
1Scientific Data |          (2023) 10:338  | https://doi.org/10.1038/s41597-023-02255-3

www.nature.com/scientificdata

An improved global vegetation 
health index dataset in detecting 
vegetation drought
Jingyu Zeng   1,2, Tao Zhou1, Yanping Qu3, Virgílio A. Bento4, Junyu Qi5, Yixin Xu1, Ying Li1,6  
& Qianfeng Wang   2 ✉

Due to global warming, drought events have become more frequent, which resulted in aggravated 
crop failures, food shortage, larger and more energetic wildfires, and have seriously affected socio-
economic development and agricultural production. In this study, a global long-term (1981–2021), 
high-resolution (4 km) improved vegetation health index (VHI) dataset integrating climate, vegetation 
and soil moisture was developed. Based on drought records from the Emergency Event Database, 
we compared the detection efficiency of the VHI before and after its improvement in the occurrence 
and scope of observed drought events. The global drought detection efficiency of the improved high-
resolution VHI dataset reached values as high as 85%, which is 14% higher than the original VHI dataset. 
The improved VHI dataset was also more sensitive to mild droughts and more accurate regarding the 
extent of droughts. This improved dataset can play an important role in long-term drought monitoring 
but also has the potential to assess the impact of drought on the agricultural, forestry, ecological and 
environmental sectors.

Background & Summary
Drought is a complex phenomenon1, and can trigger crop failures, food shortages, famines, epidemics, and even 
mass migration2,3. Severe drought events were responsible for widespread negative impacts on natural and soci-
oeconomic systems4,5. Therefore, it is urgent to improve our understanding of the spatiotemporal characteristics 
and the evolutionary trends of droughts6,7. This would provide a basis for quantifying drought impacts and the 
social, economic and natural ecological responses to droughts across regions and times8.

According to different subjects, drought usually presents four processes or types: meteorological (insufficient 
precipitation), agricultural, also called vegetation drought (insufficient soil moisture), hydrological (insufficient 
runoff and/or groundwater), and socioeconomic (social response to water supply and demand)9. Among these, 
vegetation drought is highly correlated with food production, and the extent of vegetation drought have been 
increasing10,11.The global average harvested area has decreased by 4.1% during droughts from 1964–200712. The 
number and duration of severe drought events in the world are expected to maintain its growth in the future13,14. 
An efficient technique to detect vegetation drought events and monitor the potential risk of droughts in the long 
term is thus urgently needed15,16. This may be seen as a key asset to help policymakers implement timely mitiga-
tion and adaptation strategies17.

Traditional meteorological drought index has been widely used for vegetation drought assessment18–20. For 
example, the self-calibrating Palmer drought severity index (sc-PDSI)21 significantly improves spatial homo-
geneity, taking into account soil moisture conditions. Four values related to the soil moisture are computed 
along with their complementary potential values. These eight values are evapotranspiration (ET), recharge 
(R), runoff (RO), loss (L), potential evapotranspiration (PE), potential recharge (PR), potential runoff (PRO), 
and potential loss (PL). The PDSI depends on a two-stage “bucket” model of the soil22. The top layer of soil is 
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assumed to hold one inch of moisture. The amount of moisture that can be held by the rest of the underlying 
soil is a location-dependent value, which must be provided as an input parameter to the program. The sc-PDSI 
automatically calibrates the behavior of the index at any location by replacing empirical constants in the index 
computation with dynamically calculated values21. Compared with other meteorological drought indices [such 
as the standard precipitation index (SPI) and the standardized precipitation-evapotranspiration index (SPEI)], 
the sc-PDSI has a higher correlation with vegetation drought23. However, these indices still face problems such 
as inaccurate station observation and delayed data collection7,24, and do not consider either the impact of water 
and heat stress on vegetation growth or do not fully consider land cover and vegetation information of the 
underlying surface25. Therefore, the traditional meteorological drought index is not suitable for direct use in 
vegetation drought research. But using it as an auxiliary information supplement tool and combining it with 
other relevant technologies can help us better understand and study vegetation drought. Currently, satellite 
data are widely used for drought assessment, because of its ability to identify drought conditions on different 
underlying surfaces26. Remotely sensed drought monitoring has advantages such as being suitable for large-scale 
drought monitoring27, having a powerful real-time update function28,29, and high accuracy, as well as unmatched 
cost-effectiveness when compared to other methods30,31. Therefore, the combination of satellite remote sensing 
technology and traditional drought index is a very promising drought assessment method.

