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Peripheral blood mononuclear cells (PBMCs) are blood cells that are a critical part of the immune system 
used to fight off infection, defending our bodies from harmful pathogens. In biomedical research, 
PBMCs are commonly used to study global immune response to disease outbreak and progression, 
pathogen infections, for vaccine development and a multitude of other clinical applications. Over the 
past few years, the revolution in single-cell RNA sequencing (scRNA-seq) has enabled an unbiased 
quantification of gene expression in thousands of individual cells, which provides a more efficient tool 
to decipher the immune system in human diseases. In this work, we generate scRNA-seq data from 
human PBMCs at high sequencing depth (>100,000 reads/cell) for more than 30,000 cells, in resting, 
stimulated, fresh and frozen conditions. The data generated can be used for benchmarking batch 
correction and data integration methods, and to study the effect of freezing-thawing cycles on the 
quality of immune cell populations and their transcriptomic profiles.

Background & Summary
Peripheral blood mononuclear cells (PBMCs) are blood cells that are a critical part of the immune system used to 
fight off infection. They work together to protect our bodies from harmful pathogens. Due to their primary loca-
tion in peripheral blood, they act as a line of defense against infection and disease. PBMCs are used by medical 
researchers to study immune cell behavior when exposed to various pathogens, disease progression in the human 
body and factors affecting long-term immunity1. PBMCs are used in a multitude of different areas, such as vac-
cine development, infectious disease study, immunology, disease modeling and biomarker identification, just 
to name a few. However, due to the complexity of PBMCs, which contain multiple different cell types, studying 
the function of the individual cell types can be difficult, and studies often rely on bulk measurements. Single-cell 
RNA-sequencing (scRNA-seq) approaches can be used to overcome these problems, allowing for the identifi-
cation and quantification of the subpopulation of cells that make up the PBMC sample quite easily. ScRNA-seq 
has emerged as a central tool for identifying and characterizing cell types, states, lineages and circuitry2.  
The rapid growth in the scale and robustness of laboratory protocols and associated computational tools has 
opened the way to substantial scientific discoveries. ScRNA-seq was also applied to the sequencing and analysis 
of PBMCs transcriptomics in various health and disease contexts. For instance this technology was used quite 
recently to analyze the immune response landscape of COVID-19 and Influenza patients3. In another study, 
Wang and colleagues used scRNA-seq on PBMCs to study the global immune response in Kawasaki disease 
(KD) patients. KD is the most common cause of acquired heart disease in children in developed countries.  
The study showed that the most differentially expressed genes were found in monocytes, with high expression of 
pro-inflammatory mediators, immunoglobulin receptors and low expression of MHC class II genes in acute KD, 
and that the percentage of CD8+ T cells is decreased in acute KD, and notably effector memory CD8+ T cells 
compared to healthy controls4. Here we use scRNA-seq to sequence more than 30,000 cells from human PBMC 
samples to high depth of coverage (>100,000 reads/cell). We provide data from resting and stimulated PBMCs. 
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We used lipopolysaccharides (LPS) bacteria extracts to induce an immune response and transcriptional changes. 
We also provide a dataset where cells have been frozen according to a demonstrated protocol for the preparation 
of fresh frozen human PBMCs for scRNA-seq analysis. We illustrate how those datasets can be used for bench-
marking computational methods for data integration and to analyse the consequences of freezing/thawing cells 
before scRNA-seq library preparation.

Methods
Participant information. Fresh blood was provided by the EFS (Etablissement Francais du Sang) from two 
healthy anonymous donors (one adult female and one adult male) who gave informed consent for experimental 
research work. The EFS is a public administrative body responsible for collecting, preparing, qualifying and dis-
tributing labile blood products (blood, plasma, platelets) for blood transfusion in France. EFS is authorised, for 
its non-transfusion activities, to collect, prepare, store and sell blood or its components for teaching or research 
purposes, excluding any therapeutic use. Only adults (older than 18 years old) can give their blood and harvest-
ing is only carried out with the written consent of the donor. The doctor informs the donor of the importance of 
biological samples for the progress of medical research.

