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Single-nucleus chromatin 
landscapes during zebrafish early 
embryogenesis
Xiumei Lin1,2,3,9, Xueqian Yang4,5,9, Chuan Chen6,9, Wen Ma2,3, Yiqi Wang5, Xuerong Li2,3, 
Kaichen Zhao5, Qiuting Deng1,2,3, Weimin Feng1,2,3, Yuting Ma1,2, Hui Wang5, Lveming Zhu5, 
Sunil Kumar Sahu  2, Fengzhen Chen7, Xiuqing Zhang2, Zhiqiang Dong4,5 ✉, Chuanyu Liu  2,8 ✉, 
Longqi Liu  1,2,3,8 ✉ & Chang Liu2 ✉

Vertebrate embryogenesis is a remarkable process, during which numerous cell types of different 
lineages arise within a short time frame. An overwhelming challenge to understand this process is the 
lack of dynamic chromatin accessibility information to correlate cis-regulatory elements (CREs) and 
gene expression within the hierarchy of cell fate decisions. Here, we employed single-nucleus ATAC-seq 
to generate a chromatin accessibility dataset on the first day of zebrafish embryogenesis, including 
3.3 hpf, 5.25 hpf, 6 hpf, 10 hpf, 12 hpf, 18 hpf and 24 hpf, obtained 51,620 high-quality nuclei and 23 
clusters. Furthermore, by integrating snATAC-seq data with single-cell RNA-seq data, we described 
the dynamics of chromatin accessibility and gene expression across developmental time points, 
which validates the accuracy of the chromatin landscape data. Together, our data could serve as a 
fundamental resource for revealing the epigenetic regulatory mechanisms of zebrafish embryogenesis.

Background & Summary
Understanding embryonic development in vertebrates can not only shed light on how it evolved and how vari-
ous species are related, but also help in resolving critical questions related to devastating diseases such as tumors 
and degenerative diseases. It is crucial to explore the genetic and epigenetic mechanisms behind cell lineage 
differentiation and tissue formation during vertebrate embryonic development1,2. Zebrafish is an ideal model 
organism for studying vertebrate embryonic development owing to its quick development and versatility for 
manipulation3, and efforts have been made to systematically describe the key events and characteristics from the 
1-cell to organogenesis stage, which provides valuable resources for the follow-up study of molecular regulatory 
mechanisms at different developmental stages4.

The coordination of chromatin structure and transcription is essential to gene regulation and cell fate deter-
mination in embryonic development5. During early embryogenesis, there exists an asynchronism between DNA 
accessibility of cis-regulatory elements (CREs) and gene expression, which has been proven that DNA accessibil-
ity within CERs precedes expression of target genes6,7. Additionally, chromatin architecture undergoes dramatic 
changes through early embryonic development. Before zygotic genome activation (ZGA), cells are in a stage of 
rapid proliferation, and the formation of extensive higher-order chromatin structure is inhibited. Accompanied 
by the slowing down of cell divisions and introduction of cell cycle gap phases, the higher-order chromatin 
structure is initially established post-ZGA8. This establishment, which is the basis for interaction-regulation 
between CREs including enhancers and promoters, is important for gene regulatory networks (GRNs) during 
embryonic development. Efforts have been made to map the genomic regulatory landscapes in bulk9,10 and at 
single-cell resolution within a single development stage in zebrafish11, but the dynamic chromatin landscapes of 
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the single-nucleus data during zebrafish early embryogenesis are still obscure, which could systematically deline-
ate the dynamics of CREs and its synergistic interaction with gene expression to regulate cell fate differentiation.

In the present study, we adopted single-nucleus assay for transposase-accessible chromatin with 
high-throughput sequencing (snATAC-seq) at seven different time points during the first day of zebrafish 
embryo development, generating accessibility profiles for 51,620 nuclei, and establishing a resource for dynam-
ics of CREs during zebrafish early embryogenesis. Furthermore, through the integration of snATAC-seq data 
and single-cell RNA sequencing (scRNA-seq) data at the same developmental time point, we systematically 
characterized the dynamics of chromatin accessibility and gene expression in different cell types across the 
examined developmental time points, which exhibited a good congruence between these two datasets. Our 
study constitutes a fundamental reference for further studies aiming to unravel the complex GRNs of early ver-
tebrate embryonic development.