The vegetation health index (VHI) is one of the most popular remote sensing drought monitoring indi-
ces32–35. VHI is composed by two terms: the vegetation condition index (VCI) and the thermal condition index 
(TCI). VHI considers local biophysical and climatic conditions, and can be used for actual plant drought mon-
itoring in various agrometeorological regions36. The basic principles of VHI are as follows: (1) a low normal-
ized differences vegetation index (NDVI) and high land surface temperature (LST) suggest poor vegetation 
health37,38; and (2) the contributions of VCI and TCI to VHI are assumed to be equal, since there are no data on 
the relative contributions of other conditions to vegetation health35. However, the contributions of TCI and VCI 
to VHI depend on climatic and other environmental factor39. Indeed, environmental conditions in different 
regions are usually different, which implies that giving equal weights to VCI and TCI may reduce the application 
prospects of the VHI, increasing the uncertainty in drought detection33. Therefore, evaluating the contributions 
of VCI and TCI to VHI while considering the underlying surface and hydrothermal conditions is a key issue that 
needs to be addressed. Bento, et al.39 used SPEI index combined with Pearson correlation analysis to evaluate the 
contribution of TCI and VCI to VHI in arid regions, while Zeng, et al.23 compared SPEI and sc-PDSI as a control 
drought index to evaluate the contribution of TCI and VCI to VHI.

The purpose of this study is to produce a global, long-term (1981–2021), high-spatial-resolution, improved 
vegetation drought detection dataset and a reference parameter dataset for calculating the improved VHI for 
different regions. Here, we supplemented meteorological and soil moisture information on the basis of the VHI 
of the original algorithm and used the sc-PDSI as the control drought index, combined with the Pearson corre-
lation analysis method, to evaluate the best contributions of VCI and TCI to VHI in different regions. Then, we 
generated a global long-term dataset for detecting vegetation drought. We also used drought event records from 
the Emergency Events Database (EM-DAT) to assess the drought detection ability of our improved VHI dataset. 
The developed global vegetation drought dataset has the potential to monitor and assess drought and its impact 
on the agricultural, forestry, ecological, and environmental sectors.

Data and Methods
Dataset coverage.  Dataset coverage ranges from approximately from −50°S to 70°N and from −180°W to 
180°E. Antarctica, the high latitude regions of the Northern Hemisphere (due to the lack of VCI and TCI data in 
this area), and the Sahara Desert region in Africa (due to the lack of sc-PDSI in this area) were excluded from the 
study area. These areas have little vegetation or extremely low vegetation coverage, so this part is usually excluded 
when studying vegetation drought40–43, and these areas are not considered in this dataset. The colors on Figure 1 
represent the number of drought events since 1900. Figure 1 also shows information on the change in global 
annual mean temperature (Fig. 1b), change in global annual precipitation (Fig. 1c), and the change in global 
annual number of droughts (Fig. 1d). Since the 20th century, global temperatures have substantially increased, 
and precipitation also showed a positive trend, but with high fluctuations and large uncertainties. Significantly 
higher temperatures and greater uncertainty in precipitation could dramatically increase drought risk. According 
to statistics, drought events have been on the rise since 1900 (p < 0.001), and especially since the 1980s.

Data sources.  Global VCI and TCI data were downloaded from the National Oceanic and Atmospheric 
Administration (NOAA) Center for Satellite Application and Research (STAR) (https://www.star.nesdis.noaa.
gov/smcd/emb/vci/VH/vh_ftp.php), with a spatial resolution of 4 km, a weekly temporal resolution, and a time 
span ranging from 1981 to 2021. We organized the data in annual values through the arithmetic mean, and pro-
cessed the background value (−9999) as a null value through the spatial masking technique to facilitate subse-
quent spatial and related statistical analyses.

