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GNSS land subsidence observations 
along the northern coastline of 
Java, Indonesia
Susilo Susilo   1 ✉, Rino Salman   2 ✉, Wawan Hermawan3, Risna Widyaningrum3, 
Sidik Tri Wibowo4, Yustisi Ardhitasari Lumban-Gaol   1, Irwan Meilano   5 & Sang-Ho Yun   2,6,7

Land subsidence in cities along the northern coastline of Java has been at a worrying level. Monitoring 
efforts using geodetic data reveal that Jakarta, Pekalongan, Semarang, and Demak subside at least ~9x 
faster than the present-day rate of global sea level rise, which affects the cities’ future urban viability. 
In this study, we publish a time series of the precise 3D displacements observed by twenty continuous 
Global Navigation Satellite System (GNSS) stations between 2010 and 2021. These are the first open-
to-the-public and rigorously processed GNSS datasets that are useful for accurately quantifying land 
subsidence in the densely populated sinking cities in Java. The data also provides a way to tie other 
geodetic observations, such as Interferometric Synthetic Aperture Radar (InSAR), to a global reference 
frame in an attempt to build worldwide observations of coastal land subsidence.

Background & Summary
The northern coastline regions of Java have been soliciting the attention of many studies because a large por-
tion of land in at least ten cities is subsiding1–18 (Fig. 1). The subsiding land has been triggered by a wide range 
of natural and anthropogenic activities, such as the compaction of sediments in Pekalongan, Semarang, and 
Demak19,20, gas extraction in Sidoarjo16, and structural loadings in Jakarta1. In addition, excessive groundwa-
ter extraction is the most significant triggering factor due to the increasing demand and need for residential 
and industrial water supply2,16,21–24. In these cities, the impacts of land subsidence such as widespread coastal 
inundation and structural damage to buildings, have been significantly reducing the quality of the living envi-
ronment1,2,5,14,17,20,25–27. In Jakarta, the capital city of Indonesia, land subsidence is so severely affecting the city’s 
future urban viability28 that government authorities are planning to move the capital to Borneo29.

Monitoring efforts to study the spatial extent of land subsidence and its rates in these cities have been contin-
uously made using land-based and space-borne techniques1–4,6–11,15,16,27,30. Out of the ten cities, land subsidence 
in Jakarta and Semarang has been the most intensively studied with a long monitoring history. In Jakarta, lev-
elling surveys and campaign GNSS measurements between 1982 and 2010 estimate that the rates are from 1 to 
28 cm/year1. A recent study using Sentinel-1 InSAR data between 2014 and 2020 estimates that the rates are from 
1 to ~11 cm/year7,8. Different rates between the past and recent monitoring efforts have also been observed in 
Semarang: GNSS measurements between 1999 and 2011 estimate that the rates are from 14 to 19 cm/year2, while 
a recent study using Sentinel-1 InSAR data between 2015 and 2020 reveals that the rates are from 2 to 3 cm/year8.

Besides Jakarta and Semarang, land subsidence monitoring efforts using InSAR data in the remaining cit-
ies have been rapidly growing since 20133,4,6,9,11,16,31–33 thanks to the availability of open access SAR data from 
the Copernicus Sentinel-1 satellites operated by the European Space Agency. On the contrary, since 2013, the 
monitoring efforts using campaign GNSS measurements have been lacking; the latest measurements were in 
2010 for Jakarta1, in 2017 for Semarang12, and in 2018 for Demak10. Even worse, no study reported GNSS-based 
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monitoring efforts in other cities that are known to experience land subsidence, such as Bekasi, Subang, 
Pekalongan, and Surabaya. This lack of GNSS-based monitoring efforts is worrying because the GNSS data is 
still needed for several reasons.
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Fig. 1  Administrative boundaries of coastal cities along the northern coastline regions of Java that are known to 
experience land subsidence1–18.
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Fig. 2  Monument types of the BIG GNSS stations used in this study.
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Site Monument type Receiver type Antenna type Data transmission First observation