PBMCs isolation. Twelve ml (2 tubes by donor) of fresh blood was collected in EDTA anticoagulant. PBMCs 
were isolated using HISTOPAQUE-1077 (Sigma Aldrich; cat# 10771-6X100ML). After centrifugation (285 rcf × g 
for 5 min at room temperature without the brake), PBMCs remained at the plasma-HISTOPAQUE-1077 inter-
face and were carefully transferred to a new tube. PBMCs were washed two or three times with 3x volume 1X 
PBS (cat# 10010023 Gibco) followed by a centrifugation (285 rcf × g for 5 min at room temperature without the 
brake). A visual check was done after each centrifugation to ensure that no platelets remain. After that, we fol-
lowed two different paths (Fig. 1). (1) PBMCs were re-suspended until uniform cell suspensions were obtained 
in 10 mL of culture medium: RPMI 1640 Medium, GlutaMAXTM supplement (cat# 61870044 Gibco) with 10% 
FBS (Fetal bovine serum cat# 10270106 Gibco) and 2% Pennicilline/streptomycine (cat# 15070063 Gibco).  
The PBMCs were then incubated overnight at 37 °C, 5% CO2. For the stimulated sample we used LPS 1 µg/1 mL 
(Lipopolysaccharides from Escherichia coli O111:B4; cat# L5293-2ML Sigma Aldrich) incubated at 37 °C for 
4 hours. LPS is used to induce inflammatory response and transcriptomic changes. The sample with no treatment 
(the “resting” sample) was incubated at 37 °C for 4 hours. After incubation, PBMCs were used for the cell suspen-
sion preparation step. (2) PBMCs were frozen according to the manufacturer’s protocol (Fresh Frozen Human 
Peripheral Blood Mononuclear Cells for Single Cell RNA sequencing CG00039 revD, 10X Genomics). The cells 
were stored in a −80 °C freezer for at least one week and thawed according to the protocol before cell suspension 
preparation. For the samples that were not frozen, PBMCs after resuspension were used directly for the cell sus-
pension preparation. Note that the sample used for the LPS experiment corresponds to the adult male anonymous 
donor, while the sample used for the fresh/frozen experiments corresponds to the adult female anonymous donor.

Cell suspension preparation. PBMCs were counted with a Malassez counting chamber, dead cells rate and 
cellular debris were checked. The cells were centrifuged at 285 rcf × g for 5 min at room temperature without the 
brake. The supernatant was removed, and the cell pellet was resuspended in 1 mL 1X PBS (cat# 10010023 Gibco) 

Fig. 1 Schematic overview of experimental design. For the LPS vs No treatment study, two samples (technical 
replicates) were generated from the same blood sample. Single-cell library preparation was performed after 
4 hours of treatment/no treatment, followed by sequencing. For the Frozen vs no treatment study, four samples 
(technical replicates) were generated from the same blood sample. Two replicates were frozen for 7 days, thawed 
(following the manufacturer demonstrated protocol for human frozen PBMCs), and processed for single-cell 
libraries preparation. The last two replicates were processed for single-cell libraries preparation immediately 
after isolation. Note that frozen and fresh libraries were prepared on different days (but on the same machine). 
All four fresh/frozen libraries were sequenced on the same machine. Note that the sample used for the LPS 
experiment corresponds to the adult male anonymous donor, while the sample used for the fresh/frozen 
experiments corresponds to the adult female anonymous donor.
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containing 0.04% filtered Bovine Serum Albumin (BSA, 50 mg/ml cat#AM2616, ThermoFischer Scientific). 
Resuspended cells were centrifuged at 285 rcf × g for 5 min at room temperature. The supernatant was removed 
delicately and the cell pellet was resuspended in 1 mL 1X PBS containing 0.04% filtered BSA. For the frozen cells, 
PBMCs were thawed and resuspended according to the manufacturer’s protocol (Fresh Frozen Human Peripheral 
Blood Mononuclear Cells for Single Cell RNA sequencing CG00039 revD, 10X Genomics). In the end, the cells 
are also resuspended in 1 ml 1X PBS containing 0.04% filtered BSA. Cells were again counted with a Malassez 
counting chamber. According to the manufacturer’s protocol, a concentration between 700,000 and 1,200,000 
cells per ml is required for the next step. Consequently the volume was adapted if needed to reach this concen-
tration range.

