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a global database for modeling 
tumor-immune cell communication
Yunjin Xie1,4, Weiwei Zhou1,4, Jingyi Shi1,4, Mengjia Xu1, Zijing Lin2, Donghao Li1, Jianing Li1, 
Shujun Cheng1,3 ✉, Tingting Shao1 ✉ & Juan Xu  1 ✉

Communications between tumor cells and surrounding immune cells help shape the tumor immunity 
continuum. Recent breakthroughs in high-throughput technologies as well as computational 
algorithms had reported many important tumor-immune cell (TIC) communications, which were 
scattered in thousands of published studies and impeded systematical characterization of the TIC 
communications across cancer. Here, a comprehensive database, TICCom, was developed to model 
TIC communications, containing 739 experimentally-validated or manually-curated interactions 
collected from more than 3,000 literatures as well as 4,537,709 predicted interactions inferred via 
six computational algorithms by reanalyzing 32 scRNA-seq datasets and bulk RNA-seq data across 
25 cancer types. The communications between tumor cells and 14 types of immune cells were 
characterized, and the involved ligand-receptor interactions were further integrated. 14190 human 
and 3650 mouse integrated ligand-receptor interactions with supplemented corresponding function 
information were also stored in the TICCom database. Our database would serve as a valuable resource 
for investigating TIC communications.

Background & Summary
Modulating the patient immune system with immunotherapy had revolutionized cancer therapy, and led to 
durable remissions across various cancer types1,2. The communications within or between the tumors and sur-
rounding immune cells helped shape the tumor immunity continuum through chemokine-receptor signaling, 
and may contribute to different responses to immunotherapies3–5. Recent breakthroughs in cancer immunother-
apy and decreasing costs of high-throughput technologies had sparked intensive research into tumor-immune 
cell (TIC) interactions. Single-cell RNA-seq (scRNA-seq) had been widely used to explore the cell composition 
of the tumor microenvironment in various cancer types, as well as the communication within or among these 
compositions6–8. Indeed, many studies had reported the important roles of TIC communications; however, this 
experimentally supported communication information was hidden in thousands of published studies9–11. These 
fragmented and even inconsistent publications were obstacles to characterizing TIC communications in the 
tumor microenvironment in both pan-cancer and tissue-specific contexts. Notably, no database was developed 
to collect these latest and experimentally supported TIC associations.

The communication between tumors and immune cells in the local tumor microenvironment started with 
the binding of a ligand to its receptor and the activation of specific cell signaling pathway9,10,12. Thus, col-
lecting ligand-receptor interactions was fundamental to understanding TIC communication. For example, 
CellPhoneDB provided a resource of ligands, receptors, and their interactions, which took into account the 
subunit architecture of receptors13. In addition, many ligand-receptor interactions were collected by different 
prediction methods and resources of cell-cell communications, such as iTALK14, ICELLNET15, CellChat16. Thus, 
assembling these ligand-receptor interactions was an urgent task and would improve the prediction accuracy of 
cell communication.

To address this gap, we developed a comprehensive resource called TICCom to collect and integrate TIC 
communications. TICCom included not only communications supported by experiments and manual curation 
from the published literature, but also predicted results by several commonly used computational methods 
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based on integrative ligand-receptor interactions and verified TIC interactions. Moreover, the TIC communica-
tions were further classified into three types based on the interaction model. We further manually labeled all the 
ligand-receptor pairs functionally, and much more other information was also provided, including expression 
of TIC communications across 33 major cancer types, their potential as prognostic markers and TF/miRNA 
regulation. Several flexible tools were developed to aid retrieval and analysis. TICCom would serve as a valuable 
resource for investigating communications between tumors and immune cells and greatly extend our under-
standing of cancer immunotherapy.

Methods
Collection of TIC communications from literature. Firstly, an extensive literature query of the PubMed 
database was performed using a list of keywords, such as ‘immune cell’, ‘tumor cell’, ‘crosstalk’ and ‘interaction’. 
~23,000 references were retrieved, the titles and abstracts of which were downloaded. Secondly, we filtered 
the papers related to tumor-immune interactions by reading the abstracts. Lastly, more than 3,000 literatures 
remained, and the TIC interaction information was manually extracted from these literatures, including interac-
tion gene pairs, functions, subcellular localizations, experimental methods, descriptions of interactions, titles and 
PMIDs of literatures, and other details (Fig. 1).