Materials and Methods
Experimental animal and samplings. The animals used in this study were approved by the Animal 
Care and Use Committee of Huazhong Agriculture University (HZAUFI-2021-0001). Zebrafish embryos from 
AB wild-type crosses were collected at 3.3 hours, 5.25 hours, 6 hours, 10 hours, 12 hours, 18 hours, and 24 hours 
post fertilization (hpf). For snATAC-seq, the 250–1,000 embryos from different developmental stages were col-
lected in a 2 mL centrifuge tube (AXYGEN, 28820394) and performed liquid nitrogen snap-frozen immediately 
after cleaning the tissue fluid with 1x phosphate-buffered saline (PBS) solution (Meilunbio, MA0015). The 6 hpf 
embryos acquired in this study were processed for scRNA-seq as described before12.

Nuclei isolation for snATAC-seq. Nuclei were isolated from zebrafish embryos for snATAC-seq accord-
ing to the mechanical extraction method with slight modification13. In brief, we thawed the embryos that were 
snap-frozen in liquid nitrogen and added 2 mL pre-chilled homogenization buffer (Sigma, CELLYTPN1-1KT) 
into the tube. Each 1 mL mixture was transferred to a 2 mL Dounce homogenizer (Kimble, NO.885300-0002) on 
ice, and then homogenized with 10–20 strokes of the tight pestle (the B pestle). Next, the homogenized mixture 
was filtered into a 1.5 mL tube through a 40 µm cell strainer (Falcon, 352340), followed by centrifugation at 1,200 g 
for 5 minutes at 4 °C to pellet the nuclei, and then suspended in a blocking buffer containing 1% bovine serum 
albumin (BSA) and 0.2 U/μL RNase inhibitor in 1 × PBS. Finally, the nuclei were pelleted for a second time by 
centrifugation at 500 g for 5 minutes at 4 °C, and resuspended in 1 × PBS containing 1% BSA for following librar-
ies preparation.

Fig. 1 An overview of the experimental and data analysis workflow. (a) Experimental outline of the zebrafish 
embryos at different development stages (top) and snATAC-seq and scRNA-seq process diagram (bottom). 
Scale bar: 0.25 mm. (b) Analyses workflow for snATAC-seq and scRNA-seq profiles.
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snATAC-seq library construction and sequencing. snATAC-seq libraries were prepared using 
DNBelab C Series Single-Cell ATAC Library Prep Set (MGI, 1000021878). Briefly, barcoded snATAC-seq librar-
ies were constructed following a series of steps including transposition, droplet encapsulation, pre-amplification, 
emulsion breakage, capture beads collection, DNA amplification and purification. The libraries quality control 
was performed by using Agilent Bioanalyzer 2100 (Agilent Technologies, G2939A) and Qubit ssDNA Assay Kits 
(Thermo Fisher Scientific, Q10212). The paired-end sequencing was performed on MGI DNBSEQ-T7 using the 
following read length: 109 bp for read 1, 50 bp for read 2, and 10 bp for the sample index.

Fig. 2 snATAC-seq data quality control and features. (a) Scatter plots showing bivariate distributions of TSS 
enrichment scores and log10 (unique fragments) of individual developmental time piont. (b) Histogram 
showing the nuclei numbers of raw processing data, data after filtering and data after doublet removal. (c) 
Scatter plots showing bivariate distributions of TSS enrichment scores and log10 (unique fragments) of data 
integration from all time points. (d) Plots showing the enrichment of snATAC-seq fragments around TSSs. 
(e) Histogram showing the nuclei numbers of all 20 snATAC-seq profiles. (f) Violin Plots showing the TSS 
enrichment scores (top) and unique fragment numbers (bottom) of all 20 snATAC-seq profiles. (g) Heatmap 
clustering of correlation coefficients across all 20 snATAC-seq profiles.
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Single cell isolation for scRNA-seq. The isolation of single cell suspension was performed as previously 
described12. Briefly, 250–1,000 embryos at 6 hpf were collected and the eggshells were digested using Pronase 
E (Sigma-Aldrich, P5147-1G). Once achieving a hatch rate of 20–30%, add 1 mL pre-warmed (56°C) high fetal 
calf serum (Hi-FBS, Biological Industries, 04-001-1ACS) to the dish to halt the reaction. The embryos were sub-
sequently washed once with 0.5x Danieau’s solution supplemented with 10% Hi-FBS, followed by thrice with 
0.5x Danieau’s solution. Then the embryos were treated with deyolking buffer and digested the embryos with 
1 × trypsin-EDTA solution (Biosharp, BL512A) to obtain the single-cell suspension. Finally, the isolated single 
cells were resuspended in 1x PBS (Meilunbio, MA0015) supplemented with 0.04% BSA (Sigma, A8022-50G) for 
subsequent libraries construction.

