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a phylotranscriptomic dataset of 
angiosperm species under cold 
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angiosperms are one of the most diverse and abundant plant groups that are widely distributed on 
Earth, from tropical to temperate and polar zones. The wide distribution of angiosperms may be 
attributed to the evolution of sophisticated mechanisms of environmental adaptability, including cold 
tolerance. Since the development of high-throughput sequencing, transcriptome has been widely 
utilized to gain insights into the molecular mechanisms of plants in response to cold stress. However, 
previous studies generally focused on single or two species, and comparative transcriptome analyses 
for multispecies responding to cold stress were limited. In this study, we selected 11 representative 
angiosperm species, performed phylotranscriptome experiments at four time points before and 
after cold stress, and presented a profile of cold-induced transcriptome changes in angiosperms. Our 
multispecies cold-responsive RNA-seq datasets provide valuable references for exploring conserved and 
evolutionary mechanisms of angiosperms in adaptation to cold stress.

Background & Summary
Due to their sessile nature, plants have evolved sophisticated signaling pathways in adaptation to complex envi-
ronmental fluctuations such as extreme temperature, high salinity, and drought1,2. Low temperature is one of 
the environmental stresses that causes a series of physiological and metabolic changes in plants3,4, and severe 
low temperature even causes plant death, which seriously threatens food and seed security. However, plants are 
not completely as passive as they seem. Generally, temperate plants could increase their freezing tolerance by 
preexposure to low but non-freezing temperature environment for a few days or weeks, the process is known 
as cold acclimation5. Cold acclimation is a complex process that involves multiple physiological and biochemi-
cal changes, such as modification of lipid composition, changes of protein and carbohydrate composition, and 
accumulation of anti-freezing and anti-oxidative substances5. Accumulating evidence demonstrates that most 
of these changes are mainly due to the expression of cold-responsive (COR) genes, which are induced by cold 
acclimation and play important roles in plants resistance to low temperatures6–8. Exploring the regulatory mech-
anisms of COR genes in cold acclimation contributes to our understanding of plants adapting to extremely low 
temperatures and molecular breeding.

Since the development of high-throughput sequencing, RNA sequencing (RNA-seq) has been widely uti-
lized to gain insights into the molecular mechanisms of plants in response to cold stress. To date, molecu-
lar responses of cold stress have been widely investigated and characterized in many plant species, such as 
Arabidopsis thaliana9, Oryza sativa10, Zea mays11, Ocimum americanum12, Malus sieversii13, Nicotiana tabacum14, 
Phyllostachys edulis15, Betula platyphylla16, and Populus trichocarpa17,18. However, these prior studies generally 
focus on single or two species, and comparative transcriptome analyses for multispecies responding to cold 
stress were less investigated.

