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MetaFlux: Meta-learning global 
carbon fluxes from sparse 
spatiotemporal observations
Juan Nathaniel1 ✉, Jiangong Liu1 & Pierre Gentine  1,2

We provide a global, long-term carbon flux dataset of gross primary production and ecosystem 
respiration generated using meta-learning, called MetaFlux. The idea behind meta-learning stems from 
the need to learn efficiently given sparse data by learning how to learn broad features across tasks to 
better infer other poorly sampled ones. Using meta-trained ensemble of deep models, we generate 
global carbon products on daily and monthly timescales at a 0.25-degree spatial resolution from 2001 
to 2021, through a combination of reanalysis and remote-sensing products. Site-level validation finds 
that MetaFlux ensembles have lower validation error by 5–7% compared to their non-meta-trained 
counterparts. In addition, they are more robust to extreme observations, with 4–24% lower errors. We 
also checked for seasonality, interannual variability, and correlation to solar-induced fluorescence of 
the upscaled product and found that MetaFlux outperformed other machine-learning based carbon 
product, especially in the tropics and semi-arids by 10–40%. Overall, MetaFlux can be used to study a 
wide range of biogeochemical processes.

Background & Summary
Data sparsity is a prevalent challenge in climate science and ecology. For example, in-situ observations tend to 
be spatially and temporally sparse due to sensor malfunctions, limited sensor locations, or non-ideal climate 
conditions such as persistent cloud cover. Consequently, understanding many climate processes can be difficult 
because the data do not capture the full natural variability in both space and time. FLUXNET2015 is a global 
network of eddy-covariance stations that captures carbon, water, and energy exchanges between the atmosphere 
and biosphere and provides high-quality ecosystem-scale observations spanning many climate and ecosystem 
types1. However, its coverage is neither continuous nor temporally dense, especially in the years prior to 20001. 
Furthermore, its distribution across climate zones is not balanced, with only around 8% and 11% of the current 
operational stations located in the tropics and semi-arid regions, which are regions of critical importance for 
the global carbon cycle2. For instance, there is increasing evidence that most of the global interannual car-
bon variability can be attributed to the semi-arid ecosystems in the southern hemisphere3. Thus, the lack of 
high-resolution observations in these data-sparse, yet important areas may inhibit our overall understanding of 
the global carbon cycle, especially in light of climate change.

The machine-learning community has tried to tackle the data sparsity problem in many ways, including the 
development of several few-shot learning approaches4,5. One of these is the meta-learning approach that “learns 
how to learn from different tasks”. The idea behind this learning paradigm closely resembles how humans learn: 
we extract high-level features from previously learned tasks to quickly solve new problems. For instance, we 
can memorize a new person’s face with very few samples because we understand how a face should look after 
seeing many other faces. Although applications of meta-learning have been limited6,7, there has been a growing 
popularity in the applied sciences8,9. However, as far as we know, there is little work being done on the use of 
meta-learning in climate and environmental sciences, especially with regards to sparse and extreme spatiotem-
poral observations. In addition, to the best of our knowledge, there has been no upscaling effort to date that 
uses an ensemble of meta-trained deep models to produce a spatiotemporally continuous climate product from 
sparse observations. And given the importance of carbon fluxes in diagnosing the earth’s changing climate10,11, 
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there is a growing need to have a globally continuous, high-resolution dataset that best represents critical regions 
that, unfortunately, tend to have few data points.

To bridge these gaps, we aim to (i) evaluate the performance of meta-learning in environments where spa-
tiotemporal information is sparse, (ii) check its robustness when predicting extreme cases that are critical to 
the carbon cycle, and (iii) upscale point data to a globally continuous map using an ensemble of meta-trained 
deep models. In particular, we focus on gross primary production (GPP) and ecosystem respiration (Reco) as 
specific applications of the broader terrestrial carbon cycle. The upscaled product is resolved at 0.25-degree 
spatial resolution, spanning either at daily or monthly temporal resolutions between the years 2001 and 2021. 
Preliminary analysis shows that our global product (“MetaFlux”) is internally consistent in terms of its season-
ality, interannual trend, and variability, and has high correlation with satellite-based solar-induced fluorescence 
(SIF) – a proxy for photosynthesis – when compared with other data-driven products, especially in the tropics 
and semi-arid critical regions.