Single cell library preparation and sequencing. Single Cell RNA-Seq was performed using the 10X 
Genomics Chromium Next Gem Single cell 3′ Reagents Kits v3.1 (PN-1000121, CG000315 protocol rev A, 10X 
Genomics) and Dual Index kit TT set A (PN- 1000215, 10X Genomics) according to the manufacturer’s instruc-
tions. For the resting and stimulated samples, the target was estimated at 8000 cells, while for the fresh and frozen 
samples, the target was set at 6,000 cells. Briefly, the cell suspension barcoded gel beads and partitioning oil were 

10X Gen. PBMC resting PBMC stimulated

Target nb of cells 10,000 8,000 8,000

Estimated nb of cells 10,915 6,876 7,895

Median nb of genes per cell 2,310 2,322 2,487

Mean nb of reads per cell 110,728 115,573 114,721

Fraction reads in cells 95% 95.5% 95.4%

Total genes detected 25,638 25,791 26,012

Median UMI counts per cell 8,504 8,488 10,129

Total nb of reads 1.2 B 788 M 901 M

Sequencing saturation 71% 79% 76%

Reads mapped to genome 96% 96% 96%

Reads mapped to transcriptome 56% 54% 54%

Median nb of mitochondrial genes 6.5% 5.8% 5.1%

Doublets rate 8.3% 7.3% 6.7%

Valid barcodes 98.3% 96.7% 96.8%

Valid UMIs 99.9% 100% 100%

Q30 bases in barcode 97% 93.8% 94%

Q30 bases in RNA read 95.4% 92.2% 91.8%

Q30 bases in UMI 96.9% 93.4% 93.6%

Table 1. Quality control indicators for the resting and stimulated PBMC samples. 10X Gen.: 10X Genomics 
public PBMC sample.

PBMC fresh 1 PBMC fresh 2 PBMC frozen 1 PBMC frozen 2

Target nb of cells 6,000 6,000 6,000 6,000

Estimated nb of cells 3,942 4,336 3,820 3,920

Median nb of genes per cell 2,094 2,030 1,590 1,664

Mean nb of reads per cell 105,465 95,118 121,573 121,545

Fraction reads in cells 93.5% 93.2% 73.7% 81.7%

Total genes detected 23,703 23,864 23,438 23,267

Median UMI counts per cell 8,079 7,852 5,555 6,385

Total nb of reads 416 M 412 M 465 M 476 M

Sequencing saturation 80% 77% 82% 85%

Reads mapped to genome 95% 91% 93% 94%

Reads mapped to transcriptome 53% 51% 39% 45%

Median nb of mitochondrial genes 6.2% 6.1% 5% 4.5%

Doublets rate 6.8% 8.9% 4.7% 3.3%

Valid barcodes 97.3% 97.3% 96.6% 96.7%

Valid UMIs 99.9% 99.9% 99.9% 99.9%

Q30 bases in barcode 95.1% 95.2% 95% 94.6%

Q30 bases in RNA read 93.3% 93.7% 93.1% 92.6%

Q30 bases in UMI 94.8% 94.9% 94.7% 94.3%

Table 2. Quality control indicators for the fresh and frozen PBMC samples.
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loaded onto the 10X Genomics Chromium Chip (Next GEM chip G) to generate single cell Gel Beads In emulsion 
(GEMs). Captured cells were lysed and the transcripts were barcoded through reverse transcription inside indi-
vidual GEMs. The constructed libraries were sequenced on Illumina NextSeq500 (FC High output 300 cycles) or 
Novaseq (FC S1 standard 200 cycles) and processed using Cell Ranger version 6.0.1 (10X Genomics).

Data processing and analysis. The fastq and index files were processed with Cell Ranger and the human 
genome GRCh38 as the reference (10X Genomics annotation file refdata-gex-GRCh38-2020-A). The R package 
Seurat5 version 4.1.0 was used for quality control and most of the analysis. In addition, we used Scrublet6 for dou-
blets estimation and the software tool MultiMAP7 for certain steps of dimensionality reduction. In order to anno-
tate the clusters described on Fig. 6, we used the Seurat functions “FindTransferAnchors” and “TransferData” to 
transfer cell type labels from a reference dataset onto a new query dataset. The reference dataset in this case is a 
Human PBMC reference dataset included in the package Seurat (dataset “ifnb”). The complete procedure for data 
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Fig. 2 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells. rest = resting PBMCs, 
stim = stimulated PBMCs.
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Fig. 3 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the 
CCA method. rest = resting PBMCs, stim = stimulated PBMCs.
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transfer, as well as all the procedures used to produce the figures and analyses showed in this study, are available 
on our GitHub repository (https://github.com/erbon7/sc_pbmc).

