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High-quality ground observation networks are an important basis for scientific research. Here, an 
automatic soil observation network for high-resolution satellite applications in China (SONTE-China) 
was established to measure both pixel- and multilayer-based soil moisture and temperature. SONTE-
China is distributed across 17 field observation stations with a variety of ecosystems, covering both dry 
and wet zones. In this paper, the average root mean squared error (RMSE) of station-based soil moisture 
for well-characterized SONTE-China sites is 0.027 m3/m3 (0.014~0.057 m3/m3) following calibration 
for specific soil properties. The temporal and spatial characteristics of the observed soil moisture and 
temperature in SONTE-China conform to the geographical location, seasonality and rainfall of each 
station. The time series Sentinel-1 C-band radar signal and soil moisture show strong correlations, and 
the RMSE of the estimated soil moisture from radar data was lower than 0.05 m3/m3 for the Guyuan 
and Minqin stations. SONTE-China is a soil moisture retrieval algorithm that can validate soil moisture 
products and provide basic data for weather forecasting, flood forecasting, agricultural drought 
monitoring and water resource management.

Background & Summary
Soil moisture is an important parameter in hydrological, climate prediction, drought monitoring and crop yield 
estimation models, as well as an important data source for research on global climate change and land surface 
data assimilation1,2. Therefore, accurate monitoring of soil moisture is of great significance. Traditional methods 
used to obtain soil moisture, such as the drying method and resistance method, can accurately measure the 
soil moisture value at a single point; however, the measurement accuracy is easily affected by human activities, 
weather conditions and monitoring range, and the measurement results at a single point do not meet application 
requirements. Therefore, accurate, timely and long-term ground observations of large-scale soil moisture can 
reveal trends in the water cycle in relation to climate or land cover change3–6.

With the development and progress of satellite remote sensing technology, soil moisture monitoring tech-
nology based on satellite visible-near-infrared and thermal infrared remote sensing data, active microwave and 
passive microwave have also been developed, which has greatly improved soil moisture monitoring capabilities. 
However, the soil moisture retrieved by satellite remote sensing on the surface is not as accurate as expected, and 
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the low accuracy of products and inconsistency in standards and specifications among different products fails to 
meet user requirements, greatly limiting the practical value of remote sensing products3. Therefore, station-based 
measurements of soil moisture, which can represent the true value at the pixel scale and characterize the temporal 
dynamics, are the key to calibrating and validating satellite-based soil moisture retrievals3,4,6.

Due to the high cost of constructing long-term soil moisture measurement networks and an insufficient 
understanding of the importance of soil moisture in climate simulations and regional weather predictions, 
long-term soil moisture measurement networks are very scarce4,7–9. In the early 1990s, several specific soil mois-
ture field surveys were conducted by the former Soviet Union, the United States, Europe, and Australia9,10, and 
until the 2000s, soil moisture monitoring networks were established as part of hydrological and meteorological 
observation facilities. With the launch of the Soil Moisture Ocean Salinity (SMOS) mission and the Soil Moisture 
Active Passive (SMAP) mission, many new soil moisture networks have emerged and been used to develop soil 
moisture algorithms and for product validation10,11.

The International Soil Moisture Network (ISMN) was launched in 2010, and it accesses soil moisture obser-
vation network data from many countries. With rich data sources and a large data volume, it is the largest soil 
moisture database in the world at present. The ISMN stores surface soil moisture data as well as deep soil mois-
ture content and related hydrometeorological parameters, such as precipitation and soil temperature. Currently, 
satellite soil moisture product calibration, validation and algorithm improvement are the main application direc-
tions of the ISMN3. By November 2022, 72 ISMN soil moisture observation networks were connected, with a 
total of 2,451 sites (https://ismn.geo.tuwien.ac.at/en/).