Integration of ligand-receptor interactions data. 14,190 human ligand-receptor (LR) pairs were col-
lected from seven studies7,14–19, while 3,650 mouse LR pairs were collected from two studies19,20. Genes were 
represented by Ensembl gene IDs. Considering the immunogenicity of LR interactions, we classified LR pairs 
into 10 groups: notch signaling, antigen binding, neuropeptide, hormone, growth factor, interferon, interleu-
kin, tumor necrosis factor, chemokine, and cytokine by simultaneously annotating ligands and receptors to rel-
evant GO terms obtained from MSigDB21. For example, if a ligand and its coupled receptor were annotated to 
cytokine-related GO term groups, this pair was assigned to the cytokine group. Unsuccessfully assigned LR pairs 
were finally appointed to the ‘other’ group. In order to facilitate the further understanding of the confidence of LR 
interactions, these integrated interactions were grouped into two subclasses based on their identification meth-
ods in previous studies. The interactions were labeled ‘manually curated’ if they were supported by experimental 
data or manual annotation from the literature in at least one dataset, and others were grouped into the predicted 
subclass.

Cancer transcriptome datasets. Bulk RNA-seq data were collected and unified from The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/), the International Cancer Genome Consortium (ICGC, https://dcc.
icgc.org/)22, and the EMBL-EBI Expression Atlas (https://www.ebi.ac.uk/gxa/home)23, including 12,914 samples 
of 25 cancer types. The cancer transcriptome datasets are shown in Supplementary Table 1. The count matrix 
of genes was quantified as fragments per kilobase per million reads mapped (FPKM). Genes whose expression 
was zero in more than 30% of samples were excluded. The expression was log2(FPKM + 0.05) normalized. In 
addition, 32 single-cell RNA-seq datasets from 13 cancer types having both tumor cells and immune cells were 
retrieved from both the NCBI Gene Expression Omnibus (GEO)24,25 and the TISCH database26. The scRNA-seq 
datasets are displayed in Table 1. As previous works27–29, we predicted cell-cell interactions separately based on 
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Fig. 1 Collection of TIC communications from literature. Firstly, ~23,000 articles were downloaded from 
PubMed and retrieved using keywords. Secondly, three researchers carefully read abstracts, and 3000 articles 
were retained. Finally, detailed information on tumor-immune cell communication was extracted.
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each scRNA-seq dataset containing more than 500 cells or bulk RNA-seq dataset with at least six samples. Cancer 
categories were carefully unified and listed in Supplementary Table 2.

Computationally predicting TIC communications. TICCom provided inferred cell-cell communica-
tion based on 32 scRNA-seq datasets of 13 cancer types through five popular computational methods according 
to their corresponding standardized processes, including iTALK-top14, iTALK-DEG14, CellTalker30, ICELLNET15, 
and NicheNet17. The inferred TIC communication was characterized by providing detailed information, includ-
ing gene names, functions, and labels (evidence) for prediction or manual curation, as well as computational 
methods and cancer types.

Interaction strengths of TIC communication based on bulk RNA-seq data and the integrated LR interactions 
were estimated by TItalk provided by TICCom. All genes were ranked in descending order by their expression 
for each sample. Interaction strength of a pair of interacting genes ISg for a sample n was defined as follows:

ISg (rank rank ) (10 abs(rank rank ))n n1 n2 n1 n2= + × − −

where rankn1 and rankn2 were the positions of two interacting genes in the sorted vectors according to their 
expression in samplen respectively. The statistical significance was calculated as the probability of observing a 
lower interaction strength than the true one through 1000 random samplings. The datasets consisted of pre-
dicted interaction strengths and p values of gene interactions occurring between tumor and immune cells across 
cancer types.

miRNA-target and TF-gene interactions. 17,723 miRNA-target interactions were downloaded from 
starBase31, and 29,251 TF-gene interactions were downloaded from TRRUST32, HTRIdb33, and ORTI34.