Data Records
The raw data consisting of nucleotide sequences (FASTQ files) along with Cell Ranger filtered feature-barcode 
matrices (MEX format, file barcodes.tsv.gz, features.tsv.gz, matrix.mtx.gz) for each sample are publicly available 
in the NCBI GEO database (GEO:GSE226488)8.

technical Validation
After sequencing, all the samples were processed with Cell Ranger with default parameters for quality control 
and gene counting. For the resting and stimulated samples, we set the “–expect-cells” parameter to 8,000 and 
for the fresh and frozen samples we set this parameter to 6,000. We used the human genome GRCh38 as the 
reference (10X Genomics annotation file refdata-gex-GRCh38-2020-A). Doublets rates were estimated with the 
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Fig. 5 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the 
MultiMAP method. rest = resting PBMCs, stim = stimulated PBMCs.
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Fig. 4 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the 
RPCA method. rest = resting PBMCs, stim = stimulated PBMCs.
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software Scrublet6, using the default parameters. The Cell Ranger summary reports, which include many differ-
ent quality indicators, did not report any value outside the expected ranges. Table 1 reports the indicators for the 
LPS treatment experiment. For comparison, we also included in this table the indicators obtained from a similar 
dataset publicly available from 10X Genomics that we use here as a reference9. This PBMC dataset comes from a 
healthy donor and was sequenced at a depth of approximately 110,000 reads/cell, for a target of 10,000 cells. The 
FASTQ files were downloaded from the site and processed with the same version of Cell Ranger and with the 
same parameters. We can see in Table 1 that the quality indicator values for the resting and stimulated PBMCs 
are very similar to the values for the reference 10X Genomics sample. We have a median number of genes per 
cell around 2,300 and a mean number of reads per cell of 115,000 for the resting and stimulated samples, thus 
achieving a sequencing saturation of 79 and 76% respectively, slightly better than the 10X Genomics reference 
dataset. For the percentage of reads mapped to the genome and the transcriptome, the values are almost identi-
cal. The rate of doublets, estimated with the Scrublet software on the raw counting matrices, is within expected 
values and is slightly lower for the resting and stimulated datasets compared to the 10X Genomics reference set. 
The median number of mitochondrial genes, a common indicator of apoptotic cells, is well below the commonly 
used threshold of 10% for both the resting and the stimulated datasets. For the frozen/non frozen PBMC sam-
ples, there are four samples in total (two technical replicates for the fresh conditions and two technical replicates 
for the frozen conditions). All the indicators are shown in Table 2, and are within the acceptable range. There was 
no special warning in the Cell ranger report. For the fresh samples, the values are similar to the values obtained 
for the resting PBMC experiment. The median number of genes per cell for the fresh samples is around 2,100 
with a mean number of reads per cell of 100,000 and a doublet rate of 7–8%. For the frozen samples, the mean 
number of genes per samples is lower, around 1,600 genes per cell, with a slightly higher mean number of reads 
per sample and a lower doublets rate of 3–5%. The sequencing saturation is high for all samples, with values that 
are between 77 and 85%. For all the samples we have a median number of mitochondrial genes below the usual 
threshold of 10%. Taken together, all these results demonstrate the high quality of our human PBMC scRNA-seq 
datasets.

Usage Notes
Resting versus stimulated PBMC. For this analysis example, we filtered the two PBMC datasets to remove 
low quality cells. First we removed the doublets predicted by Scrublet (308 for resting PBMCs and 344 cells for 
stimulated). Then, we analysed the distribution of the median number of genes per cell and the percentage of 
mitochondrial genes per cell to define the filtration thresholds. We removed cells having a low or very high 
median number of genes (>200 and <7000 for resting, >200 and <6200 for stimulated PBMCs), and cells having 
a percentage of mitochondrial genes greater than 14%. After filtering, we were left with 6,206 cells and 7,057 cells 
for resting and stimulated PBMCs respectively.

