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a tiled multi-city urban objects 
dataset for city-scale building 
energy simulation
Rui Ma1, Dongping Fang2, Jiayu Chen  2 ✉ & Xin Li1

City-scale building energy simulation provides a significant reference for planning and urban 
management. However, large-scale building energy simulation is often unfeasible due to the huge 
amount of computational resources required and the lack of high-precision building models. For such 
reasons, this study developed a tiled multi-city urban objects dataset and a distributed data ontology. 
Such a data metric not only transforms the conventional whole-city simulation model into patch-based 
distributed simulations but also incorporates interactive relationships among objects in cities. the 
dataset stores urban objects (8,196,003 buildings; 238,736 vegetations; 2,381,6698 streets; 430,364 
UrbanTiles; 430,464 UrbanPatches) from thirty major cities in the United States. It also aggregated 
morphological features for each Urbantile. to validate the performance of the developed dataset, a 
sample test was conducted in one city subset (Portland). The results conclude that the linear increase 
of time usage of modeling and simulation with the increase of building numbers. With the tiled data 
structure, the proposed dataset is also efficient for the building microclimate estimation.

Background & Summary
In 2015, all United Nations Member States agreed and adopted the goal of “Sustainable cities and commu-
nities” as part of the 2030 Agenda for Sustainable Development (https://www.un.org/). This goal emphasizes 
decreasing energy consumption and carbon emissions of cities and settlements, then finally achieving the goal 
of carbon neutrality. Buildings, as the major energy consumer in urban areas1, have the highest energy-saving 
potential. To promote building energy efficiency, building energy simulation is a powerful tool to identify proper 
energy-saving solutions, such as using alternative construction materials2 and improving energy management 
systems3. In the context of the city environment, the simulation approach is a significant decision-making ref-
erence for local governors and city managers. It can be used for benchmarking energy efficiency, evaluating 
scenarios, and analyzing peak energy loads and usage patterns4. However, complex urban systems pose two 
major challenges for city-scale building energy simulation. (1) The huge number of buildings in a city requires 
unaffordable computational resources. The building energy simulation relies on thermal-physical theories and 
requires a comprehensive computation process for a whole year. Therefore, modern simulation models, such 
as urban modeling interface (UMI)5, City Building Energy Saver (CityBES)6, and City Energy Analyst (CEA)7, 
have to scarify flexibility and reliability by simplifying calculation with statistical analysis or reducing the sim-
ulation scale to neighborhood or community levels. (2) Existing city digital data formats, such as GeoJSON, 
Shapefile, and CityGML, do not provide sufficient information to infer spatial connections and inter-building 
effects. While some administrative entities, such as the governments of New York City (https://data.ny.gov/) and 
Portland (https://www.portland.gov/omf/bts/cgis), are making simple building information available online, 
these datasets only include basic geometric information and lack a hierarchical structure suitable for city-scale 
simulations. Some researchers, like Chen and his colleagues, have attempted to refine urban building informa-
tion by adding more detailed energy consumption data8. However, even with these refinements, the information 
provided only covers geometry and building attributes, and does not include descriptions of the surrounding 
environment. This missing piece is crucial for assessing building energy consumption, as it directly affects heat 
transfer and radiation reception9.

To assess the interactions (such as heat exchanges and radiation absorption) among urban geographic 
objects (such as buildings, trees, and water bodies), the city-scale simulation requires importing all digitized 
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objects together into the simulation engine. However, as whole city simulation requires formidable computing 
resources, it is impractical in a real urban scene. Researchers proposed an alternative solution by simulating 
individual buildings’ energy performance with surrounding environments’ morphological features one by one 
and then aggregating the equivalent results into a whole city10. The surrounding environment is a compulsory 
input for various simulation functions, such as the evaluation of inter-building effects, microclimate estimation, 
etc. However, this method requires specifically designed datasets for ease of implementation and calculation.  
In addition, such a dataset should incorporate both each building’s digital model and its associated surrounding 
environment. To fill this research gap, this study developed a tiled multi-city urban object dataset for 30 cities. 
Also, this study proposed a novel tiled data structure based on ontology theories. The designed ontology format 
allows extracting the tiled data from geographic information systems and existing digital building models and 
leverages the simulation efficiency with parallel and distributed computation mechanisms.

Methods
Fundamental architecture of the dataset. The developed dataset includes two sets of data, including 
the semantic building information and the surrounding physical object information. Such a setting intends to 
accommodate to model input structure of thermal-physical-based building energy simulations. The semantic 
information is used to construct buildings’ physical and geometrical models, and surrounding objects are used for 
thermal dynamic environment assessment. To properly design the architecture of the dataset, this work utilized 
the Resource Description Framework (RDF) graphs to represent the qualitative relationships among objects.  
To construct a suitable RDF graph, the data ontology should be properly defined. An ontology is a formal, explicit 
specification of a shared conceptualization11. It can be used to encode knowledge for sharing, integrating, and 
linking data from different domains. In general, an ontology consists of classes, individuals, and properties. 
Classes can be interpreted as sets that contain individuals; individuals are the “instances of classes” and encode 
fundamental information; properties are binary relations of individuals. This study used Web Ontology Language 
(OWL) as a vocabulary extension of RDF for ontology development.