Global sc-PDSI data were downloaded from the Climate Research Unit (CRU), with a spatial resolution of 
0.5°, a monthly temporal resolution, and a time span ranging from 1901 to 2020 (https://crudata.uea.ac.uk/
cru/data//drought/#global)44,45. We organized the data in annual data by the arithmetic mean, then resampled 
to 4 km by the nearest neighbor method to match the VCI and TCI data. Resampling the 0.5 ° sc-PDSI to 4-km 
will not lose the information it contains, making the results acceptable. However, the use of sc-PDSI with higher 
spatial resolution may provide more information on hydrothermal and soil characteristics and may reduce the 
uncertainty of results.

Data on global drought events from 1900 to 2021 were obtained from the EM-DAT (https://public.emdat.be/)46.  
After filtering and eliminating invalid data, a total of 592 valid records from 1981 to 2021 were selected. We have 
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uploaded the drought event data records for verification to figshare, which can be obtained from https://doi.
org/10.6084/m9.figshare.19811854.v547.

Annual VHI calculation.  According to Kogan35, the VCI for each pixel and period in a given year was cal-
culated as follows:

VCI
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where NDVI is the value of a given pixel and period, and NDVIMIN and NDVIMAX are the minimum and maxi-
mum values of NDVI for all pixels and periods, respectively. Equation (2) was used to calculate the TCI:
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where LST is the value of a given pixel and period. LSTMIN and LSTMAX are the minimum and maximum values 
of LST for all pixels and periods, respectively. The VHI represents the overall health of the vegetation and is used 
to identify drought48. It is calculated by combining the VCI and the TCI as follows:

VHI a VCI a TCI(1 ) (3)= × + − ×

where a determines the contributions of VCI and TCI to VHI, which varies depending on the environment of 
the study area33. The original VHI (VHIori) assumes equal contributions from water demand (here, a proxy of 
NDVI) and temperature during plant growth, and the coefficient a is assigned the value of 0.5. Following other 
studies35,49,50, we classified drought levels on the basis of the VHI (Table 1):

Improvement of the VHI algorithm.  We chose the meteorological drought index sc-PDSI, which consid-
ers hydrothermal conditions and soil moisture, as the control drought index, and combined it with Pearson corre-
lation analysis to evaluate the contribution of VCI and TCI on a grid by grid basis, thereby obtaining an improved 
VHI index. To improve VHI, the following steps are taken: (1) The parameter a was set to vary in steps of 0.02, 

Fig. 1  Dataset Coverage (a) Number of global drought events, (b) the change in global annual mean 
temperature, (c) the change in global annual precipitation, and (d) the change in the number of global annual 
droughts. The black lines in (b–d) are the best-fit lines from linear regression. The relations, coefficients of 
determination, and p-values are given in each panel. The data in a and d are sourced from EM-DAT, and the 
data in b and c are sourced from CRU.
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starting from 0.02 and gradually increasing to 0.98 (49 values in total). The VHI was then calculated in each step 
for each year from 1981 to 2021 based on different a values. The specific formula is as follows:

= × + − × = . . … .VHI a VCI a TCI a(1 ) ( 0 02, 0 04, 0 98) (4)i t a i t i t, , , ,

Where VHIi,t,a represents the VHI when the VCI contribution of the ith pixel is a at time t. VCIi,t represents the 
VCI of pixel i at time t, and TCIi,t represents the TCI of pixel i at time t.