Finally, the dataset is freely accessible in Zenodo at https://doi.org/10.5281/zenodo.776188112, while the 
meta-learning code can be reproduced and extended from https://github.com/juannat7/metaflux with example 
notebooks to apply our approach to your specific use cases. The overall methodology is summarized in Fig. 1.

Methods
Meta-learning: learning how to learn. Meta-learning is a machine-learning paradigm that trains a 
model to learn new tasks from sparse data efficiently13, leveraging information that comes from tasks with more 
available data. In general and as illustrated in Fig. 3a, meta-learning involves two stages: a meta-training and 
a meta-update stage. During meta-training, the model, fθ (a function f that is parameterized by θ), proposes 
intermediate parameters, φ, that minimize the loss of base tasks14. In the meta-update step, the model fine-tunes 
its parameter, θ, given φ and the target tasks14, seeking the optimal parameter θ*. We define target tasks as a col-
lection of stations in data-sparse regions, including the tropics, semi-arid regions, and representative stations in 
each ecoregion defined by plant functional types (PFTs), while the base tasks consist of the complement of the 
former (i.e. stations in data-abundant regions). Given the two-step gradient update procedures in meta-training 
and meta-update loops, the optimal parameters θ*, are not biased toward data-abundant base tasks, as illus-
trated in Fig. 3a, whereas in the baseline case (Fig. 3b), the optimal learned parameters would be biased toward 
data-abundant tasks as each data point contributes similarly to model’s learning. The details on how the data 
is split, including how the base (Dbase) and target (Dtarget) datasets are divided for training and testing, are pro-
vided in the “Training setup” section below and illustrated in Fig. 4. For this work, we use an optimization-based 
meta-learning approach that is adapted from the model-agnostic meta-learning (MAML)13 as detailed in Fig. 2a.

Differentiable learners. Next, we will discuss the different deep learning models used for this work, includ-
ing a multilayer perceptron (MLP), long-short term memory (LSTM), and bi-directional LSTM (BiLSTM).

Multilayer perceptron (MLP). MLP or the feedforward artificial neural network is a fully connected deep 
model that can capture nonlinear relationships between inputs and the response variable15. Generally, an MLP 
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Fig. 1 Schematic diagram of our MetaFlux methodology from the meta-learning phase that meta-trains GPP 
and Reco from FLUXNET2015 eddy covariance flux tower data using station-level ERA5 reanalysis and RS-based 
MODIS predictors. The meta-trained and validated ensemble is then used to upscale a global 0.25-degree GPP 
and Reco at daily and monthly timescale between the years 2001 and 2021. Finally, the ensemble global mean and 
uncertainty estimates are validated and compared with evidences from the literature.
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consists of the input and output layers with several hidden layers and is activated by a set of nonlinear functions. 
In this paper, we use the Leaky Rectified Linear Unit (LeakyReLU) which is formulated in Eq. 1, where α con-
trols the extent of “leakiness” in the negative x direction. The MLP model receives instantaneous weather data 
and vegetation index.

{R x x x
x x( ) 0

0 (1)α
= >

< =

Long-Short Term Memory (LSTM). Time-series representing environmental processes tends to be strongly 
autocorrelated in time16 and Recurrent Neural Networks (RNN) were first introduced to solve this issue.  
The LSTM model was then proposed by17 to address the issues of vanishing and exploding gradients commonly 
observed in RNNs. The model can preserve long-term dependencies of sequential data through its gated struc-
ture that controls how information flows across cells. It is able to leverage association across multiple timesteps 
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Fig. 3 Schematic diagram of our (a) meta-learning approach that is meta-trained on data-abundant tasks to 
obtain a set of φ, and fine-tuned on data-sparse tasks to get θ*; (b) baseline algorithm that is not meta-trained. 
The optimal θ* in the latter case tends to be biased towards data-abundant tasks as represented by the gradient 
sets *nφ .

Fig. 2 Algorithm for both optimization-based meta-learning and its non-meta-learning counterpart.
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to inform inferential tasks where time dependency is present and significant. This can be especially useful to 
represent water stress, for instance, that depends not only on current daily precipitation but also on previous 
time steps of precipitation (water supply) and evaporative demand (temperature, radiation, humidity).

Bi-directional LSTM (BiLSTM). The BiLSTM model is trained on both forward and backward timesteps to 
best estimate the value at the current timestep, t18, similar to reanalysis products (compared to weather forecasts 
that only use past information like LSTMs). BiLSTM has been used in cases where the past is as important as the 
future contexts19. The equations describing a BiLSTM cell are similar to that in LSTM with a slight modification 
in the hidden state representations that have to capture the forward and backward timesteps.

