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Extension and update of multiscale 
monthly household carbon 
footprint in Japan from 2011 to 
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Household consumption significantly contributes to greenhouse gas emissions as it is the largest 
component of final demand in the national accounting system. Nevertheless, there is an apparent 
lack of comprehensive and consistent datasets detailing emissions from household consumption. 
Here, we expand and update Japan’s multiscale monthly household carbon footprint from January 
2011 to September 2022, combining data from government statistics and surveys. We constructed a 
dataset comprising 37,692 direct and 4,852,845 indirect emission records, covering households at the 
national, regional, and prefectural city levels. The dataset provides critical spatiotemporal information 
that allows for revealing carbon emission patterns, pinpointing primary sources of emissions, and 
discerning regional variances. Moreover, the inclusion of micro-scale carbon footprint data enables the 
identification of specific consumption habits, thereby regulating individual consumption behavior to 
achieve a low-carbon society.

Background & Summary
Climate change and increasing greenhouse gas (GHG) emissions present a formidable challenge in contempo-
rary times1, and the predominant driving force behind this is the accrual of GHG in the atmosphere, particularly 
carbon dioxide (CO2), which contributes to environmental alterations, including global warming2,3. Given the 
extensive ramifications of climate change, nations and institutions have instituted carbon neutrality objectives 
to achieve climate change mitigation goals4–6. Global emission reduction pathways, such as those outlined in 
the Paris Agreement and the Net Zero Pathways, propose specific strategies and benchmarks to achieve these 
objectives7–9. It is imperative to transition towards sustainable consumption and production paradigms that fos-
ter resource efficiency, waste minimization, pollution abatement, and ecologically viable production processes 
to achieve these goals10–12. Such goals are also congruent with multiple sustainable development goals (SDGs), 
encompassing Sustainable Cities and Communities (SDG 11), Responsible Consumption and Production (SDG 
12), and Climate Action (SDG 13)13.

Although multiple parties have set targets and commitments, achieving carbon reduction targets is complex 
and challenging, requiring a comprehensive assessment of emission sources and mitigation potential. To achieve 
this, multiscale quantification is considered an essential instrument for assessing the progress made in the pur-
suit of sustainable development14–16. The carbon footprint has been quantified across various scales, including 
global17,18, national19–22, and city levels23–26. Recently, subnational carbon emission reduction pathways have 
garnered increasing interest as they acknowledge the significance of implementing tailored mitigation strategies 
suitable for specific circumstances26–28 and complement national-level policies. Engaging local communities in 
the development and implementation of mitigation strategies can facilitate greater participation of local stake-
holders in the decision-making process29,30. Particularly, urban areas, contributing to approximately 70% of 
global carbon emissions31,32, play a vital role in mitigating the impacts of climate change and actualizing the 
SDGs33–35. Therefore, it is critical to assess the carbon footprint at the city level and develop carbon reduction 
strategies that identify specific emission sources and leverage local resources and capacities, including urban 
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planning, transportation, energy systems, and waste management. By implementing these targeted measures at 
the city level, co-benefits, such as improving air quality, enhancing energy security, and creating new economic 
opportunities, can also be promoted36,37.

Within the urban context, it is essential to identify specific components within cities that should assume 
responsibility for implementing climate-change mitigation policies to refine the focus on the significance of 
urban areas38–40. According to various previous demonstrations and analyses, household consumption is a 
vital component of urban emissions41–43, and the necessity of decarbonization has become increasingly critical 
owing to climate-related concerns. Consequently, understanding the nexus between household behavior and the 
environment is paramount, given that the production and provision of goods and services are chiefly oriented 
toward fulfilling the ultimate demand of households19,44–46. On this basis, the household sector concurrently 
holds a crucial bearing on achieving emission reduction objectives and has considerable mitigation potential47,48. 
Evidence has demonstrated that seemingly trivial day-to-day actions, such as reducing water usage, turning off 
lights when not in use, and proper waste disposal, carry weight49–52. Therefore, this dataset focuses on the carbon 
footprint of Japan’s households, aiming to contribute to the body of knowledge that guides emission reduction 
strategies from the household perspective.