scRNA-seq library construction and sequencing. The scRNA-seq libraries of 6 hpf acquired in this 
study were prepared using the DNBelab C Series High-throughput Single-Cell Library Preparation Kit (MGI, 
940-000047-00) according to the manufacture’s protocol and previous report12. In brief, after droplet generation, 
emulsion breakage, reverse transcription and cDNA amplification were performed to generate the sRNA-seq 
libraries. Finaly, the libraries were finally sequenced on an MGI DNBSEQ-T7 using the paired-end strategy: 41 bp 
for read 1, 100 bp for read 2, and 10 bp for the sample index.

Bioinformatics preprocessing. snATAC-seq data processing. The raw reads were processed by PISA (ver-
sion 1.1), and then aligned to the zebrafish genome (GRCz11) by BWA (version 0.7.17-r1188) to generate the 
BAM files. Then bap214 was used to create fragment files for each snATAC-seq library. Finally, the fragments 
larger than the chromosome length and those smaller than 50 bp were filtered out to generate clean fragments for 
subsequent analysis by ArchR (version 1.0.2).

scRNA-seq data processing and unsupervised clustering. Raw reads of 6 hpf data were processed using 
DNBelab_C_Series_HT_scRNA-analysis-software (https://github.com/MGI-tech-bioinformatics/DNBelab_C_
Series_HT_scRNA-analysis-software) which includes alignment, primary filtering, and gene expression 
matrix generation of each cell. We created a Seurat object by Seurat (V4.0.3) and filtered the low-quality cells 
according to gene number as well as the percentage of mitochondrial genes of each cell (nFeature_RNA > 800, 
nCount_RNA > 1,000 and percent.mt < 5). Then we merged the scRNA-seq data of 6 hpf with the previously 
published scRNA-seq data of other developmental stages12 for unsupervised clustering. The normalization and 
scaling were performed using Seurat ‘NormalizeData’ and ‘ScaleData’ function with the default parameters. 
Next, we performed dimension reduction by principal component analysis (PCA) and clustering by using 
‘FindNeighbors’ and ‘FindClusters’ function. Finally, the differential expressed genes (DEGs) of each cluster 
were identified through the ‘FindAllMarkers’ function with default parameters.

Quality control, dimensionality reduction and clustering of snATAC-seq data. We created ArchR projects at dif-
ferent development stages using ‘ArchRProject’ function, and performed a Tn5 insertion correction with a posi-
tive chain offset of +4 bp as well as a negative chain offset of - 5 bp. Low-quality nuclei were filtered out based on 
unique nuclear fragments (nFrags) and enrichment score of transcriptional start site (TSS) with the following 
filtering criteria: log10 (nFrags) ≥ 3.8 and TSS score ≥ 4 for 3.3 hpf & 5.25 hpf; log10 (nFrags) ≥ 3.5 and TSS 
score ≥ 4 for 6 hpf; log10 (nFrags) ≥ 3.5 and TSS score ≥ 5 for 10 hpf; log10 (nFrags) ≥ 3.6 and TSS score ≥ 5 for 
12 hpf; log10 (nFrags) ≥ 3.6 and TSS score ≥ 4 for 18 hpf, log10 (nFrags) ≥ 3.4 and TSS score ≥ 5 for 24 hpf. We 
calculated the doublet score using ‘addDoubletScores’ function with the default parameters and doublets were 
filtered out using ‘filterDoublets’ function to obtain high quality nuclei for the following analysis (filterRatio = 5).