CPSR BRACE TRIMBLE ALLOY LEIAT504 VPN 2010

CGON SCC TRIMBLE ALLOY LEIAR20 VPN 2010

CTGR SCC TRIMBLE ALLOY LEIAR25 VPN 2009

CJKT SCC TRIMBLE ALLOY LEIAR20 VPN 2010

CBTU SCC LEICA GR10 LEIAR25 VPN 2010

CROL CC TRIMBLE ALLOY LEIAR25 VPN 2010

CCIR SCC LEICA GR50 TPSCR.G3 VPN 2010

CTGL SCC LEICA GR50 LEIAR25 VPN 2010

CSEM SCC LEICA GR50 TPSCR.G3 VPN 2010

CJPR CC TRIMBLE ALLOY HX-C6X601A VPN 2010

CPKL CC LEICA GR50 LEIAR25 VPN 2010

CPWD SCC LEICA GR50 LEIAR20 VPN 2010

CTBN CC TPS NET-G3A TPSCR.G3 VPN 2010

CLMG SCC LEICA GR50 TPSCR.G3 VPN 2010

CMJT SCC LEICA GR50 TPSCR.G3 VPN 2010

CSBY SCC LEICA GR50 TPSCR.G3 VPN 2010

CPAS SCC TPS NET-G3A TPSCR.G3 VPN 2010

CPAI SCC TPS NET-G3A TPSCR.G3 VPN 2010

CSIT SCC TPS NET-G3A TPSCR.G3 VPN 2010

CBRN BRACE TRIMBLE ALLOY LEIAT504 Offline 2008

Table 1.  GNSS station specifications. CC: Cast Concrete; SCC: Short Cast Concrete.
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Fig. 3  Components of the BIG GNSS stations.

https://doi.org/10.1038/s41597-023-02274-0


4Scientific Data |          (2023) 10:421  | https://doi.org/10.1038/s41597-023-02274-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

First, although InSAR observations provide all-weather and day-night monitoring capacity at high spatial 
coverage and resolution34,35, InSAR accuracy may still be degraded by various noise sources such as atmos-
pheric phase delays, satellite orbit uncertainty, and unwrapping errors36,37. The degraded accuracy may mislead 
the interpretation of the subsidence rate. Incorporating independent data from GNSS measurements can help 
mitigate the false interpretation38,39. Second, InSAR velocity maps are relative to a reference point within the 
SAR data footprints. In areas where GNSS data is not available, a common approach to select a reference point 
is by assuming a certain area to be stable. However, this approach is subjective and may result in varying InSAR 
velocity maps across different studies. For example, Tay et al.7 showed that a location on the northern coastline 
of Jakarta subsides ~7x faster than that reported by Wu et al.8. One possible explanation for this discrepancy 
is the use of different reference points. Therefore, GNSS data is necessary to provide a priori information for 
selecting a stable reference point. Third, InSAR velocity maps are 1D measurements of surface deformations in 
the radar line-of-sight direction of SAR satellites34,35. In the case of land subsidence monitoring where vertical 
motions are of interest, other data sets such as GNSS observations are needed to isolate the vertical motions 
precisely (e.g.40–43). Fourth, Shirzaei et al.44 suggest the need for incorporating geocentric global reference frame 
vertical land motion (VLM) into global mean sea level (GMSL) studies. Geocentric is the natural for a global 
frame. Therefore, GMSL studies relative to this frame will allow us to determine whether a given location is ris-
ing or falling relative to the centre of the Earth. The InSAR-based VLM measurements are ideal for this purpose 
because InSAR data provide global coverage observations. However, the main challenge is that InSAR results 
are provided in a local reference frame. Thus, establishing worldwide InSAR-based VLM measurements needs 
GNSS data to tie the VLM measurements into a global reference frame44. In this study, we publish a time series 
of 3D displacements observed at twenty continuous GNSS stations between 2010 and 2021 along the northern 
coastline regions of Java (Fig. 1). The data may potentially be used for all the purposes mentioned above.