As the most diverse and abundant plant groups, angiosperms are widely distributed on Earth from tropical to 
polar terrestrial zones. The wide distribution of angiosperms may be attributed to the evolution of advanced and 
sophisticated mechanisms of environmental adaptability19. In this study, we present cold-stress transcriptome 
analyses of 11 angiosperm species, including six eudicots (Arabidopsis thaliana, Betula pendula, Populus tricho-
carpa, Carya illinoinensis, Glycine max, and Cucumis sativus) and five monocots (Oryza sativa, Setaria italica, 
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Hordeum vulgare, Zea mays, and Phyllostachys edulis). For each of the species, seedlings were treated at four 
different time points of cold stress (0, 2, 24, and 168 hours (h)), and three biological replicates were performed 
for each time point. Finally, we generated a total of 132 RNA-seq datasets from the 11 angiosperms under cold 
treatments. Our multispecies cold-responsive RNA-seq datasets provide valuable references for exploring the 
conservation and evolution of cold-responsive molecular mechanisms of angiosperms.
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Fig. 1 Overview of multispecies cold treatment experiment and transcriptome analysis pipeline.  
(a) A total of 11 representative angiosperm species were selected for generating cold stress RNA-seq dataset.  
The selected species include six eudicots: Arabidopsis thaliana (A. thaliana), Betula pendula (B. pendula), 
Populus trichocarpa (P. trichocarpa), Carya illinoinensis (C. illinoinensis), Glycine max (G. max), and Cucumis 
sativus (C. sativus), and five monocots: Oryza sativa (O. sativa), Setaria italica (S. italica), Hordeum vulgare  
(H. vulgare), Zea mays (Z. mays), and Phyllostachys edulis (P. edulis). (b) Cold stress treatments of the 11 selected 
species. Different time points (0, 2, 24, and 168 h) of cold stress (4 °C) treatments were separately performed  
in each of the species. Leaves of the treated seedlings were collected, and three biological replicates were 
performed for each cold treatment. Finally, we obtained 132 samples of multispecies under cold stress 
treatments (see Methods). (c) A brief pipeline of RNA-seq experiment and analysis. The total RNA of the 
samples was extracted for Poly (A) RNA enrichment and cDNA library construction. The cDNA libraries 
were sequenced on Illumina NovaSeq 6000. After data filtering and quality control, the clean reads of the 
transcriptomes were mapped to their reference genomes, and the expression profiles of cold-responsive genes 
were analyzed (see Methods).
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Methods
plant materials and growth conditions. Seedlings of 11 selected representative angiosperm species, 
including six eudicots (A. thaliana, B. pendula, P. trichocarpa, C. illinoinensis, G. max, and C. sativus) and five mono-
cots (O. sativa, S. italica, H. vulgare, Z. mays, and P. edulis) (Fig. 1a), were cultured in an artificial climate chamber 
with 25 °C at a photoperiod of 16/8 h light/dark cycle. For A. thaliana, three-week-old seedlings were prepared for 
utilization in cold treatment. For other species, young seedlings growing up to ~30 cm in height were prepared.

cold stress treatment. Under cold stress, gene expression is reprogrammed to form a hierarchical regulatory 
network, which is constituted of rapid, early, and late cold-responsive genes. To obtain these genes, we performed 
cold stress treatments of the 11 selected representative angiosperm species under different time points (0, 2, 24, and 
168 h). For each species, seedlings with relatively uniform growth and physiological state were selected and divided 
into four groups (Group 1 to Group 4). To ensure that the four seedling groups of cold treatments (0, 2, 24, and 
168 h) could be harvested in the same development stage at the same time on a day, the seedling group of cold treat-
ment for 168 h was first cultured in the artificial climate chamber with 4 °C a week (168 h) before harvest, and then 
were seedling groups of cold treatment, respectively, for 24, 2, and 0 h at proper times. After cold stress treatments, 
we collected the fourth expanded leaves of the treated seedlings, which are generally considered as mature healthy 
leaves at similar developmental stages. For each cold treatment, three biological replicates were performed (Fig. 1b).

RNA extraction, library construction, and sequencing. The total RNA of the collected leaves from 
each species was isolated and purified using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the 
manufacturer’s procedure. The RNA amount and purity of each sample were assessed by NanoDrop ND-1000 
(NanoDrop Technologies, Wilmington, DE, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 
Alto, California, USA). Poly (A) RNA was purified from total RNA using poly-T oligo-attached magnetic beads 
to generate strand-specific cDNA libraries containing inserts of approximately 150–200 bp in size. In total, 132 
cDNA libraries from 11 species under four time points before and after cold stress (0, 2, 24, and 168 h) were con-
structed for transcriptome analysis. The libraries were sequenced on Illumina NovaSeq 6000 sequencing system 
(2 × 150 bp paired-end reads) at LC-Bio Technology CO., Ltd. (Hangzhou, China) according to the manufactur-
er’s instructions (Fig. 1c).

Data Records
The above 132 RNA-seq datasets have been deposited into the NCBI BioProject with the accession number 
PRJNA76719620. The read-count data matrix of cold-treated samples in each of the 11 species is available at 
figshare data repository (https://doi.org/10.6084/m9.figshare.22643245.v1)21. DEGs between different time 
points of cold treatments and normal conditions for each species time points are also available at figshare 
(https://doi.org/10.6084/m9.figshare.22643074.v1)22.