In the past 20 years, many soil moisture observation networks have been established for remote sensing 
applications in China. In 2010, the Qinghai-Tibetan Plateau (QTP) observatory was the first soil water obser-
vation network established in China to study the calibration/validation of satellite- and model-based soil mois-
ture products at a regional scale. This observatory includes the Naqu, Maqu, and Ngari networks6,12-15, and 
these station-based data have been used to quantify uncertainties in coarse-resolution satellites and models16.  
An ecohydrological wireless sensor network was established in the Heihe River Basin (HRB) in the arid region 
of Northwest China in 2012. The network is designed to capture the multiscale spatial variations and temporal 
dynamics of soil moisture, soil temperature, and land surface temperature simultaneously in heterogeneous farm-
land to provide remote sensing ground-truth estimates at an approximately kilometre-pixel scale using spatial 
upscaling17. The Dehui farmland soil observation network started in 2016 and was established by the Changchun 
Jingyuetan remote sensing test site, Chinese Academy of Science (CAS). Twenty-eight sensors are installed in 
the spatial range of 36 km × 36 km and are used to measure 0–5 cm soil moisture and soil temperature18,19.  
The Shandian River soil observation network was established in July 2018, and it covers an area of approximately 
10,000 km2. The goal of this network is to facilitate studies of water and energy exchanges between the land and 

Fig. 1  The geographical locations of 17 observation stations and their main coverage types in China. The names 
(abbreviations) are JingYueTan (JYT), GuYuan (GY), HeFei (HF), HaiBei (HB), JiangShanJiao (JSJ), XiTianShan 
(XTS), MinQin (MQ), HuLunBeiEr (HLBE), XiLinHaoTe (XLHT), QiYang (QY), DongTingHu (DTH), 
GuangZhou (GZ), YuCheng (YC), NanJing (NJ), QingDao (QD), QianYanZhou (QYZ), and NaQu (NQ).
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atmosphere at a regional scale as well as provide a long-term ground reference for validating various satellite 
products. There are three sampling scales: 100 km (large scale), 50 km (medium scale), and 10 km (small scale)20. 
The Genhe soil water observation network was established in 2013. The network monitored soil moisture and 
temperature at depths of 3, 5, 10 and 20 cm21, which were used to validate the AMSR-2, SMOS, and SMAP soil 
moisture products. The Henan Soil Water Monitoring Network was established in 2009 in Henan Province, 
China. It covers nearly all of Henan Province, with a total area of 16.7 × 104 km2 22.

Fig. 2  Spatial distribution of the 5TM soil sensor for all 17 sites in SONTE-China. There are two instrument 
installation areas (QingDao1 and QingDao2, HaiBei1 and HaiBei2) for the site, and four layers of sensors are 
deployed at each site.
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With the development of soil moisture networks, much basic theoretical and applied research progress has 
been made; however, the existing observation data are still inadequate, such as inconsistency among sensors 
and soil depths, various sampling distributions are used, and measurements are only taken at the regional scale. 
These limitations will seriously affect the application of datasets at the national scale23-26. On the other hand, 
with the launch of high spatial resolution satellites at home and abroad in recent years, especially GaoFen series 
and space-based system satellites launched by China, there is an urgent need to build a national and uniform 
standards network aimed at the validation and development of high-resolution satellite remote sensing prod-
ucts. An automatic soil observation network in typical ecosystems in China (SONTE-China) was established by 
the Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), which had a unified 
sensor, unified sample design, unified acquisition depth, unified calibration method, and unified data processing 
method. SONTE-China can automatically obtain in situ soil moisture data in real time and at spatial scales up 
to the pixel scale. SONTE-China covers the main ecosystems (including grassland, farmland, desert and forest) 
and dry/wet climate zones in China, and it can develop and validate high-resolution satellite remote sensing 
soil moisture products and provide basic data for research in the fields of weather forecasting, flood forecasting, 
agricultural drought monitoring and water resource management.

This paper reports on the status of SONTE-China and presents pixel-scale soil temperature and soil mois-
ture at 17 typical stations from approximately 2019 to 2021. The 3-year soil moisture dataset of SONTE-China 
includes the continuous daily mean data at the pixel scale obtained at four soil depths (5 cm, 10 cm, 20 cm and 
40 cm) using the arithmetic average spatial upscaling method6,12.

This paper is organized as follows. Section 2 describes the status of SONTE-China and the in situ SM meas-
urements, as well as the method of sensor calibration and image data processing. Section 3 introduces the data 
records. Section 4 presents the soil moisture calibration analysis, temporal and spatial changes in soil moisture 
and soil temperature, and the relationship between soil moisture and Sentinel-1 radar data.