In our previous research41, we analyzed monthly direct and indirect GHG emissions for 51–52 Japanese 
cities, spanning 2011 to 2015. The dataset encompasses 1,555,512 items, with 1,543,128 items for indirect emis-
sions and 12,384 items for direct emissions, which are publicly accessible via Figshare in the form of 17 Excel 
files. However, a considerable research gap exists due to the limited scope of the previous dataset, which only 
extended to 2015 and cannot reflect the impact of the COVID-19 pandemic. Therefore, an updated version of 
the dataset has been produced and updated up to September 2022. Furthermore, since emission reduction pol-
icies at national, prefectural, and city levels are interconnected and can reinforce each other, quantifying house-
hold carbon footprints at all levels aids in targeted policy creation, enabling effective interventions and providing 
households with insights to encourage lower-carbon lifestyles. Given that, the latest iteration of our research 
offers expanded spatial coverage. This includes carbon footprints at the national level, regional level (comprising 
10 regions), as well as the average of large, medium, and small cities. The regions include the Hokkaido, Tohoku, 
Kanto, Hokuriku, Tokai, Kinki, Chugoku, Shikoku, Kyushu, and Okinawa regions. The updated dataset incor-
porates direct emission data from the use of natural gas, gasoline, liquefied petroleum gas (LPG), and kerosene, 
along with 515 consumption items that contribute to indirect emissions.

Methods
Scope of the dataset. The dataset is based on the Family Income and Expenditure Survey (FIES), con-
ducted monthly by the Statistics Bureau of Japan53. This survey consistently quantifies the expenditures of 
Japanese households in approximately 500 different categories of goods and services.

The dataset described in this data descriptor includes direct and indirect monthly emissions from households 
at the national, regional, and city levels in Japan. Regarding the research period, household consumption data 
from January 2011 to September 2022 are covered. Compared with our previous research, this study adds the 
carbon footprint embodied in the 515 household consumption items for all months in the extended dataset, as 
elucidated in the Excel file labeled ‘Category.xlsx’. For direct emissions, the current dataset contains results from 
the use of four types of fuels. In addition to the national level, this study extracts consumption data for ‘Large 
cities,’ ‘Medium cities,’ ‘Small cities A,’ and ‘Small cities B/towns and villages’ to analyze the carbon footprint at 
these levels (regarding how to define large, medium, and small cities, please refer to the file titled ‘Classification 
of cities and other areas.xlsx’). In addition, we also provide 10 regional-specific household carbon footprints 
within the same time span. From the standpoint of cities, the discussion in 2011–2012 included 51 cities (pri-
marily prefectural level cities), whereas household consumption data from 52 cities was used for analyzing the 
carbon footprint from 2013 to 2022, including the addition of Sagamihara. The process of establishing the data-
set is illustrated in the flowchart in Fig. 1.

Direct emission. A previous study identified gasoline, kerosene, LPG, and city gas as the primary fossil fuels 
responsible for direct emissions from Japanese households41,54. The fundamental principles for calculating the 
direct emissions from the use of different fuels are presented here. First, it involves the extraction of household 
expenditures from the FIES, followed by the conversion of consumption to mass or volume based on retail fuel 
prices, as Eq. (1) depicts:

P c hs u/ ( ) (1)i j m y i j m y j m y i j m y, , ,
direct

, , , , , , , ,= ⋅

where Pi j m y, , ,
direct  is the physical quantity of fuel type i in diverse space coverage j during month m of year y. Here, 

‘diverse space coverage’ refers to the measurement of fuel quantity across various spatial scales, including 
national, regional and city scales (large, medium, small cities), as previously specified. Moreover, ci j m y, , ,  refers to 
the expenditure on fuel type i in diverse space coverage, and hsj m y, ,  indicates the average household size of 
diverse space coverage j in specific months, both captured from the FIES dataset. The term ui,j,m,y refers to the 
retail price of fuel i, which is also related to the research area and period.