technical Validation
Data filtering and quality control. The raw data in fastq format were processed by Trimmomatic v0.3923 
to remove the Illumina adapter contamination and low-quality bases. After filtering, quality control of the clean 
reads in each RNA-seq dataset was assessed using FastQC24 (https://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). Q20 and Q30 average values of the 132 libraries were 99.84% and 98.29%, respectively (Dataset 1). 
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Fig. 2 Genome annotation quality and reads mapping of RNA-seq data to reference genomes. (a) Benchmarking 
Universal Single-Copy Orthologs (BUSCO) scores of the 11 reference genomes. (b) Boxplots showing read 
mapping ratios of RNA-seq data to the reference genomes. In each species, a total of 12 RNA-seq samples were 
obtained according to four time points, each with three biological replicates. The dashed line indicates the 
average read mapping ratio of the 132 RNA-seq samples.
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The average GC content of the dataset was 47.84% (Dataset 1). Overall results of filtering and quality of clean 
reads indicated that the sequencing progressed adequately composing a series of high-quality RNA-seq datasets.

Reference genomes assessment and reads mapping. Genome sequences of 11 angiosperms were 
downloaded from public databases. In detail, genome sequences of A. thaliana were downloaded from TAIR1025, 
B. pendula and C. sativus were downloaded from NCBI26, P. trichocarpa, G. max, O. sativa and S. italic were down-
loaded from Phytozome v13.127, H. vulgare and Z. mays were downloaded from Ensembl Plants28, C. illinoinensis 
and P. edulis were downloaded from GigaDB29. We first used BUSCO v.3.0.230 to detect the quality of the reference 
genomes. The complete BUSCO values of the 11 reference genomes ranged from 86.3% to 99.3%, among which 10 
genomes were over 90% (Fig. 2a), indicating that the reference genomes were appropriate and of high quality. To 
detect the mapping ratio of the transcriptomes, clean reads from each sample were mapped to their correspond-
ing reference genome by HISAT2 v2.1.031. The average mapping ratio of the RNA-seq samples in each species 
ranged from 94.23% to 98.84% (Dataset 2 and Fig. 2b).

principal component analysis. StringTie v2.0.332 was further utilized to estimate the gene expression level 
(trimmed mean of M value, TMM) based on all mapped reads to the reference genome, and the expressed genes 
in each sample were identified with the average TMM > 0.5 across three replicates of the sample (Dataset 3). 

Fig. 3 Principal component analysis (PCA) across RNA-seq samples of cold treatments in each of the species. 
PCA was performed by the script of PtR in Trinity33.
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Read-count data can be available at Figshare (https://doi.org/10.6084/m9.figshare.22643245.v1)21. Using the 
script of PtR in Trinity33, we performed principal component analysis (PCA) based on the mapped count read 
table of the RNA-seq samples for each species. PCA results showed a clear clustering according to the same time 
point of cold treatments (Fig. 3), suggesting a high consistency of the biological replicates.
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Fig. 4 Expression profiles of cold-responsive genes in the 11 selected species. (a) Percentages of DEGs in  
the expressed genes in each species. (b) The number of DEGs in each of the species between cold treatments 
(2, 24, and 168 h) and normal condition (0 h). (c) Venn diagrams showing unique and overlapping DEGs from 
different time points of cold treatments in each species. (d) Heatmaps of the DEGs among different time points 
of cold treatments in each species.
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Identification of differentially expressed genes. Differentially expressed genes (DEGs) between two 
time points before and after cold treatments (0 h versus 2, 24, or 168 h) were obtained using edgeR34, DESeq 235, 
and Ballgown36. In brief, analyzed from at least two of the three methods, those genes with a mean TMM ≥ 1 
across the compared samples that had an adjusted P-value or false discovery rate (FDR) <0.05 and an absolute 
value of fold change ≥ 2 were considered to be DEGs. For each species, the number of DEGs under different time 
points of cold treatments (2, 24, and 168 h) compared with the control (0 h) was calculated (Fig. 4a,b, Dataset 4). 
The meta-data of DEGs are available under Figshare DEG tables of 11 angiosperm species under different time 
points of cold treatments22. Venn diagrams of the DEGs obtained from different time points of cold treatments 
were analyzed (Fig. 4c). Additionally, we used R programming to plot heatmaps of the expression of DEGs in each 
species (Fig. 4d, Dataset 5).

Code availability
Software and their versions used for RNA-seq analysis were described in Methods. No custom code was used to 
generate or process the data described in the manuscript.
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