This study chose to use RDF, OWL, and other semantic web technologies to build an ontology-based data-
set instead of a traditional relational database because ontologies adopt Open World Assumption (OWA), 
while relational databases are based on Closed World Assumption (CWA)12. The most significant difference 
between the two is their understanding of things that are not explicitly declared. In a relational database, if an 
entity does not have any relationship declaration, the search result will be an empty set. However, an ontology 
can infer hidden information based on other known declarations, making it more suitable for extracting sur-
rounding environment information of the target UrbanTile/building during the distributed simulation period. 
Furthermore, external RDF data can be linked through predefined relations13, enabling the integration of data 
from different fields, making the dataset usable for various applications such as district energy management14, 
building life-cycle decision-making15, IoT- and cloud-enabled smart communities or cities16. However, creating 
vocabularies and rules for ontology definition can be a disadvantage of using an ontology. Additionally, the 
performance of the ontology is affected by the scale and quality of vocabulary, and users need to have a well 
understanding of the ontology structure and query logics. Despite these drawbacks, the ontology-based dataset 
offers significant benefits in terms of communication, interoperability, and information inference.

The tiled data structure proposed by this study is called the UrbanPatch Topology Ontology (UPTO). The 
UPTO encodes building geometric semantics and spatial features into three levels.

•	 Level 1 - Objects. Objects are initial and original classes, including the semantics of Building, Vegetation, and 
Street. These objects can be accessed from various public sources, such as OpenStreetMap. Objects are typical 
individual classes that have no spatial semantics between each other and are spatially discrete.

•	 Level 2 - UrbanTile. UrbanTiles encapsulate all objects that are separated by natural or artificial boundaries. 
For example, a small community (including all buildings, vegetation, and waterbodies within it) that is sepa-
rated from the local urban region by roads is a typical UrbanTile.

•	 Level 3 - UrbanPatch. UrbanPatch is the geographical boundaries of local microclimates for a target building 
or a UrbanTile. In general, an UrbanPatch contains the spatial semantics of the target building/UrbanTile and 
its surrounding classes. These classes can be building, vegetation, street objects, or other UrbanTiles.

Figure 1 shows the three class levels of UPTO. It is worth mentioning that the UrbanPatch is an 
object-dependent class, and it can specify the surrounding environment of a building or a UrbanTile. The major 
difference is if the UrbanTile that a building belongs to will be regarded as part of UranPatch. When using 
UrbanTile as the UrbanPatch target, the dataset size can be greatly reduced, but all objects in the same UrbanTile 
will share the same UrbanPatch as its surrounding environment. Smaller file/data sizes can improve the effi-
ciency of the simulation but losses precision.

UrbanPatch topology ontology. Figure 2 shows the proposed semantic structure of UPTO, where each 
UPTO class has predefined Object and Datatype properties. An object property is defined as an instance of the 
built-in OWL class “owl:ObjectProperty”, representing the spatial relationship between individuals. A datatype 
property is defined as an instance of the built-in OWL class “owl:DatatypeProperty”, referring to the correspond-
ing morphological features. As shown in the figure, “rdf:type” refers to a resource as an instance of a class. Using 
the UPTO to define building semantics has three advantages. First, an ontology can explicitly define internal 
classes and their relationships. It can remove the definitional ambiguity of internal items. Second, the ontology 
provides a spatial semantic context for each individual building, which helps to form a linked semantic graph. 
Spatial connections or features can be calculated with rule-based or other computational reasoning. For example, 
when the “containsTile” property of “UrbanPatch_0” points to “UrbanTile_0” and “containsBuilding” property 
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of “UrbanTile_0” points to “Building_0”, it can be inferred that “UrbanPatch_0” contains “Building_0” in the 
physical world. Third, with a well-structured semantic structure, the ontology can be easily extended with other 
external ontologies. This advantage is especially useful when data requires to have high interoperability.