Next, the emission intensity, EFi j m y, , ,
direct  of all four fuel types were estimated. Specifically, this computation relies 

on several factors, including the standard carbon emission coefficient si j m y, , , , the standard heat generation coef-
ficient of fuels hi,m,y, and the conversion of carbon content in its chemical composition to CO2 equivalent, as 
shown in Eq. (2).
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Here, hi,m,y is also updated monthly. Regarding the carbon content in the chemical composition, the corre-
sponding CO2 equivalent is calculated by multiplying the carbon content by the ratio of the molar mass of CO2 
(MCO2

, 44 g/mol) to the molar mass of carbon (MC, 12 g/mol).
Subsequently, multiplying the fuel mass or volume by the pertinent emission coefficients results in the com-

putation of the monthly direct emissions, expressed in g-CO2e. The per capita direct emission Ei j m y, , ,
direct  is derived 

using Eq. (3),

E P EF (3)i j m y i j m y i j y, , ,
direct

, , ,
direct

, ,
direct= ⋅

where Ei j m y, , ,
direct  is the per capita direct emissions from the consumption of fuel type i in diverse space coverage j 

during month m of year y. The heating value of a fuel refers to the amount of heat released per unit mass (or unit 
volume) of the fuel upon complete combustion, that is, the standard carbon emission coefficient (based on total 
heat generation).

Notably, this study improves on the previous research by ensuring the reliability and availability of the data 
sources. The standard heat generation coefficient information is sourced from the ‘List of standard heat gener-
ation and carbon emission coefficients by energy source 2022’ published by the Ministry of the Environment, 
Japan55. Further details regarding the different fuels used are provided below.

For city gas, the data source is the FIES Monthly Prices and Annual Average Prices by Item dataset. This dataset is 
updated monthly and provides information on natural gas prices in different cities. The unit of the city gas price data 
is measured by the heat value, namely ‘for domestic use, early payment, 1465.12 MJ’. The carbon footprint of city gas 
can be calculated by comparing household spending on natural gas with the standard carbon emissions coefficient.

The data for kerosene and gasoline were obtained from a weekly survey of retail prices at filling stations conducted 
by the Ministry of Economy, Trade, and Industry of Japan56. This dataset is updated weekly and provides information 
on fuel prices in different counties. Unlike city gas data, this dataset provides fuel prices in yen per liter for gasoline 
and yen per 18 liters for kerosene. The carbon footprints of these fuels can be calculated by comparing household 
spending on gasoline and kerosene with their respective calorific values and standard carbon emission coefficients.

Fig. 1 Flowchart of the dataset establishment.
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The price information for LPG was sourced from the Oil Information Center at the Institute of Energy 
Economics, Japan57. The retail price of LPG is based on consumption, with cutoffs of 5 m3, 10 m3, 20 m3, and 
50 m3. Therefore, the average monthly household consumption of LPG in each region was determined by refer-
encing the LPG consumption survey of Japan conducted by the Oil Information Center58.

Indirect emission. To accurately assess the indirect carbon emissions associated with goods and services 
utilized by households, this study used the Embodied Energy and Emission Intensity Data for Japan Using 
Input-output Tables (3EID)59 and the FIES dataset. The FIES provides information on family income and expend-
iture, including consumption levels and sources of income and disparities in income and spending patterns across 
different income groups, presented in two volumes at the national and regional levels. Here, various GHGs, 
including CO2, CH4, N2O, HFCS, PFCS, SF6, and NF3, were considered and measured in CO2 equivalents, referred 
to as carbon footprints. According to the FIES dataset, the sample was updated at regular intervals to minimize 
potential bias in the obtained data and alleviate the burden of long-term bookkeeping for the sampled households.

The calculation principle in the 3EID database of indirect carbon emission intensity is summarized as fol-
lows: First, energy consumption and air pollutant emissions were analyzed from a sector and fuel-type per-
spective, with 400 sectors consolidated into 17 sectors, revealing direct energy consumption and emissions 
quantitatively. The contribution of each sector’s environmental efforts to the total burden was calculated based 
on the final economic demand. In the first step, Eq. (4) was used to determine the indirect intensity.
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Here, I j t,
indirect refers to the indirect intensity in sector j in year t, d d d dD [ , , , , ]n1 2 3= …  represents the 

direct emission intensity 1 ×n vector, and I represents the unit matrix. Therefore, the left side of Eq. (4) shows a 
transposed 1 ×n vector marked with the superscript T. A is the output requirement coefficient matrix, which is 
calculated by dividing industry i’s output needed to produce industry j’s output xij by the total output of sector 
Xj 
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, and M is the diagonal matrix that represents the direct requirement coefficients for the 

import portion.
Although the 3EID database provides indirect emission intensities for a wide range of household consumer 

