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Single-cell RNa sequencing of 
murine hearts for studying the 
development of the cardiac 
conduction system
Huiying Ren1,2,5, Xiaolin Zhou1,5, Jun Yang1,5, Kun Kou1,2,5, Tangting Chen1, Zhaoli Pu1, 
Kejun Ye1, Xuehui Fan1, Dan Zhang1, Xinjiang Kang1, Zhongcai Fan2, Ming Lei1,3 ✉, 
tianyi Sun3 ✉, Xiaoqiu tan1,2,4 ✉ & Xianhong Ou  1,2 ✉

the development of the cardiac conduction system (CCS) is essential for correct heart function. 
However, critical details on the cell types populating the CCS in the mammalian heart during the 
development remain to be resolved. Using single-cell RNA sequencing, we generated a large dataset 
of transcriptomes of ~0.5 million individual cells isolated from murine hearts at six successive 
developmental corresponding to the early, middle and late stages of heart development. The dataset 
provides a powerful library for studying the development of the heart’s CCS and other cardiac 
components. Our initial analysis identified distinct cell types between 20 to 26 cell types across 
different stages, of which ten are involved in forming the CCS. Our dataset allows researchers to 
reuse the datasets for data mining and a wide range of analyses. Collectively, our data add valuable 
transcriptomic resources for further study of cardiac development, such as gene expression, 
transcriptional regulation and functional gene activity in developing hearts, particularly the CCS.

Background & Summary
The cardiac conduction system (CCS) is a specialized tissue that coordinates the rhythmic contractions of heart 
muscle by controlling the generation and propagation of the causative electrical impulse. Failure to correctly 
pattern and develop the CCS components leads to several cardiac diseases1. The CCS includes the sinoatrial 
node (SAN), atrioventricular node (AVN), His bundle, bundle branches and Purkinje fibre (PF) network2. Each 
of these components is highly specialized but contains heterogeneous cell types with distinct electrophysiolog-
ical properties2–4. Our understanding about when and how these specialized cell types arise to form distinct 
CCS components remains limited2. In murine hearts, the electrical activity can be detected as early as E85; yet 
the whole CCS is not completely formed until E16.52. The SAN develops first in the CCS from within the sinus 
venosus myocardium of the heart tube. It can be recognized morphologically from E11.5 onwards in mice in the 
right sinus horn at the junction with the atrium6. The SAN and the atrioventricular conduction system (AVCS) 
develop simultaneously in the E11 to E12 mouse embryo heart6. While the establishment of the VCS occurs at 
mid-to-late fetal stages from E12.5 to 16.5, the PF network is completed perinatally7, the cellular origin of the 
various components of the CCS, particularly the VCS, is still in debate.

The recent emerging RNA sequencing (RNA-seq) technology has allowed for the fast quantification and 
characterization of transcriptomes. Integrating high-throughput data with computational and statistical meth-
ods provides a toolbox to study the molecular signatures of tissues8. The recent development of transcriptomic 
technologies, particularly the single-cell RNA-seq (scRNA-seq), has significantly improved our capability for 
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studying cell populations such as revealing and characterizing novel cell types. By sequencing the genomes of a 
large number of single cells from an individual ‘sample’, scRNA-seq can detect the cellular components present 
in complex tissues9–11, identify unknown or rare cell types, clarify the changes of gene expression in the process 
of differentiation or time and state changes, find out the genes that are differentially expressed in a specific type 
of cells under different conditions (such as dosing and disease groups), and explore changes in gene expres-
sion between cell types, incorporating spatial, regulatory, and/or protein information. scRNA-seq also identifies 
unknown or rare cell populations that could not be resolved using bulk RNA-seq.

Moreover, scRNA-seq may also be used for tracking cell lineage during differentiation, as movement between 
different cell types is associated with changes in gene expression12. Recent studies have applied scRNA-seq to 
study cardiogenesis, focusing on cell populations by using defined genes13–17. Given our incomplete understand-
ing of CCS morphogenesis and maturation, it is necessary to establish a sophisticated approach enabling the 
analysis of organ-wide spatial gene expression profiles without biasing against cellular heterogeneity.