(2) The Pearson correlation was then used to evaluate the correlation between sc-PDSI and the VHI calcu-
lated in each iterative step of contribution values a pixel by pixel. The sc-PDSI based on the water balance the-
ory fully considers meteorological factors and soil moisture conditions, suitable for improving the VHI23. The 
Pearson correlation coefficient is calculated as follows:
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Where Ri represents the correlation coefficient between VHI and sc-PDSI of pixel i, xi represents the VHI of 
pixel i, xi represents the average value of VHI of pixel i from 1981 to 2021, yi represents the sc-PDSI of pixel i, 
and yi

 denotes the mean value of sc-PDSI for pixel i from 1981 to 2021. The range of |R| is 0 to 1.
(3) After obtaining the spatial correlation coefficient map of sc-PDSI and VHI calculated with different a 

values, the optimal contribution value a was estimated pixel by pixel according to the following formula:

a MAX R VHI scPDSI( , ) (6)i opt i a i, ,=

Where ai,opt represents the best contribution value a of VCI to VHI at pixel i, and (1-ai,opt) represents the best 
contribution value of TCI to VHI. R is the correlation coefficient between VHI and sc-PDSI, VHIi,a is the VHI 
of pixel i when the contribution value of VCI is a, and scPDSIi is the sc-PDSI of the ith pixel. By comparing the 
correlation coefficients between sc-PDSI and VHI calculated for the 49 values of a pixel by pixel, the a value of 
the largest correlation coefficient was selected as the best contribution value a of the VCI to VHI of this pixel.

(4) Finally, according to the best contribution value a and the calculation formula of VHI, the improved VHI, 
namely VHIopt, is obtained. The specific formula is as follows:

= × + − ×( )VHI a VCI a TCI1 (7)i t opt i opt i t i opt i t, , , , , ,

Where VHIi,t,opt represents the VHI obtained by the best contribution value a of the ith pixel at time t, and ai,opt 
represents the best contribution value of the VCI to the VHI of the ith pixel. The algorithms used to improve the 
VHI index have been uploaded to Github and can be obtained from https://github.com/BNUJingyuZeng/A-ne
w-global-VHI-dataset-code. A general overview of the working scheme is given in Fig. 2.

We compared the scatterplots and linear regression fittings of sc-PDSI and VHI before and after the improve-
ment using detrending. The method of detrending is as follows:

= − −VHIde VHI VHI (8)i t i t i t, , , 1

Where VHIdei,t represents the VHI for the ith pixel at time t after detrending, VHIi,t represents the VHI for ith 
pixel at time t before detrending, and VHIi,t−1 represents the VHI of pixel ith at time t-1 before detrending.

Evaluation of the drought detection efficiency.  Drought detection efficiency of the VHI dataset was 
evaluated before and after the improvement, based on drought event records in the EM-DAT. The specific formula 
is as follows:

= ×DTE s
TDE

100
(9)

DTE is the drought detection efficiency, S is the score, and TDE is the total number of drought events. The 
score is evaluated according to the following principles. The VHI-based vegetation drought rating scale thresh-
old is selected as 40. When the VHI is lower than 40, this means dryness (Table 1) - let’s assume drought, and 
if it is higher than 40, this means normal or wet conditions (Table 1). Given the occurrence time and location 

Category VHI

Extremely dry [0, 10]

Severely dry (10, 20]

Moderately dry (20, 30]

Mild dry (30, 40]

Normal (40, 50]

Good (50, 60]

Excellent (60, 100]

Table 1.  Vegetation drought classification based on the VHI.
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of the drought event, VHIs before and after the improvement are compared one by one. When the number of 
pixels detected by drought accounts for more than 80% of the number of pixels in the area where the drought 
event occurred, the score is 1, when the number of pixels detected by drought accounts for more than 40% of 
the number of pixels in the area where the drought event occurred, the score is 0.5, when the number of pixels 
detected by drought accounts for less than 40% of the number of pixels in the area where the drought event 
occurred, the score is 0.

Statistical methods.  The Mann–Kendell (MK) method is widely used in meteorology, ecology, environ-
mental research51–54. It is a nonparametric test method55,56. We used the Theil-sen trend analysis and the MK 
trend detection methods to study the temporal and spatial trends of global vegetation drought.