products, it does not completely match the industry classifications and expenditure data covered by the FIES 
database and only provides indirect emission intensities for 2011 and 2015, as the 3EID database’s release cycle 
is every five years. Therefore, we first remapped the emissions intensity and consumption data categories to align 
the indirect emission intensities from the 3EID database with the industry classifications and expenditure data 
from the FIES database. It should be noted that the 3EID emission intensity dataset provided results only for 
2011 and 2015, with 395 and 390 items, respectively. By cross-mapping the 3EID dataset with the corresponding 
FIES dataset, we generated an emission inventory of 495 items between 2011 and 2014, 512 items between 2015 
and 2019, and 504 items between 2020 and 2022. Second, to bridge the indirect emissions intensity data for the 
missing years in the 3EID database, we combined the interpolation method with information on inflation and 
the Consumer Price Index (CPI). To note, in this study, consumer price is employed, which adjusts the commer-
cial and transportation margin rates when compared with producer prices, to accurately account for indirect 
emissions in household consumption60. The estimation process for the embodied carbon emissions intensity 
I j m y, ,

indirect of item j in year y is expressed in Eq. (5).
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Note that I j ,2011
indirect and I j ,2015

indirect are generated from the 3EID dataset, which applied the 2011 and 2015 Japanese 
input-output tables, respectively. Equation (5) comprises three parts: 2012–2014, a simple linear interpolation 
method was applied; 2016–2021, modification factors that consider inflation (INFj,y), derived from the Economic 
and Social Research Institute, Cabinet Office of Japan, were used to modify the value of intensities; 2022, since 
the inflation information for the year was not available when this research was carried out, we referred to the 
2020-Base CPI datasets, which are updated monthly by the Statistics of Japan, to obtain the monthly CPI data 
(CPIj,m,2022)61.

Another noteworthy improvement over previous studies was the emission intensity of electricity in differ-
ent regions. The disparity in emissions across regional power grids is largely attributed to the dissimilarities 
in energy structures and consumption habits across distinct geographical areas62,63. Although some localities 
depend on coal-fired power generation, others adopt a greater proportion of clean energy resources. In addition, 
more advanced regions potentially exhibit greater reliance on high-tech industries, and less developed regions 
may depend more heavily on traditional industries, further augmenting differences in power grid emissions64.

Therefore, in this study, we referred to the ‘CO2 emission factors by electricity utility companies’ in the 
‘Calculation Method and Emission Factors for Calculation, Reporting, and Disclosure System’ published by 
the Ministry of the Environment, Government of Japan65. This government report disclosed the CO2 emission 
factors of numerous electricity suppliers and provided corresponding calculation methods. To be more specific, 
we adopted the adjusted emission factor for calculation. This factor was adjusted by incorporating both domestic 
and international certified emission reductions, which provides a comprehensive and precise measure of the 
CO2 emissions generated during the electricity supply process across the various utilities under study.

Considering the structure of the electricity market in Japan, particularly the latest reforms, it is important 
to acknowledge that electricity retailers are not necessarily producers or distributors. However, by focusing on 
the 10 major electricity companies in Japan (Tokyo Electric Power Company, Kansai Electric Power Company, 
Chubu Electric Power Company, Hokkaido Electric Power Company, Chugoku Electric Power Company, 
Shikoku Electric Power Company, Kyushu Electric Power Company, Tohoku Electric Power Company, 
Hokuriku Electric Power Company, and Okinawa Electric Power Company) which collectively supply the 
majority of electricity consumers, this study was able to construct a representative picture of regional electricity 
consumption66. This, in turn, offers valuable insights into regional power generation patterns and the associated 
emissions. Therefore, this study used the emission factors of 10 major electricity companies to cover the emis-
sion factors of electricity in different regions of Japan to distinguish the variations between regions and cities.

Given all data preparations, the per capita indirect emissions Ei j m y, , ,
direct  can be obtained from household 

expenditures using Eq. (6).