Figure 1 illustrates a schematic overview of the study design, from model generation, characterization, living 
heart slicing, high-throughput optical imaging, data processing and analysis. Using single-cell RNA sequencing, 
we generated a large dataset of transcriptomes of ~0.5 million individual cells isolated from murine hearts at six 
successive developmental stages corresponding to the early, middle and late heart development.

the current dataset has the following features. Our dataset contains a large number of single-cell 
transcriptomes from six mid-to-late developmental stages by scRNAseq. We could discriminate rarer cardiac 
cell types, such as the CCS, through meaningful cardiomyocyte-focused quality control and utilizing a novel 
local and global structure-preserving dimensionality reduction technique. The dataset helps us understand the 
differentiation pattern of CCS in time and space. At the same time, the upstream and downstream targets of 
key transcription factors related to CCS development were deeply studied to clarify these transcription factors’ 
molecular characteristics and biological functions and provide new ideas for clinical diagnosis and treatment of 
arrhythmic diseases in the future.

Methods
animals. Wild-type C57Bl/6 J mice at six developmental stages, including E8.5, E10.5, E12.5, E14.5, E16.5 
and postnatal day 3 (P3) were used in this study, and suppied by Laboratory Animal Center of Southwest Medical 
University. After sacrificing the mice, the embryos (E8.5 and E10.5) and hearts (E12.5, E14.5, E16.5 and P3) were 
dissected. Single-cell suspensions were prepared as detailed below. The experimental animal ethics committee 
approved all animal experiments at Southwest Medical University, Sichuan (China) (No: 20160930).

Preparation of cell suspensions for single-cell RNa sequencing analysis. We isolated and collected 
the single cells from embryos or hearts at six developmental stages, including E8.5, E10.5, E12.5, E14.5, E16.5 
and postnatal P3 using the standard enzymatic method described previously18. E8.5 and E10.5 embryos were 
dissected from pregnant mice’s uterus and digested with collagenase II digestive solution (collagenase II: bovine 
serum albumin: DMEM/F12 = 0.01: 0.1: 10) after the cut-off in the head and limbs. The hearts from E12.5, E14.5, 
and E16.5 stages were dissected directly from the embryos. The operations were performed under a posture 
microscope: cut open the uterus, sequentially open the amniotic membrane, and remove the embryo. The embryo 
can flow out under the action of amniotic fluid and cut the umbilical cord. Then, the hearts of E12.5, E14.5, and 
E16.5 were removed from the embryonic for digestion. The specific digestion steps of each embryonic stage are 
similar. Hearts of P3 stage were dissected directly from the aortic root of the postnatal mice. After trimming 
excess connective tissue, thymus, lung tissue, and vascular tissue such as superior and inferior vena cava at the 
base of the heart, hearts were digested with collagenase II digestive solution.

During the single-cell suspension preparation, cell viability and concentration were detected by staining with 
0.4% trypan blue. After primary quality control, cell viability was adjusted to the appropriate concentration for 
10 × scRNA-seq. The diameter of cardiomyocytes in embryonic and postnatal mice ranged from 8 to 15 μm, 
meeting the standard requirements. The cell concentration can be controlled within 700–1200 cells/µL accord-
ing to the concentration requirements. 8,000–16,000 cells were captured by the system in each sample (Table 1).  
The cell viability and agglomeration rate are shown in Table 2. The clustering rate is less than 5%, and the num-
ber of clustered cells can be seen under the microscope. There are basically no impurities and cell debris. It is 
considered that the cell quality is qualified and meets the sampling conditions for single-cell sequencing.