Data Records
Extent, projection, resolution and data format.  The VHIopt dataset covers most of the world’s land 
areas except Antarctica, with an approximate range of −50°S to 70°N and −180°W to 180°E. The data projection 
is GCS_WGS_1984. This dataset is available as a 4-km GeoTIFF accessible from a data repository on figshare 
(https://doi.org/10.6084/m9.figshare.19811854.v5)47. For each year’s VHIopt image, the globe is divided into 
10000 × 3616 1-km × 1-km grid cells. In addition to annual data, we also provide monthly data, which can be 
used to analyze vegetation drought and related research from the seasonal scale analysis, and also provide a list 
to explain which months’ data are missing due to the lack of data, and how to combine weekly data into monthly 
data. We also provide a global best contribution parameter dataset based on the 1981–2021 VHI dataset, i.e., 
the aopt parameter file. The file’s extent, projection, spatial resolution and data format are consistent with the 
VHIopt dataset. The annual VHIopt  dataset does not exceed 12 GB (about 3 GB for the compressed download). To 
preserve as much information as possible, we kept the value of each cell to six decimal places. Missing data are 
represented by “Nodata”.

Data naming and availability.  The global 1981–2021 VHIopt dataset is named “VHIopt_year.tif ”, where 
year corresponds to the year of the data, with a total of 41 files. The VHIopt data of the corresponding year is calcu-
lated from annual VCI and TCI data of the year with the best contribution parameter graph from the aopt file. The 
parameter file of the global best contribution value a is directly named aopt, which can be used to calculate VHI 
data from small to macro scales and from daily to seasonal scales.

Technical Validation
Drought detection efficiency of the VHIopt dataset.  The best contribution value aopt is less than 0.5 
in most regions of the world. The proportion of regions dominated by TCI reaching 70% and the proportion of 
regions dominated by VCI of ~28% (Fig. 3). VHIopt is affected by TCI and VCI differently in different regions. 
Most of Africa is dominated by VCI, while South America, Australia, and regions north of 30° latitude are domi-
nated by TCI. This is especially visible in Europe, where TCI-dominated regions are concentrated and contiguous, 
with aopt values generally lower than 0.3. Overall, an abnormally high surface temperature is the main driving 
factor affecting vegetation drought.

The coefficient of determination of the VHI before and after the improvement and the sc-PDSI were com-
pared, as well as the performance before and after detrending (Fig. 4). The coefficient of determination of VHIopt 
and sc-PDSI (Fig. 4a,c) agree better compared with VHIori (Fig. 4b,d). The correlation between VHIopt and 
sc-PDSI was 0.13 higher than that between VHIori and sc-PDSI (i.e., 0.51 and 0.38, respectively) after exclud-
ing time-dependent trends (Fig. 4a,b), which implies an improvement of 34% in correlation. The correlation 
between VHIopt and sc-PDSI without detrending was 0.04 higher than that between VHIori and sc-PDSI (i.e., 

Fig. 2  Flowchart of improving VHI index based on sc-PDSI and Pearson correlation analysis.

https://doi.org/10.1038/s41597-023-02255-3
https://doi.org/10.6084/m9.figshare.19811854.v5


6Scientific Data |          (2023) 10:338  | https://doi.org/10.1038/s41597-023-02255-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

0.41 and 0.37, respectively; Fig. 4c,d), i.e., an improvement of 10%. The improved VHI dataset can better capture 
soil moisture anomalies and heat stress levels than the original VHI dataset, thus improving the detection of 
vegetation drought.

Based on global drought events recorded in the EM-DAT, we compared the ability of VHIopt and VHIori to 
detect drought in a year-by-year globally (Fig. 5). The ability of VHIopt to detect drought was higher than that of 
VHIori, with drought detection efficiencies about 84.97% and 70.69%, respectively. The period from 1997 to 2002 
was a period of frequent drought events in the world. The year 2001 experienced the largest number of drought 
events, i.e., 27. Drought events have declined in recent years.

The same analysis was repeated but by continent (Fig. 6). The drought detection efficiency of VHIopt was 
higher than that of VHIori in all continents except Oceania. The drought event frequency from high to low was 

Fig. 3  Global distribution of the best contribution rate aopt of global VCI to VHIopt. The pie chart shows the 
proportion of regions dominated by TCI (red) or VCI (green).