Level 1 – Object. A building, vegetation, or street can be defined as an object. Object class has the data prop-
erty of “hasGeometry”, “hasArea”, “hasPerimeter”. Based on such a predefined structure, each object in a city 
can generate an instance by filling the raw geometry. These raw geometries can be accessed from different 
sources, for example, they can be downloaded from the OpenStreetMap with the Overpass API (https://wiki.
openstreetmap.org/wiki/Overpass_API). The key of raw geometries should be properly mapped to UPTO prop-
erties. For example, this study utilized OpenStreetMap’s closed polygons with the key of “building” as the raw 
geometry inputs. Also, for different data sources, the same object may be tagged with different key values. Also, 
take the OpenStreetMap dataset as an example, all relevant keys for vegetations include “natural” = “wood”, “nat-
ural” = “scrub”, “natural” = “wetland”, “leisure” = “park”, “leisure” = “garden”, “leisure” = “pitch”, “leisure” = “play-
ground”, “landuse” = “grass”, “landuse” = “farmyard”, and “landuse” = “meadow”. The building object has a 
significant property name of “hasBuildingType” (with the value of “Office”, “School”, etc.). This property is cru-
cial to infer a building’s semantic data and more comprehensive features, such as thermal zoning, construction, 
material, etc. Due to the lack of full building information models, the missing information of a building can be 
inferred with predefined generic models (https://www.energycodes.gov/prototype-building-models).

To compensate for the lack of sufficient street width in the OSM database, it is necessary to generate street 
objects using the steps outlined in Fig. 3. First, the street networks should be downloaded by querying the “high-
way” key with a “value” that corresponds to the size of the patch enclosed by the street. Previous research by Huo 
et al. has shown that patch sizes ranging from 200 m to 2 km achieve valuable results for modeling urban thermal 
environments17. In this study, the “value” was chosen from a selection of options including ‘primary’, ‘secondary’, 
‘tertiary’, and ‘residential’, and the patch size was restricted to a horizontal distance ranging from 200 m to 500 m. 
The street networks are composed of line segments and are formatted as Shapely.Geometry.LineString objects 
(https://shapely.readthedocs.io/). The next step involves constructing street polygons with a default width of 3 m 
for a single lane. Street polygon outlines can be generated using the Shapely.Geometry.buffer function, and street 
objects can be created by inputting these outlines into the Shapely.ops.polygonize function. This approach ena-
bles the generation of street objects with sufficient width to model the urban thermal environment accurately.

Level 2 – UrbanTile. A UrbanTile is a class to represent a collection of multiple objects enclosed by its spatial 
boundaries. The UrbanTile is designed to link the discrete city objects (streets, buildings, and vegetation) based 
on their geographical locations. Each object associated with a UrbanTile will have its property “withinTile” 
updated, whereas the UrbanTile will also update the property “containsBuilding”. Also, “hasStreetNeighbor” and 

Fig. 1 Three class levels of UPTO.
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“hasTileNeighbor” are such interrelated properties that should be updated for both the objects and UrbanTiles. 
Figure 3 illustrates the process involved in generating UrbanTiles. The first step is to merge all the previously 
generated street objects into a single layer. In this study, street objects and UrbanTiles are considered comple-
mentary in the 2D urban plane. The areas enclosed by the merged streets are therefore regarded as UrbanTiles. 
The merged streets can be visualized as a network of lines defining the edges of the UrbanTiles. This process 
ensures that UrbanTiles are accurately delineated and closely aligned with the underlying street network. By 
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Fig. 2 The Semantic structure of the UrbanPatch Topology Ontology.

Fig. 3 Generation process of street objects and UrbanTiles.
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providing a consistent and standardized representation of urban areas, the UPDS dataset can facilitate more 
effective energy management strategies and support the development of sustainable urban environments.

Level 3 –UrbanPatch. The morphological conditions that surround a building not only determine its local 
microclimate conditions but also have comprehensive thermal exchange properties. The UrbanPatch class is 
designed as the perception domain of microclimates for a class instance. The class instance can be an object or a  
UrbanTile, and the selection of an object or UrbanTile determines the precision of the assessment. In addition,  
the size of UrbanPatch can be adjusted by a parameter D-radius. According to Oke’s research18, a rule of thumb 

Fig. 4 Computation flow of the UrbanPatch instance.
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of a 500 m radius is sufficient to estimate the local thermal exchange. As shown in Fig. 1, the D-radius deter-
mines how many adjacent UrbanTiles will be included in a UrbanPatch. These adjacent UrbanTiles are stored in 
the properties of “containsTile” and “containsStreet”.

Variable Description Variable Description

AT, j Footprint area of UrbanTile_ j AT Sum of AT, j at the patch scale

AB, j
Footprint area of the internal buildings 
of UrbanTile_ j AB Sum of AB, j at the patch scale

ABF, j
Façade area of the internal buildings of 
UrbanTile_ j ABF Sum of ABF, j at the patch scale

AV, j
Footprint area of the internal vegetation 
objects of UrbanTile_ j AV Sum of AV, j at the patch scale

AHB, j
Product of the internal building height 
and footprint area of UrbanTile_ j GC, i

Footprint geometry of the 
circular area of D-radius of 
corresponding UrbanTile_i

AHB Sum of AHB, j at the patch scale GT, j
Footprint geometry of 
UrbanTile_ j

GS, z Footprint geometry of Street_z HB Average building height

DB Building density DV Vegetation density

VHB Vertical-to-horizontal ratio

Table 1. Variables used in UrbanPatch Construction. Note: i is the index of the target UrbanTile instance; 
its constructed UrbanPatch area based on D-radius is GC, i; j is the index of an arbitrary UrbanTile instance; 
UrbanPatch_j represents any UrbanTile instances that intersect with GC, i; z is the index of arbitrary Street 
instances.