Cancer Type Cancer Type Detailed Source Source2

Bladder Cancer Bladder Cancer GSE14513737 GEO24,25

Leukemia Acute Lymphocytic Leukemia GSE13250938 TISCH26

Acute Erythroid Leukemia GSE14221339 TISCH

Acute Myeloid Leukemia GSE11625640 GEO

Breast Cancer Breast Cancer GSE14342341 TISCH

GSE7568842 GEO

SRP11496243 TISCH

Brain Cancer Glioma GSE10213044 TISCH

GSE10322445 TISCH

GSE13879446 TISCH

GSE13944847 TISCH

GSE14198248 GEO

GSE7063049 TISCH

GSE8446550 GEO

GSE8956751 TISCH

Head and Neck Cancer Head and Neck Squamous Cell 
Carcinoma GSE10332252 GEO

Colorectal Cancer Colorectal Cancer GSE14677153 GEO

Liver Cancer Liver Cancer GSE12544954 GEO

Lung Cancer Lung Adenocarcinoma GSE13190755 GEO

Non Small Cell Lung Carcinoma EMTAB614956 TISCH

GSE11757057 TISCH

GSE12746558 TISCH

GSE14342341 TISCH

Neuroendocrine Cancer Neuroendocrine Cancer GSE14031259 TISCH

Ovarian Cancer Ovarian Cancer GSE11882860 TISCH

Pancreatic Cancer Pancreatic Adenocarcinoma CRA00116061 TISCH

GSE11167262 TISCH

Skin Cancer Skin Cutaneous Melanoma GSE11597863 GEO

GSE7205664 GEO

Basal Cell Carcinoma GSE12381365 GEO

Merkel Cell Carcinoma GSE11798866 GEO

Uveal Melanoma GSE13982967 TISCH

Gastric Cancer Early Gastric Cancer GSE13452068 GEO

Table 1. scRNA-seq data obtained from GEO and TISCH.
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Fig. 2 The resources in TICCom. (a) The number of experimentally-verified tumor-immune cell interactions 
of different interaction types. (b) The number of verified tumor-immune cell interactions occurred in 23 cancer 
types. (c) The number of verified tumor-immune cell interactions occurred in 14 immune cells. (d) The total 
number of ligand-receptor interactions across seven human datasets was displayed in a bar plot on the left. The 
seven human datasets were represented by dots in the corresponding rows of the dot matrix, which also showed 
the intersection set of the datasets in its column. The intersection set size was depicted by the bar plot at the 
bottom. (e) The Venn plot showed the number of ligand-receptor interactions shared by the two mouse datasets, 
CellTalkDB and RNAMagnetDB. The left and right circles indicated the number of ligand-receptor interactions 
in CellTalkDB and RNAMagnetDB, respectively.
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Data Records
These datasets can be obtained from Figshare35 and from the download page of TICCom (http://bio-bigdata.
hrbmu.edu.cn/TICCom/). The R codes used to generate datasets in TICCom were shared on Github (https://
github.com/yunjinxie/TICCom-dataset).

There were five CSV files in the database. All the deposited data was processed, and all the sources were 
openly available. The CSV table ‘Experimentally verified TIC communication’ contained detailed information 
on experimentally-verified TIC communications, including gene symbols, cell types, interaction types, species, 
experiments, interaction comments, and original reference information. Integrated ligand-receptor interac-
tions were displayed in the CSV table ‘Integrated ligand-receptor interactions’, including gene symbols, func-
tions, sources of LR pairs, and evidence. Predicted TIC communications based on bulk RNA-seq were stored in 
the CSV tables ‘Predicted TIC communication based on experimentally verified TICs and bulk RNA-seq’ and 
‘Predicted TIC communication based on ligand-receptor interactions and bulk RNA-seq’. Information included 
gene symbols, cell types, cancer types, interaction strengths, and p values in the former dataset. However, in 
the latter dataset, ligands, receptors, functions, evidence, cancer types, interaction strengths, and p values were 
recorded. The CSV table ‘Predicted TIC communication based on scRNA-seq’ contained detailed information 
about predicted TIC interactions inferred by five algorithms using 32 scRNA-seq datasets and the integrated 
ligand-receptor interactions. Ligands, receptors, cell types, prediction methods, evidence, datasets, cancer types, 
and cancer subtypes were included in this dataset. In Supplementary Table 3, the columns of five CSV files are 
listed.

technical Validation
In order to validate the accuracy of experimentally supported TIC communications, the process of data extrac-
tion was performed independently by Y.X., J.S., and M.X. and subsequently cross-checked. The resolution of 
any disagreements regarding data extraction was based on consensus. Information retrieval was done manually. 
The dataset included 739 experimentally-verified TIC interactions from human and mouse, covering 26 years 
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Fig. 3 The predicted interactions stored in TICCom. (a) The number of samples in each cancer type from 
different bulk RNA-seq resources. The datasets with serial numbers containing MTAB or GSE were obtained 
from the EMBL-EBI Expression Atlas. (b) The number of predicted verified tumor-immune cell direct 
interactions and that of predicted ligand-receptor interactions in bulk RNA-seq data from 25 cancer types. The 
significant p values of TCGA and ICGC cancer were set at 0.05; however, the significant p value of EMBL was 
set at 0.1 because of the smaller number of samples. (c) The bubble plot showed the number of predicted ligand-
receptor interactions that occurred in each cancer and each immune cell inferred by five algorithms based on 32 
scRNA-seq datasets from 13 cancer types and the integrated ligand-receptor interactions. The bar plot showed 
the number of cells in each cancer. The size of the bubble indicated the number of predicted ligand-receptor 
interactions.

https://doi.org/10.1038/s41597-023-02342-5
http://bio-bigdata.hrbmu.edu.cn/TICCom/
http://bio-bigdata.hrbmu.edu.cn/TICCom/
https://github.com/yunjinxie/TICCom-dataset
https://github.com/yunjinxie/TICCom-dataset