High-throughput single-cell transcriptomics has become a very popular and powerful tool for unbiased pro-
filing of complex and heterogeneous cellular systems, thanks to the availability of commercialized workflows and 
improvements in cost and throughput10. The main applications of this technology are related to the discovery 
of cell types and states, the reconstruction of cell trajectories and fate decisions, and the modelling of spatially 
complex tissues. However for most studies data is generated separately, i.e. at different times and with different 
operators. For very large scale studies (e.g. a cell atlas), data may also be generated in multiple laboratories, with 
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Fig. 6 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the 
CCA method and clustering.
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different cell dissociation protocols. These factors result in batch effects, where the expression of a gene in a batch 
differs systematically from that in another batch. These differences may introduce spurious structures in the data 
or mask the underlying biology, leading to wrong conclusions. Thus, it is necessary to correct such effects before 
further analysis11. Several methods have been developed to correct batch effects in single-cell transcriptomics 
data, using different statistical and mathematical frameworks (see for example5,7,12,13). It is essential to bench-
mark all those methods properly in order to evaluate precisely their respective strengths and weaknesses. For 
instance, Haghverdi and colleagues13 use different datasets to benchmark their mutual nearest-neighbor (MNN) 
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Fig. 7 Visualisation of the expression of some genes. The top panel shows resting (left) and stimulated (right) 
PBMCs labelled by predicted cell identities. The lower panels show the same UMAP projections coloured by 
gene expression for the genes SH2D1B, IFI6 and CXCL10.
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algorithm: simulated data for a simple scenario with two batches of cells having varying proportions of three 
cell types, two hematopoietic datasets generated in different laboratories using different scRNA-seq protocols 
(SMART-seq2 and MARS-seq) and a complex dataset on human pancreatic tissue composed of four different 
sources of data, generated using two different scRNA-seq protocols (SMART-seq2 and CEL-seq2). Obviously, 
datasets generated from biological samples are highly valuable for these type of benchmarking studies, prefera-
bly generated using a variety of scRNA-seq protocols. Hence the interest in our resting versus stimulated PBMC 
dataset. The 13,263 resting and stimulated cells of our dataset are clearly separated on the two dimensional 
UMAP projection (Fig. 2). Since the two populations are composed of the same cell types and originate from 
the same sample, data integration (i.e. batch correction) algorithms should be able to re-align and group the dif-
ferent cell types. To illustrate this, we applied three different methods to our dataset: the Seurat method CCA12, 
the reciprocal PCA method described in the Seurat package (RPCA) and the MultiMAP method implemented 
in the Python package of the same name7. The Seurat alignment workflow (CCA) is based on the canonical 
correlation analysis, which aims at finding linear combinations of features across datasets that are maximally 
correlated, thus identifying shared correlation structures. The first step of this method is to find cell pairs that are 
in a matched biological state (called ‘anchors’) that will be used to correct the differences between datasets. The 
reciprocal PCA (RPCA) is a slightly modified version of the CCA workflow, using reciprocal PCA to identify the 
‘anchors’ between the datasets. This procedure is faster and constitute a more conservative approach where cells 
in different biological states are less likely to align after integration. The Seurat developers recommend using 
RPCA when a substantial fraction of the cells in one dataset have no matching type in the other, when datasets 
originate from the same platform, or when there are a large number of datasets or cells to integrate. MultiMAP7 
is an algorithm for the dimensionality reduction and integration of multiple datasets. It constructs a nonlinear 
manifold on which diverse high dimensional data reside and then projects the manifold and data into a shared 
low-dimensional embedding space. MultiMAP is a generalization of the UMAP algorithm for multiple datasets 
with different dimensions. It can integrate any number of datasets, can leverage features that are not present in 
all datasets and is scalable to very large datasets. Figures 3–5 show UMAP graphs of the resting and stimulated 
datasets after integration with CCA, RPCA and MultiMAP methods respectively. We can see that after integra-
tion the cell clusters overlap to a large extend, with no large cluster composed of only one condition. Also visible 
on the different graphs is that the different methods have different performances. For instance it is clear that 
the overlap of cells for the two different conditions is better in the case of CCA (Fig. 3) or MultiMAP (Fig. 5) 
than for RPCA (Fig. 4). After the integration step, we can cluster the cells according to their expression profile. 
Figure 6 shows the resting and stimulated datasets after integration with CCA and clustering. As expected, the 
different clusters display homogeneous cell types, indicating good integration performance. Datasets such as 
the one proposed here have already been used to develop and refine data integration methods and to investigate 
how human PBMCs vary in response to immune system stimulation12. An interesting way to benchmark these 
data integration methods is to remove abundant or rare cells from one of the conditions (e.g., the stimulated set) 
and run the alignment procedure to see how it handles the missing data. More than 50 integration methods are 
currently available for single-cell data integration. In order to efficiently benchmark them, there is a need for 
an objective methodology and metrics, i.e. the ability of the methods to remove batch effects while preserving 
biological variation, and of course a diverse set of robust datasets that reflect the variety and complexity of non-
linear, nested batch effects that can occur in real experimental conditions14.