Index City

Number of Objects Number of 
UrbanTiles

Number of 
UrbanPatches File Size (MB)Building Vegetation Street

1 Albuquerque 198,583 2,634 49,775 10,262 10,262 241

2 Atlanta 59,176 967 17,171 2,475 2,475 72

3 Austin 317,359 4,163 55,832 9,754 9,754 312

4 Charlotte 162,267 3,523 38,318 5,495 5,495 162

5 Chicago 825,739 12,345 139,141 25,823 25,823 1034

6 Columbus 142,007 11,027 79,667 11,812 11,812 300

7 Dallas 345,730 4,957 108,742 20,915 20,915 492

8 Denver 175,456 53,878 55,599 9,314 9,314 291

9 Detroit 599,923 19,611 265,668 43,052 43,052 1075

10 Fort Worth 251,540 2,100 53,290 12,210 12,210 285

11 Houston 170,861 5,313 108,886 23,067 23,067 397

12 Indianapolis 125,167 4,041 63,878 9,300 9,300 222

13 Jacksonville 83,250 3,644 57,916 9,113 9,113 195

14 Las Vegas 70,612 6,186 109,159 18,866 18,866 310

15 Los Angeles 1,198,643 6,824 136,134 27,996 27,996 1095

16 Nashville 12,125 454 9,871 1,179 1,179 28

17 New York 1,266,307 26,896 220,590 49,201 49,201 1863

18 Oklahoma City 18,510 4,252 40,726 7,953 7,953 114

19 Philadelphia 84,144 5,019 64,986 15,714 15,714 369

20 Phoenix 417,434 4,355 102,555 18,532 18,532 458

21 Portland 135,881 1,504 27,225 5,963 5,963 176

22 Saint Louis 48,960 11,929 97,740 17,149 17,149 286

23 Salt Lake City 209,389 7,977 73,886 10,183 10,183 272

24 San Antonio 34,406 3,553 69,350 14,001 14,001 196

25 San Diego 66,373 4,835 70,228 11,096 11,096 207

26 San Francisco 162,381 4,413 25,531 5,889 5,889 210

27 San Jose 379,203 6,806 77,813 9,220 9,220 412

28 Seattle 224,709 4,576 58,308 9,590 9,590 344

29 Tucson 210,075 4,695 62,132 7,925 7,925 278

30 Washington DC 199,793 6,259 41,552 7,415 7,415 264

Table 2. Statistics of tiled multi-city urban objects dataset based on UPTO.
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Object classes encompass raw building geometry information, whereas UrbanTile and UrbanPatch contain 
derived properties of building geometries and morphological features. Assuming there is a UrbanTile_i, Fig. 4 
shows the workflow of filling the information of UrbanPatch_i based on UPTO. Table 1 lists the variables and 
their description of constructing a UrbanTile instance. An UrbanPatch can be considered as the combination 
of the internal UrbanTiles and boundary street objects. The stored information is not the original UrbanTiles 
and objects’ content, but the reference ID of instances. The datatype properties also stored the aggregated mor-
phological features, such as HB, DB, DV, VHB, etc. These morphological features are crucial in tuning the typical 
meteorological year (TMY) weather data into local microclimate conditions with Urban Weather Generator 
(UWG)19.

With UPTO, this study constructed a tiled dataset that composes of thirty major cities in the United 
States. In this dataset, the UrbanPatch instances are generated based on UrbanTile, and the default D-radius 
is 500 m. The raw geometry information of the objects (buildings, vegetation, or streets) was collected from 
OpenStreetMap(https://www.openstreetmap.org/), which follows the Open Data Commons Open Database 
License (ODbL). All raw information is freely available for reproduction, distribution, transmission, and adap-
tation. Also, the target of generation can be “Building Objects”, and the D-radius can be changed based on the 
users’ needs. For generating a new dataset, “Code Availability” section provides more detailed instructions.

Data serialization. Instances of all UPTO classes are expressed with RDF statements in the triple form of 
(subject, predicate, object), for example, (“upto:UrbanPatch_0”, “upto:containsTile”, “upto:UrbanTile_0”). RDF 
represents information as graphs and is understandable to human users, however, such data format is difficult for 
machines to process. Then the triple-form data need to transform as a structuralized dataset, and this process is 
called serialization. This study adopted the Python package RDFLib (https://rdflib.readthedocs.io/) to serialize 
RDF data models into .TTL (Turtle Syntax) files. Turtle is a textual syntax for RDF, which allows RDF graphs to 
be completely written in a compact and natural text form.