= ⋅E c I hs/ (6)i j m y i j m y j m y j m y, , ,
indirect

, , , , ,
indirect

, ,

Data records
This dataset contains the monthly per capita direct and indirect household carbon footprints for 51 cities, 10 
regions, the national scale, large, medium, and small cities, and villages in Japan from 2011 to 2022. The data 
collected over 12 years have been uploaded to Figshare67 and can be organized into four categories: “Calculation 
results,” “Emission intensity,” “FIES,” and “Household size.” The “Calculation results” category contains the direct 
and indirect calculation results at both city and regional levels (the results for households nationwide and in 
different scales of cities are included in the results on the regional level). The “Emission intensity” category 
provides emission factors for four fuels (natural gas, gasoline, LPG, and kerosene) for gCO2/yen emitted. In 
contrast to previous studies that applied the same grid emission factor for all areas of Japan, this study combines 
region-specific carbon emission factors. These factors, measured in tons of CO2 per kWh, were provided by 
electricity utility companies and represent the indirect emission factors for electricity use in different regions. 
Detailed information is contained in a file called “indirect emission intensity.xlsx”. The “FIES” category con-
tains three files, including a cross-mapping of consumption items in the 2015 FIES and 3EID databases (named 
Mapping.xlsx), details of pertinent industries in the FIES database (named FIES_items_Eng_2011-22.xlsx) 
and information on the classification method used in the result analysis (named Category.xlsx). Finally, the 
“Household size” category includes two files containing monthly household sizes for each region and city during 
the study period. Table 1 lists all the files, and Table 2 lists the records of the carbon footprint calculations for 
each year. This dataset contains 4,890,537 data points, including 4,852,845 indirect and 37,692 direct emissions.

technical Validation
Multiscale carbon footprint in Japan from 2011 to 2022. Fig. 2 shows the monthly carbon footprints 
of households across Japan from 2011 to September 2022. The results of the carbon footprint are divided into 
four major categories: ‘Household energy’,  ‘Food’, ‘Transport,’ and ‘Others, the details of which can be found in 
the file named Category.xlsx. In this study, direct and indirect household energy use are included in ‘Household 
energy,’ while gasoline combustion falls under the ‘Transport’ category. The ‘Food’ category considers only the 
carbon footprint of purchased ingredients and seasoning, excluding energy use involved in cooking. According 
to Fig. 2, the total carbon footprint of Japanese households is higher in winter, mainly driven by the demand for 
household energy. The average carbon footprints of the ‘Household energy’ and ‘Food’ categories are the highest, 
at 108.34 kg CO2/per capita/month and 65.58 kg CO2/per capita/month, respectively, while those of ‘Transport’ 
and ‘Others’ categories are lower. Furthermore, from 2013 to 2019, the carbon footprint of the Household energy 
category significantly decreased, while those of the ‘Others’ and ‘Food’ categories slightly increased.

https://doi.org/10.1038/s41597-023-02329-2
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In addition to the national level, this dataset also covers the household carbon footprint of 10 regions in 
Japan. For illustrative purposes, we’ve selected the results for three representative years. The per capita monthly 
carbon emissions across the 10 regions remained relatively stable from 2011 to 2015 (Fig. 3). However, there was 
a 5–15% reduction in emissions between 2015 and 2021. Emissions related to food showed a slight reduction 

Filename Description

CI_direct_2011.xlsx City-level direct emissions for 2011

CI_direct_2012.xlsx City-level direct emissions for 2012

… …

CI_direct_2022.xlsx City-level direct emissions for 2022

CI_indirect_2011.xlsx City-level indirect emissions for 2011

CI_indirect_2012.xlsx City-level indirect emissions for 2012

… …

CI_indirect_2022.xlsx City-level indirect emissions for 2022

RE_direct_2011.xlsx Regional-level direct emissions for 2011

RE_direct_2012.xlsx Regional-level direct emissions for 2012

… …

RE_direct_2022.xlsx Regional-level direct emissions for 2022

RE_indirect_2011.xlsx Regional-level indirect emissions for 2011

RE_indirect_2012.xlsx Regional-level indirect emissions for 2012

… …

RE_indirect_2022.xlsx Regional-level indirect emissions for 2022

CI_city_gas_intencity.xlsx City-level direct emission intensity for city gas from 2011 to 2022

CI_gasoline_intensity.xlsx City-level direct emission intensity for gasoline from 2011 to 2022

CI_kerosene_intensity.xlsx City-level direct emission intensity for kerosene from 2011 to 2022

CI_lpg_intensity.xlsx City-level direct emission intensity for LPG from 2011 to 2022

CI_city_electricity_intensity.xlsx City-level indirect emission intensity for electricity from 2011 to 2022

RE_city_gas_intencity.xlsx Regional-level direct emission intensity for city gas from 2011 to 2022

RE_gasoline_intensity.xlsx Regional-level direct emission intensity for city gas from 2011 to 2022