Dimensionality reduction was performed using iterative latent semantic indexing (LSI). The ‘addClusters’ 
function based on the Seurat Leiden clustering algorithm was adopted for unsupervised clustering and the 
Uniform Manifold Approximation and Projection (UMAP) (default parameters) was utilized for visualization. 
Gene activity scores were calculated by ‘addGeneScoreMatrix’ function (default parameters) and the marker 
genes for each cluster were identified by ‘getMarkerFeatures’ function (FDR ≤ 0.01 & Log2 FC ≥ 1). The cell 
types annotation was performed using known cell-type–specific markers for each cluster and the marker genes 
were visualized by Integrative Genomic Viewer (IGV)15 (promoter +/− 2 kb).

Integration of snATAC-seq data and scRNA-seq data. We used the ‘addGeneIntegrationMatrix’ function to 
integrate snATAC-seq data and scRNA-seq data in ArchR. Briefly, CCA algorithm was utilized to calculate 

Stages

3.3 hpf 5.25 hpf 6 hpf 10 hpf 12 hpf 18 hpf 24 hpfParameters

Cell Number 4,658 8,415 6,695 5,472 3,823 7,155 15,042

Median Fragment 15,224 15,269 6,544 8,582 7,548 10,865 5,974

TSS Enrichment 6.00 6.68 5.56 7.76 7.56 6.14 9.61

FragsInPeaks(number) 10,606 13,707 5,543 8,550 7,338 9,108 5,541

FragsInPeaks (%) 69.76% 89.77% 84.71% 99.63% 97.22% 83.83% 92.75%

Peak Number 89,619 33,234 32,577 44,424 29,008 38,675 51,098

Table 1. An overview of QC parameters for the snATAC-seq profiles established in the developing zebrafish 
embryos.
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the correlation between gene expression matrix of scRNA-seq data and gene score matrix of snATAC-seq data 
with the shared features, and then we used ‘TransferData’ and ‘AddMetaData’ function to assign the label of 
scRNA-seq cell type to the snATAC-seq cell type based on prediction scores. To assess the similarity between 

Fig. 3 Clustering and annotation of the chromatin accessibility and gene expression patterns of the developing 
zebrafish embryos. (a,b) Clustering and UMAP visualization of snATAC-seq data (a) and scRNA-seq data (b) 
of all the seven developmental stages colored by cell types (left) and developmental stages (right). Histogram 
showing the percentage of specific cell type across the seven developmental stages (middle). The color legend 
of the left and middle panels is the same one. (c) Heatmap of peak-to-gene links in the developing zebrafish 
embryos generated using ArchR. (d) Heatmap showing the proportion of cells in the scRNA-seq clusters that 
overlaps with snATAC-seq defined clusters.
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the snATAC-seq and scRNA-seq datasets, we calculated the proportion of cells in the snATAC-seq cell type that 
shared labels with cells in the scRNA-seq cell type.

Peak-Gene link calculation. We performed the correlation analysis between gene expression and peak to iden-
tify peak-gene links by using ‘addPeak2GeneLinks’ function in ArchR and drew peak-gene links heatmap using 
‘plotPeak2GeneHeatmap’ function with a correlation greater than 0.75.

Fig. 4 Combined analysis of snATAC-seq data and scRNA-seq data of the developing zebrafish embryos. (a) 
Aggregated chromatin accessibility profiles of each cell type at representative marker gene loci in snATAC-seq 
data and visualized by genome browser tracks (+/− 2 kb around the promoter). (b) A paired dot plot of scaled 
expression of representative marker genes in scRNA-seq data. (c–e) TF motifs enrichment (c), TFs activity gene 
score (d) and TFs gene expression (e) for different cell types.
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Peak calling. We used the ‘addGroupCoverages’ function to create pseudo-bulk replicates for each cell type/
developmental stage and performed the peak calling by using ‘addReproduciblePeakSet’ function with the fol-
lowing parameters: groupBy = “Clusters”, pathToMACS = pathToMacs2, “–nomodel”, genomeSize = 1345118429 
for cell type; groupBy = “Stage”, pathToMACS = pathToMacs2, “–nomodel”, genomeSize = 1345118429, min-
Cells = 3500, and maxCells = 20000 for developmental stage.