Training setup. We train an ensemble of meta-trained deep networks. The purpose of training an ensemble is 
to quantify uncertainty and reduce the bias of each individual model20. The final model architecture and hyperpa-
rameters, including batch size and learning rates, are determined after performing a k-fold cross validation (k = 5) 
on the training set. In all, we use a 3-layer MLP with a hidden size of 350. We replace the first layer with either the 
LSTM or BiLSTM modules for the LSTM and BiLSTM models respectively to capture temporal features prior 
to the final prediction layer. The optimized ensemble is trained by minimizing the mean squared error (MSE). 
We train our models to estimate GPP and Reco at daily and monthly timescale across 206 FLUXNET2015 sites1 
(retrievable from https://fluxnet.org/data/fluxnet2015-dataset/) using a combination of meteorological and remote 
sensing inputs including precipitation, air temperature at 2-meter (Ta), vapor pressure deficit (VPD), and incoming 
short-wave radiation from ERA5 reanalysis data21 (retrievable from https://cds.climate.copernicus.eu/) and leaf 
area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) product22 (retrievable from 
https://modis-land.gsfc.nasa.gov/). We retrieve the associated time-series closest to each tower site. In particular, we 
use the night-time partitioning methods for GPP and Reco and match each flux record with reanalysis and remote 
sensing data corresponding to the station of interest. Aside from the target variable, we perform a z-normalization 
of the inputs to improve the learning process (Eq. 2).

σ
− =

−
z normalized X

X E X( )
(2)X

where E(X) is the estimated expected value of the variable X on our training data, and σX the corresponding 
sample standard deviation.

Next, we define class Ci as a set of batches consisting of input variables and target flux observations, with i 
denoting the index of batches of size 256. The definition of batch differs between linear MLP and time-series 
models, such as LSTM and BiLSTM. A batch, in the linear MLP case, refers to a collection of instantaneous data 
points, while in time-series models, it corresponds to a set of 30-day continuous data points. The choice of a 
30-day window to form a single data point in the latter case is to better capture seasonal water stress23. We con-
struct Dtarget by randomly selecting half of the stations in the tropical and semi-arid regions (defined by the 
Köppen classification24, retrievable from http://www.gloh2o.org/koppen/), which are sparse, and one station 
from each plant functional type (PFT) including those in the cropland and boreal areas25. By extension, the Dbase 
consist of stations that are complement to Dtarget. Each dataset is divided into training (Dtrain) and testing (Dtest) 
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Fig. 4 Meta-learning datasets where base tasks are used for meta-training and target tasks for meta-update. 
The subscripts train and test are used to train and evaluate the model in each of the two meta-learning steps. 
Target tasks are selected by randomly sampling half of the FLUXNET2015 stations in the tropical and semi-arid 
regions, which are sparse, and one station from each plant functional type (PFT) including those in the cropland 
and boreal regions. By extension, the base tasks consist of the remaining stations.
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sets with an 80:20 split ratio. As the term suggest, the former is used to train the model fθ, while the latter is used 
to validate the performance of the model. Overall, the set of all possible datasets, D, includes 
D D D D( , , , )train

base
test
base

train
target

test
target . Figure 4 illustrates how the dataset for meta-learning is constructed, with base 

tasks data being used for meta-training and that from target tasks for meta-update steps. We meta-train three 
models: MLP, LSTM, and BiLSTM, with an ensemble of five members each; where their individual weights are 
randomly initialized.

The non-meta-learning baseline uses identical architectures and hyperparameters, but the models do not have 
a meta-update outer loop (see Fig. 2b). This learning paradigm is similar to a single-step gradient descent learn-
ing approach26 where we backpropagate the gradient of the loss function to update fθ. This learning mode, how-
ever, can be biased to representations of tasks that have a lot more data. To ensure that a similar data structure is 
used in the baseline case, we compile D D( , )train

base
train
target  as the training set and D D( , )test

base
test
target  as the testing set.