Observation specifications.  We obtain the Receiver Independent Exchange (RINEX) GNSS data from 
the Geospatial Information Agency of Indonesia (BIG) which has been establishing and maintaining continuous 
GNSS stations in the country since 1996. Most stations are located on the national telecommunication company 
network. The stations use different monument types (Fig. 2) and record data continuously at one sample per 
second using high-precision L1/L2 geodetic type receivers and standard Choke Ring antennas (Table 1). In addi-
tion, the stations also have meteorological instrument systems, an automatic battery charger that connects to the 
national power network, and a cell modem (Fig. 3) that will stream the recorded raw data via a secure TCP/IP 
connection to BIG’s data processing centre in Cibinong, West Java up to one-hour latency.

Methods
We processed the RINEX GNSS data and obtained a time series of GNSS station coordinates using the GPS 
at MIT/Global Kalman filtering (GAMIT/GLOBK) software package version 10.7145–47. Our GPS processing 
consisted of two steps48,49. In the first step, we used double-differencing methods in the GAMIT software to 
estimate daily station positions, atmospheric parameters, satellite orbits, and earth orientation parameters 
from ionosphere-free linear combination GPS phase observations. During this step, we fixed the satellite orbit 
parameters to the IGS final orbits and applied a second-order ionospheric correction using IGS final iono-
spheric products. We set the computation parameters to the default GAMIT setting, except for the atmospheric 

Site Longitude (degree) Latitude (degree) Vertical velocity (mm/year) Uncertainty (mm/year)

CPSR 105.834 −6.226 −1.0 0.052

CGON 106.052 −6.021 0.0 0.043

CTGR 106.664 −6.291 −2.9 0.049

CJKT 106.885 −6.110 −6.4 0.043

CBTU 107.096 −6.308 −0.5 0.044

CROL 107.985 −6.313 −15.9 0.045

CCIR 108.561 −6.716 −2.3 0.041

CTGL 109.136 −6.871 −12.5 0.043

CSEM 110.377 −6.987 −0.8 0.038

CJPR 110.667 −6.596 −2.7 0.056

CPKL 109.669 −6.887 −107.0 0.202

CPWD 110.914 −7.096 −1.1 0.044

CTBN 111.986 −6.872 0.4 0.042

CLMG 112.327 −7.093 −4.9 0.041

CMJT 112.442 −7.466 −1.3 0.042

CSBY 112.724 −7.334 −2.2 0.039

CPAS 112.901 −7.651 −1.4 0.033

CPAI 113.530 −7.719 −3.5 0.039

CSIT 114.013 −7.703 0.1 0.041

CBRN 114.440 −7.838 −2.1 0.082

Table 2.  Vertical velocity recorded by the BIG GNSS stations along the northern coastline regions of Java.
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delay parameters, which were modeled and estimated every hour using the Vienna Mapping Function50. We 
corrected the station displacements due to ocean tides using the most recent global ocean tide model, Finite 
Element Solution 200451. To adjust the effect of solar and solid-earth tides, we applied the International Earth 
Rotation and Reference System Service 2010 standard model52 and the atmospheric pressure loading model 
corrections53. Finally, we included GPS data from 12 International GNSS Services (IGS) stations (ALIC, BAKO, 
COCO, DARW, DGAR, GUAM, HYDE, IISC, LHAZ, PIMO, XMIS, YARR) in our daily processing to integrate 
our local network into the ITRF2014 reference frame54.