Fig. 5 Footprint analysis identifies representative cell type specific TFs activities in snATAC-seq data. (top) 
Representative cell type specific TFs binding motif sequence logo, (bottom) representative cell type specific TFs 
footprint profiles. Related to Fig. 4.
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Motif database construction. We download the motif PWM matrix and the motif information of zebrafish from 
CIS-BP database (http://cisbp.ccbr.utoronto.ca/index.php) and used TFBSTOOLS (version 1.34.0) to convert 
PWM matrices into PWMatrixList objects. Then we annotated the peaks using ‘addMotifAnnotations’ function 
in ArchR with the parameters: motifset = Null, motifPWMs = PWMMatrixList.

Motif enrichment analysis. We performed cell-type differential peak analysis using ‘getMarkerFeatures’ func-
tion (FDR < 0.05 & Log2 FC > 1). Motif enrichment was performed through the ‘peakAnnoEnrichment’ func-
tion. The top 10 cell-type-specific motifs with significant adjusted P value were displayed by heatmap, and the 
corresponding transcription factors (TFs) expression were represented by genescore in snATAC-seq data and 
unique molecular identifiers (UMIs) in scRNA-seq data respectively.

TF footprinting analysis. We utilized the ‘getPositions’ function with default parameters to extract the positions of 
the relevant motifs. Subsequently, we employed the ‘addGroupCoverages’ function and ‘getFootprints’ function to 
obtain cell-type specific TF footprints. Finally, the TF footprints were visualized using the ‘plotFootprints’ function.

Data Records
All raw data (FASTQ file) generated in this study by snATAC-seq (3.3 hpf, 5.25 hpf, 6 hpf, 10 hpf, 12 hpf, 18 
hpf and 24 hpf) and scRNA-seq (6 hpf) have been deposited to CNGB Nucleotide Sequence Archive (CNSA)16 
of China National GeneBank DataBase (CNGBdb)17 with accession number: CNP000282718 and the NCBI 
Sequence Read Archive with the BioProject accession: PRJNA98738619. Additional, the gene expression matrix 
and the metadata, as well as the fragments were also submitted to CNGB Nucleotide Sequence Archive respec-
tively (https://db.cngb.org/search/project/CNP0002827/)18. The cell-type peak matrices had also uploaded to 
Figshare (https://figshare.com/articles/dataset/Supplementary_Data/23171099)20 as well. All of these vari-
ous data formats had been compiled in the Supplementary Table 1 (available at Figshare20), which consists of 
descriptions of data types and corresponding download links to facilitate easy data access.

technical Validation
Zebrafish embryos from AB wild-type crosses were harvested for snATAC-seq at developmental stages of blas-
tulation (3.3 hpf), gastrulation (5.25 hpf, 6 hpf, 10 hpf) and segmentation (12 hpf, 18 hpf, 24 hpf) (Fig. 1a). 
For the data reliability, we set up 2–4 biological replicates at each developmental stage for snATAC-seq library 
construction (Methods). The data analyses were processed via a standard pipeline (Fig. 1b). For quality control 
(QC), analyses were performed to filter low-quality data, in which the transcriptional start site (TSS) enrich-
ment scores and unique fragments for each nucleus of each developmental stage were calculated (Fig. 2a). Here, 
as the scatter plot distribution varies across each developmental time point, the filtering criteria employed to 
remove nuclei with low fragments and TSS enrichment scores differ for each respective developmental time 
point. After QC and further doublet removal, a total of 62,699 and 51,620 high-quality nuclei were obtained for 
all time points (Fig. 2b, Table 1), where the TSS enrichment scores were mostly distributed between 5–10, and 
the numbers of unique fragments were mainly distributed between 5,000–20,000 (Fig. 2c, Table 1). Meanwhile, 
we identified 29,008–89,619 non-redundant peaks across all developmental stages respectively (Table 1) and 
observed a clear peak of fragments around the annotated TSSs (Fig. 2d). Furthermore, the nuclei numbers 
(Fig. 2e), TSS enrichment scores (Fig. 2f, top) and unique fragment numbers (Fig. 2f, bottom) of each replicate 
at each time point were overall generated for further analyses. Additionally, heatmap clustering of Pearson corre-
lation coefficients from the comparison of 20 profiles presented a high correlation between replicates of the same 
developmental time point which indicated a high reproducibility of biological and technical replicates (Fig. 2g).