Upscaling of global products. For the upscaling portion of this work, we use a similar set of meteorological 
and remote sensing inputs as during training at either the daily or monthly timesteps. Since VPD is not available 
in the existing ERA5 catalogue, we estimate it from air and dewpoint temperatures through the saturated (SVP) 
and actual vapor pressure (AVP) relation: VPD = SVP-AVP, which are both functions of Ta and dewpoint tem-
peratures (Td). Finally, the spatial resolution of the resulting data inputs is harmonized to 0.25-degree using an 
arithmetic averaging. The final product has four variables, including the ensemble mean estimate of GPP and Reco, 
and its uncertainty as captured by the standard deviation.

evaluation on the site and global level. First, we compare the performance of meta-trained versus 
non-meta-trained models in terms of their RMSE scores on the testing sets. In addition, we evaluate how robust 
meta-trained models are in predicting extreme fluxes. This is done by selecting GPP or Reco fluxes that exceed a 
predefined z-normalized threshold, t, that we vary between 1.0 and 2.0 (i.e. higher threshold means more extreme 
observations away from the mean value).

Next, we evaluate the upscaled product by analyzing its seasonality and interannual trends across cli-
mate zones. Thereafter, we compute the interannual variability using the interannual coefficient of variation  
(CV; Eq. 3) at the pixel level:

CV
(3)

σ
μ

=

where σ and μ are the interannual standard deviation and mean, respectively.
Finally, the Pearson correlation coefficient between GPP and solar-induced fluorescence (SIF) from CSIF27 

(retrievable from https://figshare.com/articles/dataset/CSIF/6387494) and TROPOMI SIF28 (retrievable from 
http://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/l2b/) is calculated across climate zones 
on a monthly timescale, for the periods 2001–2018 and 2019–2020, respetively. To benchmark our product, 
we compare our GPP-SIF correlation estimate, r(GPPmetaflux, SIF) with that of Fluxcom data-driven product29,  
r(GPPfluxcom, SIF), between the years 2001 and 2020. Generally-speaking, a higher correlation corresponds to a 
better GPP estimate, though this is not always the case as different ecosystem regimes and physiological charac-
teristics may manifest different associative patterns30.

Data records
The global products amount to around 50GB and are freely accessible in Zenodo at https://doi.org/10.5281/
zenodo.776188112. The spatial resolution is 0.25-degree, extending between 90-degree north to 90-degree south, 
and between 180-degree west and 180-degree east. We mask out cold regions that consist of the Arctic circle and 
Antarctica. Each Network Common Data Form (NetCDF) file contains four variables: GPP, Reco, GPP_std, Reco_
std that represent GPP, Reco ensemble mean and their uncertainties respectively. Temporally, each file is resolved 
at either the daily or monthly timescale. For instance, Fig. 5 illustrates the annual ensemble mean, while Fig. 6 
the ensemble uncertainties of GPP and Reco for the year 2021. We note that GPP tends to have higher uncertainty 
than Reco, especially in the equator and higher-latitude regions.

For the daily product, the naming convention for each .nc file is METAFLUX_GPP_RECO_daily_<−
year><month>.nc; where <year> takes a value between 2001 and 2021 and <month> between 01 and 12 for 
January and December.

For the monthly product, we perform identical training and upscaling steps but using monthly, rather than 
daily fluxes, reanalysis, and remote sensing products. The naming convention for each file is METAFLUX_GPP_
RECO_monthly_<year>.nc; where <year> takes a value between 2001 and 2021.

Technical Validation
In this section, we first evaluate our meta-learning approach based on site-level validation RMSE and its robust-
ness to extreme observations. Next, we examine the seasonality, interannual trend and variability, and correla-
tion with independent SIF products.