RE_kerosene_intensity.xlsx Regional-level direct emission intensity for city gas from 2011 to 2022

RE_lpg_intensity.xlsx Regional-level direct emission intensity for city gas from 2011 to 2022

RE_regional_electricity_intensity.xlsx Regional-level direct emission intensity for city gas from 2011 to 2022

Consumer Price Index.xlsx Data on CPI used to convert monthly indirect carbon emission intensities in 2022

Category.xlsx Table comparing the distinct classification methodologies for items between this study and prior research

FIES_items_Eng_2011-22.xlsx Data pertaining to the nomenclature of items within the FIES dataset

Mapping.xlsx Comparison and correlation of data items between FIES and 3EID dataset

City-Household size.xlsx Data regarding the number of individuals within a given household unit

Region-Household size.xlsx Data regarding the number of individuals within a given household unit

Table 1. Summary of the dataset files and corresponding descriptions.

Year
National/
city scales Regions Cities Months

Direct emission Indirect emission

Total data records
Item 
number

Data 
records

Item 
number

Data 
records

2011 5 10 51 12 4 3,168 515 407,880 411,048

2012 5 10 51 12 4 3,168 515 407,880 411,048

2013 5 10 52 12 4 3,216 515 414,060 417,276

2014 5 10 52 12 4 3,216 515 414,060 417,276

2015 5 10 52 12 4 3,216 515 414,060 417,276

2016 5 10 52 12 4 3,216 515 414,060 417,276

2017 5 10 52 12 4 3,216 515 414,060 417,276

2018 5 10 52 12 4 3,216 515 414,060 417,276

2019 5 10 52 12 4 3,216 515 414,060 417,276

2020 5 10 52 12 4 3,216 515 414,060 417,276

2021 5 10 52 12 4 3,216 515 414,060 417,276

2022 5 10 52 9 4 2,412 515 310,545 312,957

Table 2. Data records for each study year.
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from 2011 to 2015 but did not change significantly from 2015 to 2021. The trends in household energy-related 
emissions, which are the primary sources of carbon emissions, were consistent with the overall trend in car-
bon emissions, showing a significant reduction from 2015 to 2021. For example, the per capita monthly home 
energy-related carbon emissions in the Kinki region decreased by approximately 39 kg CO2/cap/mon, which is 
only 63% of the emissions recored in 2015. Emissions related to transportation showed an overall decreasing 
trend over the past decade, with a greater reduction from 2015 to 2021. The average reduction in emissions from 
2011 to 2015 was approximately 5%, whereas that from 2015 to 2021 was approximately 10%. Carbon emissions 
from other sources steadily increased at a similar rate of approximately 12% during both periods.

Fig. 2 Japan’s monthly household carbon footprint from 2011–2022.
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The dataset’s final level comprises cities. Because of the large number of cities covered, we partially summarized 
the data and displayed the average results for all months in each year in Fig. 4. Overall, the total carbon foot-
prints of northern cities, such as Sapporo, Aomori, and Sendai, are generally higher, whereas southern cities in the 
Kyushu and Kansai regions tend to have lower carbon footprints, as shown in Fig. 4a. Household carbon footprints 
fluctuated from 2011 to 2016 but generally decreased after 2016, with regional disparities remaining evident.  
The carbon footprint caused by home energy use (Fig. 4b) has been  on a gradual decline since 2012, though 
regional differences still exist. The carbon footprints caused by food consumption (Fig. 4c) vary among cities. 
Kyoto and Kawasaki have the highest carbon footprints, and Naha has the lowest, showing a stable trend with a 

Fig. 3 Per capita monthly carbon emissions and trends in 10 regions of Japan from 2011–2021.
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relatively even distribution. The carbon footprint due to transportation exhibits a mild decrease overall (Fig. 4d), 
with emissions from transportation in major cities such as Tokyo, Yokohama, and Kyoto being relatively low. In 
contrast, emissions in some cities located in the central or eastern Honshu, western Japan, Shikoku, and Kyushu 
regions are higher, which are closely related to local public transportation systems. The carbon footprint of ‘Others’ 
(Fig. 4e) shows a fluctuating trend, with major cities in the Kanto region having higher carbon footprints in this 
category, while Naha and other less economically developed cities have lower carbon footprints.