6Scientific Data |          (2023) 10:444  | https://doi.org/10.1038/s41597-023-02342-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

of experiments from Jan. 1993 to Jul. 2019. We proofread and validated the TIC communication by pulling 
low-throughput experiments from articles such as immunoprecipitation assays, qPCR, ELISPOT assays and 
Western blot assays. These interactions were divided into three categories: (1) 186 direct interactions, which 
meant these interactions directly occurred between tumor cells and immune cells; (2) 113 secretory interactions, 
which meant molecules derived from tumor cells or immune cells bound to corresponding receptors influencing 
TIC communication; and (3) 440 indirect interactions, which meant these interactions occurred within tumor 
cells or immune cells and were essential to tumor immunity (Fig. 2a). We carefully unified the names of cancer 
categories and immune cells based on the clinician’s suggestions. Cancer categories are listed in Supplementary 
Table 2. These interactions involved 14 immune cells and 57 cancer subtypes of 23 cancer types (Fig. 2b,c, 
Supplementary Table 2). The number of TIC interactions varied across different tumors. This may be due to 
that the majority of experimentally-verified TIC interactions originate from these cancers, such as skin cancer, 
breast cancer, and lung cancer, in which tumor immunity has been a research hotspot, and cancer cell-immune 
cell crosstalk in other cancers may not have been explored in depth. In addition, the number of LR interactions 
varied across these seven human LR interaction datasets. Only 294 LR interactions were shared by seven human 
datasets (Fig. 2d). There were 1,157 common LR interactions in two mouse LR interaction datasets, accounting 
for 42% and 57% of the total, respectively (Fig. 2e). In order to obtain more comprehensive and precise resources 
on LR interactions, 14,190 human LR interactions and 3,650 mouse LR interactions were integrated from seven 
human datasets and two mouse datasets, respectively. We unified the gene symbols and Ensembl gene IDs of all 
the involved genes. The functions of these LR interactions were annotated by hand. In order to strengthen the 
credibility of LR interactions, these integrated interactions were grouped into the manually curated subclass 
or the predicted subclass based on their identification methods in previous studies. To guarantee the preci-
sion of interaction strength predicted by the Interaction Intensity module and TItalk provided by TICCom, we 
designed a p value that determined whether the real interaction strength was larger than the random one. The 
interaction strength was inferred based on bulk RNA-seq data from 25 cancer types (Fig. 3a,b, Supplementary 
Table 1). In addition, to ensure the accuracy of the predicted cell-cell crosstalk based on 32 scRNA-seq datasets 
from 13 cancer types (Fig. 3c, Table 1), we combined the results inferred from five algorithms in the Prediction 
module and used the integrated LR interactions as reference interactions. Before uploading these five datasets 
into TICCom, we re-checked the metadata of the MySQL database.
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Fig. 4 The improvement of TICCom for prediction accuracy. (a) The number of experimentally-verified TIC 
(ev-TIC) communications in seven human resources and the integrated LR interactions. (b-e) The results of 
gene set enrichment analysis. To further illustrate the improvement of TICCom in prediction accuracy, we 
applied different algorithms, including ICELLNET, iTALK-top, NicheNet, and CellTalker, to infer cell-cell 
communication based on the integrated ligand-receptor interactions and iTALKDB LR interaction dataset 
in basal cell carcinoma (GSE12381365). The prediction result integrated from predicted cell-cell interactions 
inferred by these algorithms was used as the gene set. The prediction result of a single method was used 
as the ordered gene list, ranked by the communication score. (f) The percentage of top 50% of the cell-cell 
communication inferred from a single method occupied in the integrated result.
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To improve the prediction accuracy of cell communication, two different aspects were considered by 
TICCom: the integration of ligand-receptor (LR) pair datasets and the integration of cell-cell interactions pre-
dicted based on different algorithms. We first assessed the contribution of integrating LR interaction datasets 
to prediction accuracy compared to a single LR resource. The result showed that the integrated data contained 
more experimentally-verified TIC interactions than single resources (Fig. 4a). On the other hand, we evaluated 
whether the integrated predicted cell-cell interactions tended to be optimized preferentially by each individual 
algorithm. We found that integrated predicted cell-cell interactions had higher communication scores in each 
algorithm by Gene Set Enrichment Analysis (GSEA) (Fig. 4b–e). Additionally, more than half of integrated 
predicted cell-cell communications accounted for the top 50% of results predicted by individual algorithms 
(Fig. 4f). The results indicated that integrating both LR interaction datasets and cell-cell interactions predicted 
by different algorithms could improve prediction accuracy at different levels.

Code availability
The R codes used to generate datasets in TICCom were shared on Github36 (https://github.com/yunjinxie/
TICCom-dataset) with the identifier (https://doi.org/10.5281/zenodo.8060109). All software tools used in this 
study are freely available.
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