Fig. 4  Scatter plots of sc-PDSI as a function of (a) detrended VHIopt, (b) detrended VHIori, (c) VHIopt, and (d) 
VHIori. The black lines are the best-fit lines from linear regression. The relations, correlation coefficients, and 
p-values are given in each panel.
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251, 143, 84, 56, 42, and 16 for Africa, Asia, North America, South America, Europe, and Oceania, respectively. 
The VHIopt drought detection efficiency was highest in North America at 90% and lowest in Oceania at 81%. 
The VHIori drought detection efficiency is the highest in Oceania at 84% and lowest in Asia at 62%. The drought 
detection efficiencies of VHIopt and VHIori in Oceania were not much different, related to the small number of 
drought events occurring there. In addition, in many areas of Oceania, drought occurs on small islands, which 
are affected by the resolution of the data. In Australia, the drought detection efficiency of VHIopt was still higher 
than that of VHIori.

In general, compared with the original VHIori, our improved VHIopt dataset has an improved drought detec-
tion efficiency in all continents. It has broad application prospects for the detection and long-term monitoring 
of vegetation drought.

Spatial differences between VHIopt and VHIori.  Based on the estimated global best contribution value 
aopt, we analyzed global annual VHIopt and VHIori from 1981 to 2021 and compared their spatial patterns (Fig. 7). 
A relatively low degree of global vegetation drought is seen, with normal to good levels in most areas over the past 
40 years, especially near the Equator, eastern North America, and southeastern South America. Clear differences 
between the two indices are seen (Fig. 7c). VHIopt effectively detected mild vegetation drought, while VHIori 
underestimated the occurrence and impact range of mild vegetative drought. VHIori was significantly higher than 
VHIopt along the western coasts of North America, Europe, South America, and southwest Asia.

We also compared VHIopt and VHIori globally and by continents (Fig. 7b,d). VHIori is higher than VHIopt in 
66.5% of the cases. Oceania was the region with the lowest level of vegetation health in the world, as well as the 
region with the greatest variability, the highest uncertainty, and a higher risk of vegetation health. The vegetation 
health level in North America was the highest in the world, with average values of 49.02 and 47.98 for VHIori and 
VHIopt, respectively, which are significantly different from Oceania (p < 0.05).

We further zoomed in on the above regions to compare spatial differences between VHIopt and VHIori 
(Fig. 8). In South America and Europe, VHIopt values below 40 indicates that this index effectively detected veg-
etation drought, especially in specific years. VHIori values above 40 indicate normal conditions. VHIopt was more 
sensitive to mild vegetation drought than VHIori, illustrating its better ability to detect mild drought. VHIopt also 

Fig. 5  Histogram of the number of observed (red), VHIopt-detected (green), and VHIori-detected (orange) 
global drought events from 1981 to 2021. The blue and dark gray lines show the drought detection efficiencies 
(unit: %) of VHIopt and VHIori, respectively.

Fig. 6  Histogram of the number of observed (red), VHIopt-detected (green), and VHIori-detected (orange) 
drought events from 1981 to 2021 in different continents. The blue and gray lines show the drought detection 
efficiencies (unit: %) of VHIopt and VHIori, respectively.
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improved the ability to assess the occurrence range of vegetation drought compared with VHIori. For example, 
in the western United States and southwestern Asia, the spatial range of VHIori values below 40 was smaller than 
that of VHIopt, and there was an overly optimistic estimate of vegetation health. Furthermore, VHIopt also more 
effectively assessed the extent of vegetation drought in specific years. In general, VHIopt has clear advantages over 
VHIori in both drought detection efficiency and drought occurrence range identification.