Subsequently, nuclei from all developmental time points were integrated and clustered by using ArchR 
(Methods) for cell-type-specific regulatory annotation. We calculated the gene activity scores by summing the 
fragments in the gene promoter and gene body to annotate cell clusters (Methods), and two of these clusters 
were excluded because of too few cells and the absence of cluster-specific genes. Finally, 23 clusters were identi-
fied as candidate cell types including the integumentary system (enveloping layer (EVL), periderm/epidermis, 
integument), nervous system (neural stem cells, forebrain, immature eye, neural keel), musculature system, 
digestive system, et al. (Fig. 3a, left). The marker genes for per cluster could be found in Supplementary Table 
2 (available at Figshare20). By comparing the proportions of cell types at different time points (Fig. 3a, middle), 
we found a gradual increase in cell types along the development. Then, based on the UMAP visualization of 
snATAC-seq data and colored by developmental stages (Fig. 3a, right), we observed that the cells of blastulation, 
gastrulation and segmentation were discretely aggregated and separated from each other.

In order to validate the accuracy of the chromatin landscape data, we inspected the consistency of the 
snATAC-seq data and the corresponding scRNA-seq data (Fig. 1a,b). We performed unsupervised clustering 
analysis on our previously published scRNA-seq dataset12 (including 3.3 hpf, 5.25 hpf, 10 hpf, 12 hpf, 18 hpf and 
24 hpf) combined with unpublished scRNA-seq data of 6 hpf embryos acquired in this study and identified 30 
clusters (the cluster 28 was excluded because of too few cells and the absence of cluster-specific genes) (Fig. 3b). 
The differential expression gene for per cluster could be found in Supplementary Table 3 (available at Figshare20). 
Furthermore, by integrating these two datasets, we observed a good correlation between gene activity scores of 
snATAC-seq data and gene expression values of scRNA-seq data (Fig. 3c), and a high congruence with mem-
bership between these two datasets (Fig. 3d). Meanwhile, we found that the genes with accessible elements 
around the promoter in the chromatin landscapes (Fig. 4a) also had a high expression level in the corresponding 
celltypes of scRNA-seq data (Fig. 4b), such as nanog which is involved in the maintenance of pluripotency at the 
blastula21, sox32 which is especially expressed in the yolk syncytial layer (YSL)/endoderm and involved in endo-
derm formation22, and elavl3 which is expressed specifically in primary neuron and involved in neurogenesis23. 
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To further dissect the regulators of different cell types in the snATAC-seq data, we compared the transcription 
factors (TFs) motif enrichment (Fig. 4c) and TFs gene activity score (Fig. 4d) generated by the snATAC-seq data 
with TFs expression (Fig. 4e) obtained from the scRNA-seq data. These analyses exhibited a good congruence 
between them in the corresponding cell types, such as myf5 in somite, grhl1 in the EVL, tal1 in the erythroid 
lineage cells, cdx4 in the tail bud and anterior/posterior axis. In order to validate the identified motifs, we per-
formed the TF footprinting analysis, which confirmed the binding of TFs to DNA. We found that the motifs 
exhibit active TF binding in the corresponding cell types (Fig. 5). In summary, we generated the chromatin 
accessibility profiles for zebrafish early embryogenesis, which proved a high concordance with the correspond-
ing published scRNA-seq data12.

Taken together, our datasets provide a valuable resource for in-depth exploration of the epigenetic regulation 
mechanism during the zebrafish embryo development.

Usage Notes
The pipeline of the snATAC-seq and scRNA-seq data processing, including the read mapping, low-quality cells 
filtering, unsupervised clustering and peak calling were run on the Linux operating system. All R/Python source 
codes with the optimized parameters used for the downstream data analyses and visualization are provided 
online.

Code availability
The codes used to analyze the data in this study were available online (https://figshare.com/articles/dataset/
Code/22121171)24.
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