Single-cell transcriptomic analysis using the 10× Genomics Chromium. Single cells were 
prepared following 10 × Genomics, Inc (Pleasanton, CA) protocol. The protoplast suspension was loaded 
into Chromium microfluidic chips with 30 (v3) chemistry and barcoded with a 10 × Chromium Controller 
(10 × Genomics). According to the manufacturer’s instructions, RNA from the barcoded cells was subsequently 
reverse-transcribed, and sequencing libraries were constructed with reagents from a Chromium Single Cell 30 v3 
reagent kit (10 × Genomics). Sequencing was performed with Illumina NovaSeq 6000 according to the manufac-
turer’s instructions (Illumina). FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to 
perform basic statistics on the quality of the raw reads.

Raw reads were demultiplexed and mapped to the reference genome by the 10 × Genomics Cell Ranger pipeline 
(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation) using default 
parameters. Unless explicitly mentioned, all downstream single-cell analyses were performed using Cell Ranger and 
Seurat version 3.1.1 (https://remotes.r-lib.org/reference/install_version.html. In brief, unique molecule identifiers 
were counted for each gene and each cell barcode (filtered by Cell Ranger) to construct digital expression matrices19. 
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In detail, cellranger count takes FASTQ files and performs alignment, filtering, barcode counting, and Unique 
Molecular Identifier (UMI) counting. It uses the Chromium cellular barcodes to generate feature barcode matrices.

initial cell typing in single-cell RNa sequencing data. To ensure robust and reliable transcriptomic 
signal-to-noise ratios without impairing sensitivity to small signals, we filtered out all cells with unique RNA 
counts (nUMI) <300, or distinct genes (nFeatures) <270 to remove under-sampled cells and simple cells such 
as erythrocytes. The ratio of mitochondrial transcripts to nuclear genome-derived transcripts is often used as a 

Fig. 1 Schematic diagram of the 10 × single-cell RNA sequencing workflow. (a) Tissue dissociation. Mouse 
hearts of different periods were obtained in batches. Single-cell suspensions were prepared by enzymatic 
digestion. (b) Single-cell sequencing. The cell viability was detected to meet the experimental requirements. 
Then sequencing experiments were performed. (c) Bioinformatics analysis.
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metric of cell stress or quality in scRNA-seq. 5% is typically used as a ceiling, but this is not supported across cell 
types and can fail to identify damaged cells, particularly cardiomyocytes, which can reach ~30%20 and exclude 
particular cardiomyocyte populations21. Given the changing nature of mitochondrial biogenesis across the 
embryonic to postnatal mouse heart22, we utilized a dynamically changing filter for mitochondrial transcript 
ratios: E8.5: 5%, E10.5: 5%, E12.5: 7.5%, E14.5: 10%, E16.5: 15%, P3: 20%. We normalized cell libraries through 
SCTransform, which accounts for the preservation of differential variation between highly variant and lowly 
variant genes23. We utilized Uniform Manifold Approximation and Projection (UMAP), following principal 
component analysis (PCA) and PCA dimension selection, to enable human-interpretable visualization of the 
transcriptomic space through dimensionality reduction. We visually examined the data for differences between 
batches of cells collected at each stage. Only P3 had significant batch differences. There are extensive suggested 
solutions for ‘correcting’ batch differences24. However, from a statistical fundamentals perspective, both a priori 
and empirically, such methods have been shown to produce aberrant downstream results25. We visualized UMAP 
in 3D,used Louvain clustering, and labelled clusters based on expression profiles. Further sub-clustering was per-
formed as necessary, and a small number of cells were manually assigned where appropriate. The above was done 
using Seurat functions unless specified26.

Data Records
The sequencing data from this study have been uploaded to the National Center for Biotechnology Information 
(NCBI) Sequence Reads Archive (SRA) with accession ID: PRJNA89025227. This includes 148 raw.fastq files for 
E8.5, E10.5, E12.5, E14.5, E16.5, and P3 stages. Matrix files on exonic and intronic expression can be accessed 
through the project accession number GSE230531 at the NCBI Gene Expression Omnibus28.

technical Validation
To validate the quality of the cDNA synthesis and barcoding steps, especially the DNA contamination, we first 
assessed the mapping location of aligned reads. As expected, the base quality of all stages is distributed in the 
green (very good) and yellow (good) areas, so it is considered that the base quality of the original data of all 
samples is good, and the data is within the applicable range (Figure 2a). Figure 2b shows the base content distri-
bution diagram of sample read2 at E8.5, E10.5, E12.5, E14.5, E16.5 and P3, respectively. The abscissa represents 
the position of the base, and the ordinate represents the percentage of the base content. Green, red, blue and 
black correspond to bases A, T, C and G, respectively. Reads2 is stable throughout the sequencing process, and 
there is no significant AT or GC separation. Therefore, it can be considered that the base content distribution of 
all samples is normal.