evaluation of meta-learning as a learning framework. Convergence and site-level performance. As 
illustrated in Fig. 7 and Table 1, meta-trained deep models generally perform better than their baseline 
non-meta-trained counterparts. For instance, the validation RMSE of the meta-trained MLP on GPP is 3.13 gC 
m−2 d−1  ± 0.06 as compared to 3.47 gC m−2 d−1  ± 0.07 in the baseline case. A similar result is observed for Reco 
where the RMSE of the meta-trained MLP is 3.07 gC m−2 d−1  ± 0.05 as compared to 3.31 gC m−2 d−1  ± 0.07 in 
the baseline case. In addition, the choice of deep networks matters. Overall, models that incorporate temporal 
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information, i.e. the LSTM and BiLSTM models, perform better than models that do not. In the GPP case, for 
example, the non-meta-trained BiLSTM model has the lowest validation error of 3.00 gC m−2 d−1  ± 0.04, followed 
by the meta-trained LSTM model with an RMSE of 3.06 gC m−2 d−1  ± 0.06. This confirms our physical intuition 
that water stress, which tends to regulate productivity, builds up over many days to months and thus requires a 
memory process as captured by the recurrent neural networks. Moreover, plant photosynthesis and respiration 
can acclimate to the prevailing environmental conditions, such as temperature, light and VPD31,32, which tend to 
be captured more effectively by memory-informed models. Nonetheless, the addition of bi-directionality in the 
BiLSTM model does not appear to significantly reduce error in the meta-trained models. This can be because the 
concept of data assimilation from future context has been captured through the process of meta-learning itself or 
that the signal coming from unidirectional timeseries is sufficiently saturated to parameterize the model. In other 
words, since our meta-learning approach primarily considers the spatial heterogeneity of the fluxes (e.g., across 
climate zones and PFTs), this spatial information, along with the temporal signals coming from BiLSTM gradient 
steps, result in a more unstable learning due to signal oversaturation which is evident from the larger convergence 
spread across model runs. This can be regularized by considering not just spatial, but also the spatiotemporal 
heterogeneity in a meta-learning approach33, though this will increase the complexity of the algorithm and could 
potentially limit its extrapolation capacity. This remains the subject of future work.

Robustness under extreme conditions. Making an accurate estimate for extreme cases is especially important 
in climate science because extreme weather tends to cause catastrophic damages, such as major droughts, wild-
fires, or plant mortality34,35. Fig. 8 illustrates the performance of our meta-trained models under an increasing 
magnitude of extremes as defined by the z-normalized threshold, t. In general, our meta-trained models (orange 
line) are more robust in predicting extreme cases of observed GPP and Reco (i.e. lower validation RMSE) than 
their baseline counterparts (blue line), with a difference of around 1.2 gC m−2 d−1 and 0.7 gC m−2 d−1 for GPP 
and Reco respectively.

Fig. 5 Mean ensemble estimate of (a) GPP and (b) Reco for the year 2021. Higher estimates of GPP and Reco are 
observed in the tropics while lower ones are in the semi-arid regions.

https://doi.org/10.1038/s41597-023-02349-y
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If we further examine model performance across climate zones (Tables 2, 3) and select extreme fluxes with 
a normalized-target threshold, t, that is greater than 1.0, we find that our meta-trained models outperform 
the baselines. The reason why we choose this threshold is to have sufficient extreme observations across cli-
mate zones such that a more meaningful comparison can be made. In the GPP case, for example, meta-trained 
ensemble has lower validation RMSE of 3.78 gC m−2 d−1  ± 0.33 (versus 4.10 gC m−2 d−1  ± 0.29) and 3.04 gC 
m−2 d−1  ± 0.02 (versus 3.45 gC m−2 d−1  ± 0.06) in the semi-arid and tropics, respectively. A similar finding is 
observed for Reco where meta-trained ensemble has lower validation RMSE of 2.35 gC m−2 d−1  ± 0.04 (versus 
2.65 gC m−2 d−1  ± 0.06) in the tropics. These results are promising as the representation of both the tropics and 
semi-arid regions in many upscaled products is often challenging due to the limited number of observations 
available and the complex, memory-like processes involved. For example, in the semi-arid regions, there is 
a build-up of time-dependent water stresses36, while in the tropics, there is a complex seasonal cycle of leaf 
flushing and phenology37,38. Our approach is superior in its ability to reproduce carbon fluxes in the tropics and 
semi-arid areas because limited data here are optimally enriched with shared information coming from other 
data-abundant regions through meta-learning.

Fig. 6 Ensemble uncertainty in terms of the standard deviation of (a) GPP and (b) Reco for the year 2021. 
Generally, GPP has higher uncertainty than Reco, especially in the equator and higher-latitude regions.

Fig. 7 Site-level validation errors for (a) GPP and (b) Reco across differentiable models (MLP, LSTM, and BiLSTM) 
that are meta-trained (orange lines) or not (blue lines). The shaded regions represent the standard deviation of RMSE 
across 5 model runs and 100 epochs (where a single epoch refers to a complete pass over the entire training dataset). 
In general, the meta-trained models perform better, and the choice of internal learner matters as demonstrated by 
the overall lower RMSE of the either LSTM or BiLSTM time models that account for temporal dependency.