Data Records
The final tiled multi-city urban objects dataset can be accessed with Figshare20. Each city in the dataset is saved 
as a separate TTL file. Table 2. lists the statistics of the dataset.

The .TTL file contains the predefined classes, properties, and instance data of UPTO. The data can be reor-
ganized as the triple form of (subject, predicate, and object). Each triple presents two resources that are related. 
The subject and the object are the two resources related to each other, and the predicate represents the content 
of their relationships. Each .TTL file uses compact URIs (Uniform Resource Identifier) and shortcuts to prevent 
repeats in triples. For example, if several triples share the same subject, the predicates and objects are listed and 
separated by semicolons. Tables 3, 4 show the classes, properties, and instances of RDF statement samples stored 
in a .TTL file.

Subject Predicate Object (Sample instance)

upto:Building rdf:type owl:Class

upto:Vegetation rdf:type owl:Class

upto:Street rdf:type owl:Class

upto:UrbanTile rdf:type owl:Class

upto:UrbanPatch rdf:type owl:Class

upto:containsBuilding rdf:type owl:ObjectProperty

upto:containsStreet rdf:type owl:ObjectProperty

upto:containsTile rdf:type owl:ObjectProperty

upto:containsVegetation rdf:type owl:ObjectProperty

upto:withinTile rdf:type owl:ObjectProperty

upto:withinPatch rdf:type owl:ObjectProperty

upto:hasTileNeighbor rdf:type owl:ObjectProperty

upto:hasStreetNeighbor rdf:type owl:ObjectProperty

upto:hasArea rdf:type owl:DatatypeProperty

upto:hasPerimeter rdf:type owl:DatatypeProperty

upto:hasHeight rdf:type owl:DatatypeProperty

upto:hasBuildingType rdf:type owl:DatatypeProperty

upto:hasGeometry rdf:type owl:DatatypeProperty

upto:hasAvgBuildingHeight rdf:type owl:DatatypeProperty

upto:hasBuildingDensity rdf:type owl:DatatypeProperty

upto:hasVegetationDensity rdf:type owl:DatatypeProperty

upto:hasVerticalToHorizontalRatio rdf:type owl:DatatypeProperty

Table 3. Classes and Properties of RDF statement in a .TTL file.

https://doi.org/10.1038/s41597-023-02261-5
https://www.openstreetmap.org/
https://rdflib.readthedocs.io/


8Scientific Data |          (2023) 10:352  | https://doi.org/10.1038/s41597-023-02261-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Figure 5 shows the screenshots of a sample .TTL file, further showing the text data structure of classes, prop-
erties, and instances.

Table 5 further lists the data type and unit of objects under each owl:DatatypeProperty. This dataset adopted 
the geographic coordinate system of EPSG:4326 (WGS84), which is a latitude/longitude coordinate system 
based on the Earth’s center of mass.

technical Validation
The proposed tiled dataset is designed for large-scale urban building simulation for its scalability in converting 
the whole city model into UrbanPatches. The conventional simulation model is the whole city simulation model 
and with the help of UPTO, the simulation can be decomposed into multiple simulation iterations, which is 
called the UrbanPatch-based Distributed Simulation model (UPDS). Figure 6 further illustrates the workflow 
of both simulation models. There are two major differences between these two approaches. First, the scale of 
the simulation. The whole city simulation model simulates the entire city and requires large memory to store 
the information of building geometric models. It computes all possible interactive thermal exchanges among 
urban objects. The UPDS model is designed to simulate urban environments at a granular level. It operates by 
simulating one tile or building at a time and iterating through all tiles or buildings in a given city. In order to 
capture the thermal interactions between adjacent UrbanTiles, UPDS considers only those with at least one 
street neighbor. By focusing on these adjacent spatial relations, the model is able to provide accurate thermal 

