Normal Subsegmental

17 F 59 31 42 36 1.17 Present Flattened Trunk bifurcation

18 F 42 24 42 45 0.93 Absent Normal Segmental

19 F 26 25 35 50 0.70 Absent Normal Lobar

20 F 50 25 34 52 0.66 Absent Normal Main pulmonary artery

Table 1. Data from exams obtained with the Toshiba Aquilion 64. F: female. M: male. PAD: pulmonary artery 
diameter. RV: right ventricle diameter. LV: left ventricle diameter. RV/LV: right ventricle-to-left ventricle 
diameter ratio. IVC Reflux: inferior vena cava reflux of contrast media. IV Septum: interventricular septum 
position.
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the first slice, and the last element represents the lowest slice. Slices in which the embolus can be visualized are 
represented by the number “1”, and the others by the number “0”.

The files corresponding to patients scanned with the GE equipment are named 01GE to 20GE, and the files 
corresponding to patients scanned with the Toshiba equipment are named 01TS to 20TS, according to the num-
ber of each patient in Tables 1, 2, which are also available on the repository in Excel binary file (XLS) format.

technical Validation
Exam selection. The CTPA scans were selected retrospectively by a search of the digital files from a public 
university hospital and a private imaging practice.

An arbitrary starting date was defined for each medical facility. From the defined starting date, all CTPA 
scans were sequentially reviewed until we reached 20 examinations with PE from each device that fit the inclu-
sion and exclusion criteria.

For the Toshiba device, the examinations were performed from November 5, 2018 to February 5, 2019. For 
the GE device, the examinations were performed from November 9, 2018 to September 20, 2019.

Inclusion criteria. Chest CT scans performed using the PE protocol (CTPA) for diagnosing acute PE. File 
availability in the Picture Archive and Communication System (PACS) from each medical center.

Exclusion criteria. Artifacts that prevented the radiologist from visually interpreting the images. 
Examinations with fully or partially corrupted files. Follow-up examinations (only the first CTPA was used).

There was no restriction on age, patient status (inpatients or outpatients) or any other inclusion or exclusion 
criteria different from those mentioned.

Code availability
All code for loading and normalization of the dataset is available in GitHub (https://github.com/glescki/dicom_
image_parser).

For parsing the data, the PyDicom library is recommended, and the loading of the labels can be performed 
with a parser available in GitHub. Each DICOM file should be loaded separately and then joined within a data 
structure.

For normalization, it is recommended that the spacing in the z-axis of all slices be changed to 1.

Received: 20 June 2022; Accepted: 11 July 2023;
Published: xx xx xxxx

Case Sex Age PAD (mm) RV (mm) LV (mm) RV/LV IVC Reflux IV Septum Largest affected vessel

1 M 59 27 52 57 0.91 Absent Normal Main Artery (unilateral)

2 F 72 32 60 40 1.50 Absent Flattened Main Artery (unilateral)

3 M 71 36 38 32 1.19 Present Normal Lobar

4 M 62 28 33 34 0.97 Absent Flattened Trunk bifurcation

5 M 73 30 32 42 0.76 Absent Normal Segmental

6 M 82 40 47 30 1.57 Present Flattened Trunk bifurcation

7 F 21 32 39 47 0.83 Absent Normal Segmental

8 F 82 29 32 42 0.76 Absent Normal Segmental

9 M 50 28 22 40 0.55 Present Normal Lobar

10 F 57 26 55 38 1.45 Absent Paradoxically bowed Subsegmental

11 M 31 27 25 51 0.49 Absent Normal Segmental

12 F 36 22 30 35 0.86 Absent Normal Lobar

13 F 86 26 35 36 0.97 Present Normal Subsegmental

14 F 57 38 50 48 1.04 Present Flattened Main Artery (unilateral)

15 F 32 27 44 42 1.05 Absent Flattened Segmental

16 M 38 30 46 50 0.92 Absent Normal Lobar

17 F 81 31 50 50 1.00 Present Normal Lobar

18 M 54 28 44 50 0.88 Absent Normal Lobar

19 M 41 29 40 49 0.82 Absent Normal Trunk bifurcation

20 M 54 29 38 64 0.59 Present Normal Segmental

Table 2. Data from exams obtained with the GE Revolution 512. F: female. M: male. PAD: pulmonary artery 
diameter. RV: right ventricle diameter. LV: left ventricle diameter. RV/LV: right ventricle-to-left ventricle 
diameter ratio. IVC Reflux: inferior vena cava reflux of contrast media. IV Septum: interventricular septum 
position.
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