Model

GPP Reco

Baseline Meta-trained Baseline Meta-trained

MLP 3.47 ± 0.07 3.13 ± 0.06 3.31 ± 0.07 3.07 ± 0.05

LSTM 3.25 ± 0.01 3.06 ± 0.06 3.13 ± 0.02 2.89 ± 0.06

BiLSTM 3.00 ± 0.04 3.18 ± 0.07 2.87 ± 0.04 3.09 ± 0.12

Table 1. Site-level validation RMSE (gCm−2 d−1) across differentiable models for GPP and Reco. The numbers in 
bold correspond to models that have lower RMSE in either the baseline or meta-learning cases.

https://doi.org/10.1038/s41597-023-02349-y
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evaluation of meta-learned global data. Now that we have validated our meta-learning framework on 
the site level, we proceed to evaluate the internal consistency of our upscaled product. This includes the analysis 
of seasonality, interannual variability, and comparison to SIF as an independent photosynthesis product.

Temporal analysis. First, we analyze the seasonality of our upscaled GPP and Reco across months for the years 
between 2001 and 2021. As shown in Fig. 9, both fluxes exhibit similar seasonality albeit at different magnitudes. 
The tropics (including the dry and wet regions) contribute the most to the global GPP and Reco, as expected39,40, 
while the semi-arid regions contribute the least41. Carbon fluxes in the temperate (northern hemisphere) and 
continental regions exhibit unimodal variations that peak in the summer (June, July, and August - JJA), while 
those in the southern temperate regions peak in December, January, and February (DJF)42. On average, the 
temperate regions have higher carbon fluxes than the continental areas, which tend to be limited by light and 
temperature, with shorter growing seasons43.

Another interesting analysis is to understand the long-term trends of our global carbon fluxes. As observed 
in Fig. 10, our meta-trained global carbon product shows an overall increase in GPP by 0.0113 PgCyr−1 and Reco 
by 0.0101 PgCyr−1. We extend Fig. 10 by making a comparison with other carbon flux products, including those 
from light response function (LRF)44, P-model45, MODIS17 (MOD17)46, Soil Moisture Active Passive (SMAP)47, 
vegetation photosynthesis model (VPM)27, and Global LAnd Surface Satellite (GLASS)48 for GPP, as well as 
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Fig. 8 Comparison between the performance of meta-trained and baseline models at an increasing level of extreme 
(a) GPP and (b) Reco daily observations. The y-axis indicates the average RMSE when the ensemble predicts carbon 
fluxes with z-value greater than the threshold t. Overall, we find that the meta-trained ensemble has lower RMSE 
across increasing extreme threshold than its baseline counterpart.

Climate zones Mean extreme GPP Baseline RMSE Meta-trained RMSE

Semi-arid 11.48 4.10 ± 0.29 3.78 ± 0.33

Continental 11.47 3.62 ± 0.10 3.61 ± 0.07

Temperate 11.45 3.89 ± 0.09 3.71 ± 0.04

Tropics 10.68 3.45 ± 0.06 3.04 ± 0.02

Table 2. Robustness of meta-trained ensemble when inferring extreme GPP observations across climate zones 
at the normalized-target threshold, t > 1.0 (all units in gC m−2 d−1). The numbers in bold represent models with 
lower RMSE between the baseline and meta-learning cases across different climate zones.

Climate zones Mean extreme Reco Baseline RMSE Meta-trained RMSE

Semi-arid 8.80 1.37 ± 0.10 1.42 ± 0.06

Continental 8.70 2.29 ± 0.06 2.27 ± 0.05

Temperate 8.51 2.13 ± 0.08 2.06 ± 0.06

Tropics 8.71 2.65 ± 0.06 2.35 ± 0.04

Table 3. Robustness of meta-trained ensemble when inferring extreme Reco observations across climate zones 
at the normalized-target threshold, t > 1.0 (all units in gC m−2 d−1). The numbers in bold represent models with 
lower RMSE between the baseline and meta-learning cases across different climate zones.
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Fluxcom29 for both GPP and Reco. Overall, they show similar peaks and declines, albeit at varying magnitudes 
(between 100–140 PgC yr−1) as shown in Fig. 11.