Subject Predicate Object (Sample instance)

upto:Building_0

rdf:type upto:Building

rdf:type owl:NamedIndividual

upto: hasArea 35.73

upto:hasPerimeter 23.95

upto:hasHeight 3.50

upto:hasBuildingType “Office”

upto:withinTile upto:UrbanTile_0

upto:hasGeometry “POLYGON ((…))”

upto: Vegetation_0

rdf:type upto:Vegetation

rdf:type owl:NamedIndividual

upto:hasArea 101.91

upto:hasPerimeter 41.09

upto:withinTile upto:UrbanTile_0

upto:hasGeometry “POLYGON ((…))”

upto:Street_0

rdf:type upto:Street

rdf:type owl:NamedIndividual

upto:hasArea 638.42

upto:hasPerimeter 224.81

upto:withinPatch upto:UrbanPatch_0

upto:hasTileNeighbor upto:UrbanTile_0

upto:hasGeometry “POLYGON ((…))”

upto:UrbanTile_0

rdf:type upto:UrbanTile

rdf:type owl:NamedIndividual

upto:hasArea 16198.17

upto:hasPerimeter 533.61

upto:containsBuilding upto:Building_0

upto:containsVegetation upto: Vegetation_0

upto:withinPatch upto:UrbanPatch_0

upto:hasTileNeighbor upto:UrbanTile_1

upto:hasStreetNeighbor upto:Street_0

upto:hasGeometry “POLYGON ((…))”

upto:UrbanPatch_0

rdf:type upto:UrbanPatch

rdf:type owl:NamedIndividual

upto:containsTile upto:UrbanTile_0

upto:containsStreet upto:Street_0

upto:hasAvgBuildingHeight 2.99

upto:hasBuildingDensity 0.12

upto:hasVegetationDensity 0.06

upto:hasVerticalToHorizontalRatio 0.10

Table 4. Instances of RDF statement in a .TTL file.
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simulations. Each iteration of the simulation can handle a small-scale subset of the entire city model, allowing 
for a comprehensive analysis of the urban environment. Second, the use of micro-climate weather information. 
The whole city simulation model uses a universal TMY weather file to assess the impact of the external environ-
ment. The UPDS model will first calculate a microclimate weather file based on surrounding tile morphological 
features. Each building/UrbanTile will use a different microclimate weather file during the simulation. A target 
building and UrbanTile will identify effective adjacent shading surfaces by querying the “hasTileNeighbor” and 
“containsBuilding” properties of the dataset.

The validation simulation was conducted for the city of Portland. Portland is the largest city in the state of 
Oregon in the United States. It has a Mediterranean climate with cool, rainy winters and warm, dry summers. 
All validation simulations were run on a laptop computer with an Intel i5 dual-core central processing unit (Intel 
Core i5-3427U @ 1.80 GHz), 8 GB of RAM, and a 256 G solid-state hard drive. In order to streamline the simu-
lation model, each building is treated as a single thermal zone, with a fixed window-to-wall ratio (WWR) of 0.5. 
The physical models are built using the GeomEppy Python package (https://github.com/jamiebull1/geomeppy), 
while the thermal zone settings are based on the large-office prototype model provided by the U.S. Department 
of Energy (DOE). Due to limitations in the original data source (OSM) of the dataset, the study only selected 
one default prototype model to showcase the potential of the dataset for microclimate calculations and energy 

Fig. 5 Screenshots of a sample .TTL file.

owl:DatatypeProperty Data type Unit

upto:hasArea float square meter

upto:hasPerimeter float meter

upto:hasHeight float meter

upto:hasBuildingType string —

upto:hasGeometry string —

upto:hasAvgBuildingHeight float meter

upto:hasBuildingDensity float —

upto:hasVegetationDensity float —

upto:hasVerticalToHorizontalRatio float —

Table 5. Data Type and Unit of Objects under Each “owl:DatatypeProperty”.
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consumption simulations. Table 6 presents the Construction and HVAC details of the DOE large-office pro-
totype model, while further information about the prototype models can be found in the referenced source 
(https://www.energycodes.gov/prototype-building-models). The D-radius for UrbanPatch construction of 
the subsets is 500 meters. It is worth mentioning that the microclimate weather files in this study were pre-
pared by tunning the TMY weather file with the local morphological features extracted from the corresponding 
UrbanPatch21. The computational method implemented the UWG19 model, which has been adopted by many 
existing studies and validated in the cities, including Abu Dhabi22, Singapore23, Vienna24, etc.

Impact of the distributed modeling system. To assess the computational efficiency of the developed 
dataset with the UPDS model, eight subsets with different numbers of buildings and UrbanTiles are selected. 
Figure 7 shows the 3D building models based on the semantic information of these subsets. The whole city 

Fig. 6 Workflow of the whole city simulation model and UPDS model.

Object Details

Construction

Exterior walls 8 in. heavy-weight concrete, wall insulation, 0.5 in. gypsum board

Roof Roof membrane, roof insulation, metal decking

Foundation 8” concrete wall; 6” concrete slab, 140 lbs heavy-weight aggregate

Interior Partitions 2 × 4 uninsulated stud wall

Internal Mass 6 inches standard wood (16.6 lb/ft²)

HVAC

Heating type One gas-fired boiler

Cooling type Water-source DX cooling coil with fluid cooler

Pump Primary chilled water (CHW) pumps

Cooling Tower Type Open cooling tower with two-speed fans

Service Water Heating One main water heater with storage tank

Table 6. Construction and HVAC information of the DOE large-office prototype model.
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simulation model imported all buildings and objects information as a whole and constructed the geometry and 
physical model as a single.IDF (Input Data File) file. The UPDS model conducted the simulation iteratively for 
each tile as a separate.IDF file and aggregated the final results as the final outcomes.