Trends seen in the global VHIopt dataset.  We analyzed global and continental trends in VHIopt and 
VHIori from 1981 to 2021 (Fig. 9). Results show that over the past 40 years, the VHIopt in Europe, South America, 
and Oceania has decreased significantly by about 0.14, 0.31, and 0.35 per year, respectively. There was no sig-
nificant change in Asia, North America, and Africa. Globally, VHIopt showed an overall downward trend, with 
an average annual decrease of 0.16. VHIori showed a significant increase in Europe, with an annual increase of 
about 0.2, and a significant decline in Africa, with a decrease of about 0.24 per year. A further analysis showed 
that South America was the region with the most obvious downward trend in VHIopt (R2 = 0.54). From 1981 to 
2005, inter-annual differences in Asia were relatively large, and from 2005 to 2021, changes in VHIopt and VHIori 
gradually stabilized. This suggests that the future uncertainty of vegetation health in Asia may be less than in other 
regions.

Fig. 7  Global distributions of (a) VHIopt and (c) differences between VHIopt and VHIori. Box plots of (b) VHIopt 
and (d) VHIori globally and by continent. The letters above the boxes indicate significant differences at the 
p = 0.05 level.

Fig. 8  Spatial distributions of (a–d) VHIopt and (e–h) VHIori in South America, Europe, the American Midwest, 
and southwest Asia, respectively.
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Since VHIopt has noticeable advantages over VHIori in both drought detection efficiency and drought occur-
rence range identification, we used the VHIopt dataset to evaluate the changing trend of global vegetation 
drought to identify hot spots where vegetation drought may be further aggravated in the future and areas with 
improved vegetation health (Fig. 9). Results show that the spatial heterogeneity of global vegetation drought 
changes may be high in the future. The western United States, South America, central and southern Australia, 
and southwestern Asia are regions where VHIopt will decreases. On the other hand, central Africa, India, south-
ern China, North America, and high-latitude parts of Asia are areas where vegetation droughts will be alleviated 
and vegetation health levels will improve. These changes have passed the significance assessment in the MK 
trend test. In the context of climate change, the changes in vegetation drought in areas where VHIopt has declined 
are subject to large uncertainties and required more attention.

Usage Notes
We produced a long-term (1981–2021) high-spatial-resolution (4 km) improved vegetation drought detection 
dataset and the best contribution parameter dataset that can be used to calculate improved VHIs in different 
regions. We also evaluated the efficiency of the VHIopt dataset to detect drought and the spatial pattern and 
changing trends of global vegetation drought to improve our techniques for long-term monitoring of vegetation 
drought. Based on the best global contribution parameter dataset, VHIopt data in different regions can be calcu-
lated for performing drought assessment and studying food production and vegetation carbon sinks.

The data set can help people to carry out drought assessment more conveniently and efficiently, but there 
are areas where improvements are needed. First, the spatial resolution of the data may have an impacts on find-
ings57. Using higher-spatial-resolution remote sensing products and sc-PDSI data will help further improve the 
detection efficiency of vegetation drought. Second, increased human activities may complicate changes in veg-
etation aridity25. Human interventions may have more complex impacts on vegetation health, requiring further 
research58.

Our research was conducted on a global scale, providing a tool aimed at understanding global and regional 
vegetation drought characteristics. This dataset greatly improves the ability of VHI to detect vegetation drought, 
and can help people better understand the impact of temperature on vegetation drought in different regions. 
This research is also conducive to the effective implementation of vegetation drought resistance ecological engi-
neering, and helps local governments and farmers reduce the losses caused by vegetation drought. The global 
vegetation drought dataset developed here also has the potential to be used to monitor and assess drought and 
its impact on the agricultural, forestry, ecological, and environmental sectors.

Fig. 9  Time series of (a–g) VHIopt and (h–n) VHIori in Asia, North America, Europe, Africa, South America, 
Oceania, and globally, respectively. Global (o) trends in VHIopt (unit: per year) and (p) p-values. The relations, 
coefficients of determination, and p-values are given in each (a–n) panel.
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Code availability
All calculations of a global long term (1981–2021), high resolution (4 km) improved vegetation health index 
(VHI) dataset are based on MATLAB, and relevant step codes can be obtained from Github: https://github.com/
BNUJingyuZeng/A-new-global-VHI-dataset-code.git.
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