Once the cells have been integrated and the different cell types identified, it is possible to look for cell type 
markers that are conserved in both resting and stimulated conditions, or to compare the datasets to find cell type 
specific responses to stimulation. Here, we used the “FindConservedMarkers” function of the Seurat R package 
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Fig. 8 Violin plot of the number of genes per cell for the fresh and frozen samples. The two black arrows 
indicate anomalies detected for the frozen samples.
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to identify canonical cell type marker genes that are conserved across the two conditions. This function performs 
a differential gene expression test for the for each group, in our case resting and stimulated, and combines the 
p-values using a meta-analysis method12. As an example, we calculated the genes that are conserved markers in 
both stimulated and resting NK (Natural Killer) cells, which are an important component of the innate immune 
response. We found that 1,088 genes have adjusted p-values for both resting and stimulated groups <0.05, of 
which 91 also have a fold-change greater than 1. Among these potential conserved marker genes, SH2D1B 
(also known as EAT2) is a cytoplasmic adaptor that regulates receptors of the signaling lymphocyte activation 
molecule (SLAM) family15. This gene is known to play a role in regulating the effector functions of natural killer 
(NK) cells by controlling signal transduction16. The Fig. 7 shows that this gene is indeed expressed in both rest-
ing and stimulated NK cells, but its expression is restricted to this cell type, thus defining a conserved marker.  
The contrast is quite striking with the gene IFI6 (Interferon alpha inducible protein 617), also shown in the Fig. 7, 
which is a core interferon response gene and is upregulated in all cell types in the stimulated dataset. Using 
the “FindMarkers” function of the Seurat package, we can find out which genes are differentially expressed in 
resting and stimulated cells of the same type. For example, for B cells, we find 986 genes that are differentially 
expressed between resting and stimulated conditions with an adjusted p-value < 0.05. Among them, CXCL10 
is significantly differentially expressed with an adjusted p-value of 1.45 × 10−81 and an average log2 fold change 
of 4.9, and indeed appears strongly upregulated in stimulated B cells on the Fig. 7, but also in monocytes and 
some T cells. CXCL10 is a pro-inflammatory cytokine involved in a variety of processes including chemotaxis, 
differentiation and activation of peripheral immune cells. It plays an important role during viral infections by 
stimulating the activation and migration of immune cells to the infected sites18. Note that more samples would 
be needed to strengthen the observations that we make here on this dataset.

Fresh and frozen PBMCs samples. As described in the methods, we used technical replicates issued from 
the same individual to avoid biological variations which are quite common for PBMCs. In order to have realistic 
conditions for the frozen samples, they were kept in the freezer for seven days. For the fresh PBMCs, cells were 
processed immediately for single-cell library preparation as recommended by the manufacturer and as recom-
mended for best results in single-cell library preparation19. It is well known that once tissue samples have been 
removed from a patient, they promptly begin to undergo gene expression changes and RNA degradation20,21. 
Therefore it was not possible to process fresh and frozen samples the same day and on the same machine for 
our experimental design. This might theoretically induce a batch effect if the 10X Chromium machine has some 
technical problem but we think that it is very unlikely. A technical test note from 10X Genomics22 shows that for 
four PBMC libraries generated on three different chips (thus three different dates) the number of genes recovered 
and the cell clustering are very similar. There is also a critical step during the 10X library preparation, after the 
run of the chromium controller for the GEMs (Gel Beads-in-emulsion) generation where it is easy to visually 
assess whether the emulsion is correct, and we did not detect any problem at this step for the two runs. Finally, 
if a technical problem had occurred at the library step preparation, we would likely see major differences in the 
quality control values displayed in Table 2, which is not the case. However, it is true that theoretically such a batch 
effect could occur and therefore it is important to be cautious for the analysis of these samples. In Table 2, we 
have seen that the median number of detected genes is lower in the frozen samples (around 1600 genes per cell). 
The distribution of the number of genes detected per cell (Fig. 8) is also slightly different for the frozen samples. 
We see that there is a higher proportion of cells having a number of detected genes well below the median (black 
arrows on the figure). In fact, 23 and 32% of the cells in the frozen samples have less than 1,100 detected genes. 
For the frozen samples(Fig. 9) 27 and 37% of the cells have a molecule count below 3,500. Finally, the percentage 
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Fig. 9 Violin plot of the number of molecules per cell for the fresh and frozen samples. The black arrow indicate 
an anomaly detected for the frozen samples.
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of mitochondrial genes (Fig. 10) is high in frozen samples: 24 and 30% of cells have a percentage higher than 10%. 
All these deviations, that we do not observe for the fresh PBMCs, could be indicative of a relatively high propor-
tion of cells in a state of elevated levels of stress or even dying, probably as a direct consequence of the freeze/thaw 
protocol. Recently, some groups have tried to develop protocols that enable preservation of cells and storage for 
later scRNA-seq processing and analysis23,24. Some of those protocols use dimethyl sulfoxide (DMSO) or meth-
anol to cryopreserve cells. DMSO is frequently used to preserve animal cells and to prevent the formation of ice 
crystals. Methanol, on the other hand, dehydrate cells and cause nucleic acids to appear in a collapsed form, thus 
preserving them with only minor modifications. It is worth noting that some commercial formulations are readily 
available for scRNA-seq-compatible cell preservation.