In high-throughput sequencing, each base will have a corresponding quality value to measure the sequencing 
accuracy. The error rate of base quality value 30 is 0.1%. Q30 represents the percentage of bases with a quality 
value greater than or equal to 30. The higher Q30, the more accurate the sequencing. Table 3 shows that the 
Q30 of barcode, RNA and UMI sequences of almost all samples is greater than 90%, and the effective barcode 
accounts for a high proportion, which indicates that the sequencing data quality is high and can be used for 
subsequent analysis.

Table 4 shows that the percentage content of the reference genome aligned to the exonic region is the high-
est, and the content aligned to the intronic region or the intergenic region is shallow, which indicates that the 
obtained sequencing data is from RNA.

Sample Developmental stage Cellranger count

E8_5_1_1 E8.5 5643

E8_5_2_2 E8.5 5380

E10_5_1 E10.5 14906

E10_5_2 E10.5 14703

E12_5_1_1 E12.5 5674

E12_5_2_2 E12.5 7212

E14_5_1_1 E14.5 6529

E14_5_2_2 E14.5 6286

E16_5_1 E16.5 7259

E16_5_2_2 E16.5 7720

P 3_1_1 P3 4400

P 3_2_2 P3 5469

Table 1. Cellranger count in each sample.

E8.5 E10.5 E12.5 E14.5 E16.5 P3

Viability (%) 98 85 90 83 83 89

Aggregation rate (%) <5 <5 <5 <5 <5 <5

Table 2. Quality statistics of cell samples.

https://doi.org/10.1038/s41597-023-02333-6
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Figure 2c shows the distribution of gene number (nfeature_RNA), UMI number (nCount_RNA), mitochon-
drial UMI proportion (percent. mito) and erythrocyte UMI proportion (percent. HB) of samples at six-time 
points by violin chart.

After clustering cells by graph-based clustering method and visualizing by t-SNE dimension reduction, cell 
clustering results of the mouse embryo development process were obtained, and the number and type of cells in 

Quality scores across all bases (Sanger/Illumina 1.9 encoding)Quality scores across all bases (Sanger/Illumina 1.9 encoding) Quality scores across all bases (Sanger/Illumina 1.9 encoding)a

E10.5 E12.5

b

c

E8.5 E10.5 E12.5

E14.5 E16.5 P3

E8.5 E10.5 E12.5

E14.5 E16.5 P3

Region

Very good

Good   

Poor 

ytilauq esaB
ytilauq esaB

E14.5

Quality scores across all bases (Sanger/Illumina 1.9 encoding)

E16.5

Quality scores across all bases (Sanger/Illumina 1.9 encoding)

P3

Quality scores across all bases (Sanger/Illumina 1.9 encoding)

E8.5

Position in read (bp) Position in read (bp)

Position in read (bp) Position in read (bp) Position in read (bp)

Sequence content across all basesSequence content across all bases Sequence content across all bases

Sequence content across all bases Sequence content across all bases Sequence content across all bases

Position in read (bp) Position in read (bp) Position in read (bp)

Position in read (bp) Position in read (bp) Position in read (bp)

Position in read (bp)

1    2    3    4    5    6   7    8    9      15-19   25-29   35-39  45-49  55-59   65-69   75-79  85-89   95-99      110-114   125-129    140-144   150 1    2    3     4    5    6    7    8     9      15-19   25-29   35-39   45-49   55-59   65-69   75-79   85-89   95-99       110-114     125-129     140-144   150 1    2    3    4    5    6    7    8    9      15-19   25-29   35-39   45-49  55-59   65-69   75-79  85-89    95-99       110-114    125-129     140-144   150          