Interannual variability. We find that the semi-arid regions of Australia, America, and some parts of the north-
ern latitudes have the largest interannual variability of GPP and Reco (Fig. 12). This is consistent with results 
from2 and3 that reported significant contribution of these regions, particularly of the Australian ecosystems, 
in explaining much of the global carbon interannual variability. As a result, the high turnover rate of carbon 
pools in these semi-arid environments warrants further research into how the climate and anthropogenic 
factors can account for this large interannual variability, such as the extent of carbon stock decomposition  
(e.g. due to wildfire) and accumulation during the dry and wet seasons. In addition, our upscaled product shows 
high interannual variability in the dry tropical regions of Asia. However, this variation becomes smaller in the 
tropical forests of Asia, Africa, and America owing to their relatively stable climate. This can be attributed to 
the region’s sensitivity to rainfall pattern driven by El Niño-Southern Oscillation (ENSO), or soil moisture49,50 
and rapid land-use changes51. In contrast to Fluxcom, our upscaled product does not show as much interannual 
variability, especially in desert regions (eg. Australia, Central America, South America, and Central Asia), which 
may be more accurate owing to the extremely low primary productivity there in the first place52. Nonetheless, we 
note that in some parts of the globe, especially along the Sahel and continental Western Europe, the interannual 
variability of carbon fluxes from MetaFlux is smaller. Physically, this phenomenon has been reported by53 and54 
who observe how variations in terrestrial carbon productivity tend to be stronger in space rather than time.  
The second plausible reason would be that the ensemble captures much of this variability (i.e. expressed as 
standard deviation), where each member model learns a different temporal structure that can result in lower 
than expected mean interannual variability. Lastly, and as highlighted in Figs. 13, 14, meta-learning attempts 
to learn efficiently from historically underrepresented regions, such as the tropics, which tend to have low 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

2.0

2.5

3.0

3.5

4.0

G
PP

 (
gC
m

2 d
1 )

Tropics
(Semi)-Arid
Temperate_north
Temperate_south
Continental

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

2.0

2.5

3.0

3.5

4.0

R
EC

O
 (
gC
m

2 d
1 )

Tropics
(Semi)-Arid
Temperate_north
Temperate_south
Continental

Fig. 9 Seasonality of (a) GPP and (b) Reco across climate zones for the years 2001–2021.
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fluxes, respectively. At a critical value of 0.01, both regression lines are significant with with p-value less than 0.01.
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interannual variability. This potentially results in a reduction in such variability at higher latitudes, especially 
along the temperate and continental regions.

Comparison with Solar-induced fluorescence (SIF). In order to evaluate the quality of the seasonal cycle of our 
product, in particular GPP, we measure its correlation coefficient with several SIF products. MetaFlux GPP 
demonstrates higher Pearson correlation coefficient with both CSIF and TROPOSIF (Figs. 13, 14, Tables 4, 5) 
than Fluxcom GPP across the temperate, semi-arid, and tropical regions with values higher than 0.8 to 0.9 even 
at the very northern latitudes. In particular, the correlation coefficient of our upscaled product with TROPOSIF 
in the semi-arid, tropics, and temperate regions are 0.856 ± 0.083 (versus 0.726 ± 0.165), 0.546 ± 0.299  
(versus 0.343 ± 0.164), and 0.919 ± 0.002 (versus 0.826 ± 0.021), respectively. A similar trend is also observed 
in the CSIF case where the correlation in the semi-arid, tropics, and temperate regions are 0.925 ± 0.026  
(versus 0.914 ± 0.060), 0.772 ± 0.080 (versus 0.608 ± 0.105), and 0.922 ± 0.022 (versus 0.914 ± 0.037), respec-
tively. Across the two SIF products, however, we observe weaker correlation strength in the continental regions. 
Upon further inspection of Figs. 13, 14, the weaker association could be due to the slight uptick of our GPP esti-
mate during the DJF period, which can be attributed to the lower quality of LAI retrievals because of snow cover.
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products.

Fig. 12 The interannual variability as measured by the coefficient of variation (CV) for (a) MetaFlux GPP,  
(b) MetaFlux Reco, (c) Fluxcom GPP, and (d) Fluxcom Reco.
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Finally, we inspect the pixel-level correlation distribution of MetaFlux and Fluxcom with long-term CSIF 
product, as illustrated in Fig. 15. In general, MetaFlux has lower correlation with SIF in the tropical rainforest of 
Indonesia and Amazon as well as the arid regions of Australia, Gobi, Arabian, Syrian, Karakum, Taklamakan, 
Gobi, and the Great Plains in Northern America. This trend is consistent with earlier reports by55, for example, 
who showed how arid and extremely wet tropical regions (e.g. rainforests) tend to have low GPP-SIF correlation 
because of weak seasonality that essentially drop correlations to background noise level.