Code availability
All custom R and python scripts for quality control, data integration, figures and analysis are available on our 
GitHub repository (https://github.com/erbon7/sc_pbmc).

Received: 27 March 2023; Accepted: 29 June 2023;
Published: xx xx xxxx

References
 1. Delves, P. J., Martin, S. J., Burton, D. R. & Roitt, I. M. Roitt’s essential immunology (John Wiley & Sons, 2017).
 2. Wu, A. R., Wang, J., Streets, A. M. & Huang, Y. Single-cell transcriptional analysis. Annual Review of Analytical Chemistry 10, 

439–462 (2017).
 3. Zhu, L. et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of covid-19 and 

influenza patients. Immunity 53, 685–696 (2020).
 4. Wang, Z. et al. Single-cell rna sequencing of peripheral blood mononuclear cells from acute kawasaki disease patients. Nature 

Communications 12, 5444 (2021).
 5. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
 6. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell 

Systems 8, 281–291 (2019).
 7. Jain, M. S. et al. Multimap: dimensionality reduction and integration of multimodal data. Genome Biology 22, 1–26 (2021).
 8. Derbois, C., Palomares, M. A., Deleuze, J. F., Cabannes, E. & Bonnet, E. Single cell transcriptome sequencing of stimulated and 

frozen human peripheral blood mononuclear cells. Gene Expression Omnibus https://identifiers.org/geo/GSE226488 (2023).
 9. 10X Genomics. PBMCs from a healthy donor (10X Genomics, v3 chemistry). https://tinyurl.com/3rjwfh3j (2020).
 10. Jaitin, D. A. et al. Massively parallel single-cell rna-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 

(2014).
 11. Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Scientific Reports 7, 39921 (2017).
 12. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, 

technologies, and species. Nature Biotechnology 36, 411–420 (2018).
 13. Haghverdi, L., Lun, A. T., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell rna-sequencing data are corrected by matching 

mutual nearest neighbors. Nature Biotechnology 36, 421–427 (2018).
 14. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods 19, 41–50 (2022).
 15. Morra, M. et al. Structural basis for the interaction of the free sh2 domain eat-2 with slam receptors in hematopoietic cells. The 

EMBO journal 20, 5840–5852 (2001).
 16. Pérez-Quintero, L.-A. et al. Eat-2, a sap-like adaptor, controls nk cell activation through phospholipase c γ, ca++, and erk, leading 

to granule polarization. Journal of Experimental Medicine 211, 727–742 (2014).
 17. Villamayor, L. et al. Interferon alpha inducible protein 6 is a negative regulator of innate immune responses by modulating rig-i 

activation. Frontiers in immunology 14 (2023).