1    2    3    4    5    6    7    8    9      15-19   25-29   35-39   45-49   55-59   65-69   75-79  85-89   95-99       110-114     125-129     140-144   150 1    2    3    4    5     6   7     8    9      15-19   25-29   35-39   45-49   55-59   65-69   75-79   85-89   95-99       110-114     125-129     140-144   150 1    2    3    4    5    6    7     8    9      15-19        30-34        45-49         60-64         75-79         90-94       105-109           125-129          145- 149 

1    2     3    4    5     6    7     8    9      15-19   25-29    35-39   45-49   55-59   65-69   75-79   85-89   95-99        110-114     125-129      140-144   150 
1    2     3    4    5     6    7     8    9      15-19   25-29    35-39   45-49   55-59   65-69   75-79   85-89   95-99        110-114     125-129      140-144   150 1    2     3    4    5     6    7     8    9      15-19   25-29    35-39   45-49   55-59   65-69   75-79   85-89   95-99        110-114     125-129      140-144   150 

1    2     3    4    5     6    7     8    9      15-19   25-29    35-39   45-49   55-59   65-69    75-79   85-89   95-99       110-114     125-129      140-144   150 1    2     3    4    5     6    7     8    9      15-19   25-29    35-39   45-49   55-59   65-69   75-79    85-89   95-99       110-114     125-129      140-144   150 1    2     3    4    5     6    7     8    9      15-19   25-29    35-39   45-49   55-59   65-69   75-79   85-89   95-99        110-114     125-129      140-144   150 

26

16

6

4

36

30
28

20

18

14

12

2
0

32

24

22

10
8

34

26

16

6

4

36

30
28

20

18

14

12

2

0

32

24

22

10
8

34

26

16

6

4

36

30

20

18

14

12

2

0

32

24

22

10
8

34

26

16

6

4

36

30
28

20

18

14

12

2

0

32

24
22

10
8

34

28

26

16

6

4

36

30
28

20
18

14

12

2

0

32

24

22

10

8

34

26

16

6

4

36

30
28

20

18

14

12

2

0

32

24

22

10

8

34

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

Fig. 2 Quality control (QC) of single-cell data. (a) Raw data of base mass distribution map in E8.5, E10.5, 
E12.5, E14.5, E16.5, and P3. (b) Raw data of base content distribution map in E8.5, E10.5, E12.5, E14.5, E16.5, 
and P3. (c) Violin diagram illustrating the number of genes (nfeature_RNA), unique molecular identifier (UMI) 
(nCount_RNA), and the percentage of mitochondrial UMI (percent. mito) and erythrocyte UMI (percent. HB) 
in E8.5, E10.5, E12.5, E14.5, E16.5, and P3.
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the subpopulation were displayed. Here, we take the sequencing results of E14.5 and E16.5 hearts as examples to 
analyse the transcriptional spectrum of CCS. As shown in Figure 3a,b, each dot represents a cell, and the color 
is used to distinguish different cell subpopulations. The closer the cell’s distance, the closer the gene expression 

E8.5 E10.5 E12.5 E14.5 E16.5 P3

Valid Barcodes (%) 98.20 97.70 97.80 97.90 97.90 98.00

Q30 Bases in Barcode (%) 95.80 95.10 95.50 95.30 95.20 93.40

Q30 Bases in RNA Read (%) 91.50 90.50 90.60 91.00 90.70 86.70

Q30 Bases in UMI (%) 95.40 94.80 94.90 94.90 94.80 92.60

Table 3. Barcode, RNA, UMI sequence quality control.