Fig. 4 Violin map of monthly average household carbon footprint distribution in 51 Japanese cities from 2011 
to 2022. Note: the data for 2022 does not cover all months of the year, as it only covers January to September.
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Comparison with other relevant databases. To validate the accuracy of our study, we consulted car-
bon footprint data from several government agencies, including the GHG Emissions Data of Japan from the 
Greenhouse Gas Inventory Office of Japan (GIO)68 at the National Institute for Environmental Studies (NIES), 
the National Household CO2 Survey from the Japan Society of Energy and Resources, and a previous study54.  
The detailed results of these comparisons by year and month are shown in Fig. 5, and the overall quantitative 
assessment results are summarized in Table 3 and Fig. 6.

Figure 5a displays a bar chart showing emissions by fuel type from GIO, including coal, kerosene, LPG, city 
gas, electricity, heat, gasoline, diesel oil, municipal solid waste, water, and wastewater. The y-axis represents emis-
sions in kg CO2/capita, and the x-axis shows data from 2011 to 2020. The shaded areas represent the emission 
ranges used in this study. While our study classified indirect sources such as electricity, water, and wastewater 
emissions, we validated our calculation results by selecting indirect emission results of specific energy consump-
tion categories, including ‘Electricity Bill for Late-Night Electricity,’ ‘Other Electricity Bills,’ and ‘Other Light 
Heat Other’; we found that the selected energy consumption by GIO corresponds with our calculation scope. We 
also compared our results to the National Household CO2 Survey in Reiwa 2 (from April 2020 to March 2021), 
with Fig. 5b)-1 to b)-5 displaying CO2 emissions for city gas, LPG, electricity, kerosene, and gasoline, respec-
tively. Each corresponding month’s average per-capita emissions are displayed in each column to account for 

Fig. 5 Results validation with GIO data, National Household CO2 Survey, and previous research. The carbon 
footprint from selected energy consumption compared to (a) the GIO database, (b–b)-1- b)-5: the National 
Household CO2 Survey, and b)-6: previous research.
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the large variations in emissions reported by over 10,000 households in the survey. Our results indicated that, 
except for gasoline, the survey data were consistent with our calculated results, and the emissions from gasoline 
were only slightly higher than our maximum value in some months. Figure 5b)-6 showcases a comparison of our 
results with those obtained in previous research.

Table 3 presents a quantitative assessment of these comparisons, illustrating the average annual emissions 
and 95% confidence intervals for the carbon footprints across various energy usage types. In addition, Fig. 6 
offers a box plot representation of data distributions in the GIO database, the National Household CO2 Survey, 
and this database. Each box plot includes median, upper, and lower quartiles, encapsulating the data distribution 
within each database.

The notable consistency between these datasets lends further credence to our model, while any discrepancies 
prompt useful avenues for further exploration and refinement of our approach.

Usage Notes
This dataset aggregates data from multiple sources, including the FIES and 3EID datasets, and some disclosure 
documents from the Ministry of the Environment of Japan. One of the main tasks in establishing this dataset is 
to cross-map the large FIES and 3EID databases to obtain consistent consumption categories. It should be noted 
that the consumption categories included in the household survey data published by the FIES underwent mul-
tiple changes over different time periods, which posed certain difficulties in the calculation. For example, since 
2020, FIES has eliminated consumption categories such as “43X midnight low electricity rate” and “430 other 
electricity”. It now only provides consumption data for “3.1 electricity charges”. Therefore, appropriate measures 
were taken during data processing to ensure reliability and comparability.

Despite providing valuable information, we must also acknowledge the limitations of this dataset. First, for 
city-level quantification, the coverage of our dataset was limited to prefectural-level cities, excluding Japan’s 
medium-sized cities and rural areas. This limitation may result in incomplete or inaccurate carbon footprint data 
for certain regions, affecting the overall analysis. Second, Japan is currently facing population concentration in 
large cities (especially among the younger generation) and an aging population, which may also have led to the 
incomplete and unrepresentative data obtained in this study. Future research should include a wider range of 

Fig. 6 Carbon footprint distribution in GIO database, National Household CO2 Survey, and this study.
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regions to fully understand the impact of the household carbon footprint on climate change and provide more 
accurate and comprehensive data to support effective environmental policies.

Code availability
The code used for analysis in this study is publicly available at https://github.com/LiqiaoHuang/Household-
carbon-footprint-quantification.git.
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