0

20

40

60

80

fre
sh

1
fre

sh
2

fro
ze

n1

fro
ze

n2

Identity

fresh1
fresh2
frozen1
frozen2

percent.mt

Fig. 10 Violin plot of the percentage of mitochondrial genes per cell for the fresh and frozen samples. The black 
arrow indicate an anomaly detected for the frozen samples.

https://doi.org/10.1038/s41597-023-02348-z
https://github.com/erbon7/sc_pbmc
https://identifiers.org/geo/GSE226488
https://tinyurl.com/3rjwfh3j


1 1Scientific Data |          (2023) 10:433  | https://doi.org/10.1038/s41597-023-02348-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

 18. Romagnani, P. et al. Interferon-inducible protein 10, monokine induced by interferon gamma, and interferon-inducible t-cell alpha 
chemoattractant are produced by thymic epithelial cells and attract t-cell receptor (tcr) αβ+ cd8+ single-positive t cells, tcr γδ+ t 
cells, and natural killer–type cells in human thymus. Blood, The Journal of the American Society of Hematology 97, 601–607 (2001).

 19. Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for the experimental design of single-cell rna sequencing studies. 
Nature protocols 13, 2742–2757 (2018).

 20. Grizzle, W. E., Otali, D., Sexton, K. C. & Atherton, D. S. Effects of cold ischemia on gene expression: a review and commentary. 
Biopreservation and biobanking 14, 548–558 (2016).

 21. Guo, D. et al. Effects of ex vivo ischemia time and delayed processing on quality of specimens in tissue biobank. Molecular Medicine 
Reports 22, 4278–4288 (2020).

 22. 10X Genomics. Biological & technical variation in single cell gene expression experiments). https://cdn.10xgenomics.com/image/
upload/v1660261285/support-documents/CG000170_TechNote_BiologicalandTechnicalVariationinSingleCell3_
GeneExpressionExperiments_RevA_.pdf (2021).

 23. Chen, D. et al. Cryopreservation preserves cell-type composition and gene expression profiles in bone marrow aspirates from 
multiple myeloma patients. Frontiers in Genetics 583 (2021).

 24. Wohnhaas, C. T. et al. Dmso cryopreservation is the method of choice to preserve cells for droplet-based single-cell rna sequencing. 
Scientific Reports 9, 1–14 (2019).

Acknowledgements
We would like to thank our colleagues from the Laboratory Production Platforms in Human Genomics of the 
CNRGH for their help for the high-throughput sequencing of the scRNA-seq libraries. We would also like to 
thank Steven McGinn for English language editing of the manuscript. Figure 1 was partly generated using Servier 
Medical Art, licensed under a Creative Commons Attribution 3.0 unported license.

author contributions
C.D., M.A.P., J.F.D., E.C. and E.B. conceived the project and the experiments. C.D. and M.A.P. conducted the 
wetlab experiments, PBMCs extraction and library preparation. E.B. analyzed the data and wrote the manuscript. 
All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

additional information
Correspondence and requests for materials should be addressed to E.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02348-z
https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000170_TechNote_BiologicalandTechnicalVariationinSingleCell3_GeneExpressionExperiments_RevA_.pdf
https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000170_TechNote_BiologicalandTechnicalVariationinSingleCell3_GeneExpressionExperiments_RevA_.pdf
https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000170_TechNote_BiologicalandTechnicalVariationinSingleCell3_GeneExpressionExperiments_RevA_.pdf
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Single cell transcriptome sequencing of stimulated and frozen human peripheral blood mononuclear cells
	Background & Summary
	Methods
	Participant information. 
	PBMCs isolation. 
	Cell suspension preparation. 
	Single cell library preparation and sequencing. 
	Data processing and analysis. 

	Data Records
	Technical Validation
	Usage Notes
	Resting versus stimulated PBMC. 
	Fresh and frozen PBMCs samples. 

	Acknowledgements
	Fig. 1 Schematic overview of experimental design.
	Fig. 2 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells.
	Fig. 3 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the CCA method.
	Fig. 4 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the RPCA method.
	Fig. 5 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the MultiMAP method.
	Fig. 6 UMAP plot of scRNA-seq data for the resting versus stimulated PBMC cells after integration with the CCA method and clustering.
	Fig. 7 Visualisation of the expression of some genes.
	Fig. 8 Violin plot of the number of genes per cell for the fresh and frozen samples.
	Fig. 9 Violin plot of the number of molecules per cell for the fresh and frozen samples.
	Fig. 10 Violin plot of the percentage of mitochondrial genes per cell for the fresh and frozen samples.
	Table 1 Quality control indicators for the resting and stimulated PBMC samples.
	Table 2 Quality control indicators for the fresh and frozen PBMC samples.