In the second step, we used the GLOBK software to combine our daily solutions with the global GPS solu-
tions provided by the MIT analysis centre. During this step, we aligned our combined solutions with the 
ITRF2014 reference frame54 by minimising the position differences of eight selected sites55, using a priori values 
defined by the IGb14 realisation of ITRF201454. To accomplish this position difference minimation, we calcu-
lated six Helmert transformation parameters (three translations and three rotations) of eight selected reference 
sites: YARR in Australia, MAW1 and DAV1 in Antarctica, STJO and FLIN in North America, WSRT, ONSA, 
and NOT1 in Europe55. These sites were selected because they are less affected by earthquake deformations and 
hydrological loading55. Lastly, we generated daily time series coordinates for all the GNSS stations with respect 
to IGb14 realisation of ITRF201454.

Data Records
The processing results are a time series of 3D displacements from 2010 to 2021, relative to the ITRF2014. Most 
stations record negative velocities in the vertical component and are likely related to land subsidence (Table 2 
and Fig. 4). The time series of the 3D displacements that include horizontal motions can be found in this repos-
itory: https://doi.org/10.5281/zenodo.777501656.
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Fig. 4  Vertical component of the twenty BIG GNSS stations. (a) Negative vertical velocities are likely related to 
land subsidence. (b) Daily time series of the GNSS vertical component from 2010 to 2021.
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Technical Validation
Bad environments (e.g., buildings and trees) that degrade the sky view of the GNSS antenna will reflect and 
refract satellite signals before arriving at the antenna57. The reflected and refracted signals are called multipath 
signals which will introduce carrier phase measurement errors and subsequently lead to a positioning error58. 
A simple approach to inspect the environments surrounding the antenna is by plotting the signal-to-noise ratio 
(SNR) values measured by the GNSS receivers59. The SNR, like the carrier phase measurement, is also impacted 
directly by multipath signals and hence can therefore be used as a proxy to assess the environments surrounding 
the GNSS antenna59,60. Low SNR values indicate a large tracking error59, meaning that multipath objects are 
present. We plot the SNR values using the L1 data recordings only. We do not use the L2 data due to its encrypted 
C/A code and the lack of civilian access to the P-code which affects the L2 SNR reliability59. We plot the SNR val-
ues as a function of azimuth and elevation angle, both in the time series and sky plot (Figure S1). The SNR plot 
shows that all the stations have SNR values greater than 30 decibels, indicating good environments surrounding 
the GNSS stations hence the negative velocities in the vertical component are robust.

In addition to SNR analysis, we use independent observation measured by a deep pile benchmark to validate 
the negative velocity at the GNSS CPKL station in Pekalongan (Table 2 and Fig. 4). The benchmark (Fig. 5) was 
installed by the centre for groundwater and environmental geology, Indonesia’s geological agency, on 17 March 
2020 ~500 m northeast of the GNSS CPKL station. The benchmark measurements between 06 April 2021 and 
02 October 2022 estimate that ~80 ± 1 mm land subsidence occurs within ~1.5 years (Fig. 5c,d). Unfortunately, 
we cannot make a one-to-one comparison between this result and the amplitude of land subsidence measured at 
the GNSS CPKL station due to two reasons: 1) the benchmark and the GNSS CPKL station are ~500 m apart, 2) 
our GNSS data ended in 2021. Nevertheless, the benchmark measurements are still important in the sense that 
Pekalongan city is experiencing severe land subsidence.

Code availability
The GAMIT/GLOBK software we used to process the GNSS data is available at http://geoweb.mit.edu/gg/. The 
scripts we used to do the SNR analysis are available at https://github.com/ericlindsey/gnss-snr-skyplot.
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Fig. 5  A deep pile benchmark to measure land subsidence in Pekalongan. (a) A schematic design of the deep 
pile benchmark. (b) The newly installed benchmark. (c) The benchmark measures 60 ± 1 mm land subsidence 
by 06 April 2021. (d) The benchmark measures 140 ± 1 mm land subsidence by 02 October 2022, meaning that 
80 ± 1 mm land subsidence occurs within ~1.5 years.
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