The distributed simulation mechanism and abstraction of surrounding physical surfaces are the unique 
advantages of using this dataset. Figure 8 compares the model construction time and simulation running time 
for both models. The modeling time of the UPDS model takes much less time compared to the whole city model. 
With the increase of buildings and UrbanTiles numbers, the model construction time for the whole city simula-
tion model shows a clear exponential trend, whereas the UPDS model has a linear trend. For the running time, 
with the increase of buildings and UrbanTiles number, both methods show a linear pattern, and the whole city 
model has a steeper slope. Figure 8 also plots the time ratio of the modeling and running steps. The time ratio 
is the proportion of the time used by the UPDS model to the time used by the whole city simulation model.  
It can be seen that with a larger number of objects used from the dataset, the ratio decreases rapidly and tends 
to converge. Based on the validation set, the converged time ratio for modeling is close to 2% and close to 46% 
for running. On the one hand, the use of this dataset enables the construction of a distributed physical model at 
the UrbanTile scale, which is much smaller than the traditional whole city model. This reduces the complexity 
of the model and makes it possible to simulate more localized and detailed features of the urban environment. 
On the other hand, the comparison of simulation scenarios was conducted on a single laptop. However, this 
ontology-based dataset allows for the extraction of relevant information from multiple target UrbanTiles simul-
taneously, and the calculation tasks can be distributed across multiple computers, significantly reducing the 
required simulation time.

Fig. 7 Eight test datasets of different scales in Portland.
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Figure 9 provides a comparison of the annual heating, cooling, and total energy use of the two models. 
The percentage difference is calculated as the ratio of the change in energy use after using the UPDS model to 
the result of the traditional whole city model. The results show that the percentage differences in annual heat-
ing, cooling, and total energy consumption are negligible. Across the eight testing groups, the maximum abso-
lute value of these three difference indicators does not exceed 0.5%. Interestingly, as the number of UrbanTiles 
increases, the percentage difference between heating, cooling, and total energy use remains relatively stable. 
This suggests that the UPDS model designed for this dataset can significantly improve computational efficiency 
without sacrificing accuracy in the simulation results.

Impact of microclimates. The UPDS model also has the significant advantage of utilizing high-resolution 
microclimate weather conditions. To demonstrate how it will differ from conventional single TMY weather, this 
section conducted a large-scale simulation for 22,448 buildings in 1,392 UrbanTiles. For each target UrbanTile, 
morphological features can be extracted from its surrounding UrbanPatch.

Figure 10 presents the annual average root mean square error (RMSE) of temperature TRMSE when compar-
ing the local microclimate with the TMY weather condition. A TRMSE value greater than zero for an UrbanPatch 
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indicates that the microclimate within that particular UrbanPatch experiences higher annual hourly average 
temperatures compared to the suburban weather station. This temperature disparity has significant implica-
tions for the cooling and heating energy demands of buildings located in the UrbanPatch. The accompanying 
histogram highlights that such discrepancies between microclimate and whole city climate conditions are prev-
alent. Notably, UrbanPatches characterized by denser and taller buildings exhibit larger TRMSE values, whereas 
UrbanPatches with more abundant vegetation demonstrate smaller TRMSE values. In the context of simulating 
urban building energy consumption, utilizing microclimate data at the UrbanPatch scale offers a more precise 
depiction of local thermal conditions compared to relying solely on a conventional single TMY weather dataset.”

The UPDS model conducts building energy simulations for each UrbanTile using distinct microclimate 
weather files. This simulation process encompasses a total of 1,392 UrbanTiles, enabling all 22,448 buildings 
within the urban environment to derive their respective energy analysis results. Figure 11 represents the annual 
total energy consumption of each building, taking into account the prevailing microclimate conditions. Notably, 
the compact commercial areas located in the northwest corner exhibit higher energy consumption compared 
to the residential areas. The variable denoted as Emc represents the energy consumption calculated based on 
individual microclimate weather conditions. Emc demonstrates significant variation across different buildings, 
ranging from 5.33 GJ to 3224.84 GJ. This divergence is influenced by factors such as the building’s footprint area, 
height, inter-building effects (such as radiation and shading), and other localized environmental factors.

Fig. 10 Spatial distribution and histogram of yearly average TRMSE.