In summary, we have developed a new terrestrial carbon flux product, MetaFlux, using an ensem-
ble of meta-learned deep networks. We have demonstrated how meta-learning can better estimate fluxes in 
data-sparse, yet critical regions (e.g. semi-arid and the tropics) and are more robust to predicting extreme obser-
vations. Our global product is able to outperform other reference product when evaluated against independent 
measurement, such as SIF or on flux tower networks. We believe that although data sparsity can be a major 
limiting factor to our complete understanding of many climate processes, leveraging knowledge in other similar 
domains can be powerful to better understand processes and their response to the environment.

Usage Notes
The data is permanently stored in Zenodo at https://doi.org/10.5281/zenodo.776188112 and is available at either 
the monthly or daily temporal scale. Each file contains four variables, GPP, Reco, GPP_std, and Reco_std, that are 
resolved continuously at a 0.25-degree spatial resolution. We purposely mask out the cold regions of Antarctica 
and the Arctic circle because we assume the lack of GPP and Reco there. Although we do not mask out the arid 
regions (e.g. deserts), we would recommend users to do so in order to remove any artifical, though small, esti-
mates. In addition, we do not estimate net ecosystem exchange (NEE) explicitly. One of the primary reasons is 
because their fluxes (and by extension, their magnitude of variability) are significantly lower than that of GPP 
and Reco, making estimations from current input variables difficult and because the underlying drivers of GPP 
and Reco can differ. Separating the fluxes will ensure better generalization across regimes. Nonetheless, since 
we use the night-time partitioning algorithm that extrapolates respiration-based NEE estimates (where GPP is 
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Fig. 13 Aggregate Pearson correlation coefficient for the seasonality of GPPmetaflux (versus GPPfluxcom) and CSIF 
for the year 2012 in the (a) continental – 0.937 (versus 0.996), (b) temperate – 0.929 (versus 0.819), (c) semi-
arid – 0.931 (versus 0.926), and (d) tropics – 0.829 (versus 0.457). The y-axis represents the min-max scaled 
value of either GPP or SIF for that particular climate zone.
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Fig. 14 Aggregate Pearson correlation coefficient for the seasonality of GPPmetaflux (versus GPPfluxcom) and 
TROPOSIF for the year 2019 in the (a) continental – 0.925 (versus 0.963), (b) temperate – 0.917 (versus 0.805), 
(c) semi-arid – 0.773 (versus 0.561), and (d) tropics – 0.844 (versus 0.179). The y-axis represents the min-max 
scaled value of either GPP or SIF for that particular climate zone.

Climate zones r(GPPfluxcom, SIF) r(GPPmetaflux, SIF)

Semi-arid 0.914 ± 0.060 0.925 ± 0.026

Continental 0.994 ± 0.002 0.944 ± 0.008

Temperate 0.914 ± 0.037 0.922 ± 0.022

Tropics 0.608 ± 0.105 0.772 ± 0.080

Table 4. Mean Pearson correlation coefficient for the seasonality of GPP (MetaFlux and Fluxcom) and CSIF 
in the years 2001-2018 across climate zones. The numbers in bold represent product with higher GPP-SIF 
correlation.

Climate zones r(GPPfluxcom, SIF) r(GPPmetaflux, SIF)

Semi-arid 0.726 ± 0.165 0.856 ± 0.083

Continental 0.965 ± 0.002 0.937 ± 0.012

Temperate 0.826 ± 0.021 0.919 ± 0.002

Tropics 0.343 ± 0.164 0.546 ± 0.299

Table 5. Mean Pearson correlation coefficient for the seasonality of GPP (MetaFlux and Fluxcom) and 
TROPOSIF in the years 2019–2020 across climate zones. The numbers in bold represent product with higher 
GPP-SIF correlation.
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assumed to be absent during night-time) to daytime56, users are able to get an approximation of NEE by sub-
tracting GPP from Reco (i.e., Reco - GPP). However, this approximation is still subject to broader validation, which 
we leave for future work.

code availability
The meta-learning code is freely available and accessible at https://github.com/juannat7/metaflux. The repository 
contains notebooks that are customizable to one’s needs beyond the scope of this work. Further questions, 
feedback, or comments can be directed to the corresponding author.
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