E8.5 E10.5 E12.5 E14.5 E16.5 P3

Reads Mapped Confidently to Intergenic Regions (%) 2.80 3.40 3.60 3.40 3.10 2.90

Reads Mapped Confidently to Intronic Regions (%) 7.30 8.70 6.80 11.00 8.20 7.30

Reads Mapped Confidently to Exonic Regions (%) 79.80 77.60 78.30 75.30 78.00 79.10

Reads Mapped Confidently to Transcriptome (%) 76.50 74.10 75.10 72.20 74.70 76.20

Reads Mapped Antisense to Gene (%) 0.90 1.00 0.60 0.50 0.50 0.60

Table 4. Reference genome alignment.

a b

c

Cell types in E14.5 heart

Clusters of cardiomyocytes in 
E14.5 heart

Cell types in E16.5 heart

d Clusters of cardiomyocytes in 
E16.5 heart

Fig. 3 Subpopulations of cardiomyocytes and the developmental transcriptome of the CCS. (a,b) UMAP cell 
clustering results of cell types in E14.5 and E16.5 hearts. (c,d) Cardiomyocyte subpopulations of heart in E14.5 
and E16.5 development stages.
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Cell type Marker genes

Atrial myocyte Nppa13, Gja529

Ventricular myocyte Actn230, Myh613, Tnnt213

Cardiomyocyte Acta132, Actc133, Tnnc132, Tnnc332

Cardiac conduction system Cacna2d231, Hcn431, Tbx331, cacna1g31, and Ephb331

Endothelial cell Egfl732, Epas32, Fabp432, Flt132, Pecam32, Tie132

Macrophage CD6832, CD7432, Lgals332, Itgam32

Smooth muscle cell Rgs534, Tpm235

Erythroid cell Gata136, Klf136, Runx137, Tal137, Cldn634, Cldn734, Epcam38

Mesoderm derived cell Cdh1139, Col3a139, Pcolce39

Table 5. Cell type assignment based on the marker genes reported in previous studies.

5.
41

E
5.
41

E

Marker genes for atrial myocytes Marker genes for ventricular myocytes

Marker genes for CCS cells 

5.
61

E

a

b

5.
61

E

Fig. 4 The distribution of marker genes for the atrial myocytes, ventricular myocytes and CCS cells at E14.5 and 
E16.5 development stages. (a) The marker genes of atrial myocytes (Nppa and Gja5) and ventricular myocytes 
(Myh6, Actn2, and Tnnt2) enriched in different clusters. (b) The marker genes of CCS cells (Hcn4, Tbx3, 
cacna1g, Ephb3, and Cacna2d2) expressed in different clusters. AM: atrial myocytes; VM: ventricular myocytes; 
CCS: cardiac conduction system.

https://doi.org/10.1038/s41597-023-02333-6


8Scientific Data |          (2023) 10:577  | https://doi.org/10.1038/s41597-023-02333-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

profile is. Table 5 shows marker genes that define cardiomyocytes, fibroblasts, endothelial cells, macrophages, 
vascular smooth muscle cells (VSMC), epithelial cells, and mesoderm-derived cells. We found that the main 
cell types in the E14.4 heart include ventricular myocyte (VM), VSMC, endothelial cell, atrial myocyte (AM), 
erythroid cell, epicardial cell, macrophage, etc. But in addition to these cell types, the E16.5 heart also contains 
fibroblast and pericyte.

At the same time, the UMAP unsupervised dimensionality reduction and clustering algorithm was used to 
unbiased classify cardiomyocytes obtained from the classification of cardiac cells (Figure 3c,d). According to the 
number in the figure, we can see a total of 11 cardiomyocyte subgroups in both E14.5 and E16.5 hearts.

Violin plots show that cell markers of atrial myocytes (Nppa, Gja5)13,29 (Figure 4a), ventricular myocytes 
(Myh6, Actn2, and Tnnt2)13,30 (Figure 4b) and cardiac conduction cells (Hcn4, Tbx3, cacna1g, Ephb3, and 
Cacna2d2)31 (Figure 4c) enriched in clusters.

Code availability
All single-cell RNA-Seq analyses were performed using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), Cell Ranger (download from 10x genomics) and Seurat (https://satijalab.org/seurat/).
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