Fig. 11 Simulated annual building energy consumptions based on the UPDS model.
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Figures 12, 13 further compare the heating energy load variations (RH) and cooling energy load variations 
(RC) between the whole city simulation model and the UPDS model. A negative value means less energy usage 
and vice versa. It can be seen that the simulated heating energy load of the UPDS model is lower than that of the 
whole city simulation model, and that of the cooling load is higher. The absolute value of RH is larger in locations 
with high building density. Combining both loads, the highest variation reported in Fig. 11. can reach 66.12GJ. 
Therefore, it is clear the proposed dataset provides more reliable and simple data sources for large-scale urban 
building energy simulations. From the perspective of city managers, the simulated results can be used to manage 
the building stocks and improve retrofit policies and incentives.

The main objective of this dataset is to offer dependable geometry information and microclimate files 
specifically designed for urban building energy modeling endeavors. The energy and microclimate simula-
tions presented in the study aimed to demonstrate the dataset’s practical application rather than provide an 

Fig. 12 Annual heating load variations between the whole city simulation model and the UPDS model.

Fig. 13 Annual cooling load variations between the whole city simulation model and UPDS model.
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all-encompassing analysis of energy consumption accuracy. It is important to acknowledge that the accuracy 
of these simulations is contingent upon several factors, including simulation models, underlying assumptions, 
historical inputs, and other variables.

Usage Notes
This well-structured semantic dataset allows querying based on description logic and SPARQL (SPARQL 
Protocol and RDF Query Language). A python package RDFLib is recommended to load .TTL files and provide 
support for both query methods. For the description logic method, users should filter triple information with 
the known subjects, predicates, or objects. For example, the internal UrbanTile instance of UrbanPatch_0 can 
be queried by inputting upto:UrbanPatch_0 (subject) and upto:containsTile (predicate). The SPARQL query 
method is usually used for complex query conditions, such as querying morphological parameters. Currently, 
a default UrbanPatch class contains a collection of UrbanTiles and street objects within 500 m. Based on the 
needs, the UrbanPatch can be constructed for building objects and removing street objects. Also, the D-radius 
is adjustable to include different sizes of areas. These modifications can be set by defining the object property 
“containsTile” and “containsStreet”. In each .TTL file, all instance information is stored in a huge directed labeled 
graph, and RDFLib can be used to add, delete, modify, and query the instance information.

This ontology-based dataset has been specifically designed for the distributed energy simulation of urban 
buildings. Due to its flexibility, query ability, and machine understandability, it has potential applications in a 
range of other fields, such as urban-scale or community-scale facility management, IoT information integra-
tion, and environmental monitoring. The instances within this dataset can be linked to external ontology-based 
data through defined relations, expanding its potential applications in other domains. For instance, by link-
ing the building instances in this dataset to Building Product Ontology or Building Automation and Control 
Systems Ontology instances, one can analyze the spatial distribution of building product information at different 
scales, from UrbanTile to street scale, or even city scale. This provides new perspectives for facility management. 
Another example is linking the city objects in this dataset with instances of the Semantic Sensor Network ontol-
ogy. Depending on the type of sensor, various urban studies can be performed, such as water resource manage-
ment, air quality or microclimate monitoring, and energy demand assessment. The Semantic Sensor Network 
ontology is utilized to describe sensors and other properties within the IoT network, while the UrbanTile pro-
posed in this dataset is responsible for describing spatial objects and relationships.

One of the primary advantages of this dataset is its use of semantic web technologies to provide physical 
entities and microclimate data for distributed energy simulation. This approach enables the dataset to be highly 
flexible and machine-readable, facilitating easy integration with external ontologies and enabling the data to 
be easily queried. However, a notable disadvantage of this dataset is that its current data source is OSM, and its 
data quality largely depends on OSM. While OSM is a valuable resource, it may not always provide the level of 
accuracy and detail required for certain applications. Therefore, to improve the quality of the dataset over time, it 
will be necessary to integrate additional data sources and ensure that the data is regularly updated and validated. 
The OSM data used in this study does not have complete information about building functions. In particular, 
the upto:hasBuildingType property of building objects is currently set to ‘office’ when performing energy sim-
ulations. However, this may not be an accurate representation of the actual building function. We therefore 
encourage users to update the value of upto:hasBuildingType and choose the corresponding predefined generic 
models that match the actual building function.

Code availability
The shared dataset is prepared based on the default setting of the UrbanPatch container and D-radius. If users 
want to customizable this dataset with different settings, they can use the shared UrbanPatch generation package 
(https://github.com/ruirzma/UPTO). There are four files included in the package:

 • “ ConPatchForTile.py”: construct UrbanPatch individuals for UrbanTile objects when changing the receptive 
radius.

 • “ ConPatchForBuilding.py”: construct UrbanPatch individuals for Building objects for a given receptive 
radius.

• “GenMicroclimate.py”: generate the UrbanTile-scale microclimate.
• “GenIDF.py”: generate UrbanTile-scale EnergyPlus IDF file.
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