Methods
Status of SONTE-China.  A soil observation network in typical ecosystems in China (SONTE-China) was 
established to monitor the changes in soil temperature and moisture in different ecosystems and provide an 
accurate pixel-scale ground observation dataset. Seventeen SONTE-China stations are located in 13 provinces 
across China (Fig. 1); the longitude range is 81.18°~128.96°E, the latitude range is 23.24°~49.34°W, and it covers 
a variety of ecological types, including grassland, farmland, desert and forest. Each station covers a uniform 
area of approximately 1 ha, and soil moisture and soil temperature were measured by a Metre 5TM sensor with a 
30-minute measurement interval. Each station consists of 10 observation nodes. Each observation node contains 
four observation soil depths (5 cm, 10 cm, 20 cm and 40 cm). The spatial distribution of the 5TM soil sensor for 

Soil depth range (cm) Clay range (%) Silt range (%) Sand range (%) SOM range (%) Salinity range (%)

0–5 1.34–16.79 10.72–84.20 5.20–87.94 0.18–17.46 0.01–0.28

7.5–12.5 1.09–19.31 13.31–85.43 3.30–85.60 0.22–15.62 0.01–0.16

17.5–22.5 1.18–19.89 14.27–84.49 3.68–84.55 0.26–11.65 0.01–0.22

37.5–42.5 2.90–20.94 23.53–84.46 4.80–73.57 0.26–5.38 0.01–0.31

Table 1.  Range of different soil properties at four different depths at 17 SONTE-China stations.

JingYueTan
GuYuan
HeFei
HaiBei
JiangShanJiao
XiTianShan
MinQin
HuLunBeiEr
XiLinHaoTe
QiYang
DongTingHu
GuanZhou
YuCheng
NanJing
QingDao
QianYanZhou
NaQu

Fig. 3  Observation start time for 17 stations in the soil observation network in typical ecosystems in China 
(SONTE-China). There are data missing at the GuYuan site due to instrument maintenance.
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all 17 SONTE-China stations is given in Fig. 2. Supplementary Table 1 provides information on the geographic 
locations, crop types, soil properties and climatic conditions for the 17 sites.

Soil samples were collected at four different depths (0–5 cm, 7.5–12.5 cm, 17.5–22.5 cm and 37.5–42.5 cm) at 
17 stations for calibration experiments and laboratory analysis. The results showed that the percentages of clay, 
silt and sand ranged from 1.09% to 20.94%, 10.71% to 85.42% and 3.29% to 87.94%, respectively (Table 1). The 
content ranges of soil organic matter (SOM) and salinity are 0.17%–17.45% and 0.003%–1.73%, respectively. 
Obviously, the SOM tends to be high at the surface and decreases with increasing depth, whereas the soil salinity 
content is the opposite (Table 1). Jiangshanjiao station has the highest SOM of the 0–40 cm layer but the lowest 
salinity content among all stations.

Observation dataset acquisition.  The SONTE-China dataset includes soil moisture and soil temperature 
observation data from 17 stations. Figure 3 shows the measurement start times of all 17 stations. GuYuan station 
began obtaining observations in July 2018, the earliest station to do so, and the latest station to begin observations 
was DongTingHu station in August 2020. Currently, the data acquisition time of all stations has exceeded 2 years, 
and the data will be provided continuously in the future.

The purpose of the SONTE-China dataset is to provide daily mean values for the site at the pixel scale for 
high-resolution satellite applications. Therefore, spatial upscaling is usually necessary to obtain the regional-scale 
value of an in situ network from multiple monitoring sites to match the footprint of high-resolution satellite 
products. The frequently used approach is the arithmetic average6,12. The arithmetic averaging method assigns 
an equal weight coefficient to each observation node of the station, which can be formulated as

∑ ∑θ θ=
= =

↼⎯

N T
1 1

(1)t

ups

i
N

t
T

t i
obs

1 1 ,

where i represents the ith observation node, N represents the total number of observation nodes (N = 10), and t 
is the number of observations per day (T=48, observation frequency of 30 minutes). t

upsθ  represents the upscaled 
soil moisture/soil temperature, and t

obsθ  represents soil moisture/soil temperature measurements.

Soil moisture sensor calibration.  Soil moisture sensors are the main method for measuring soil moisture, 
and their measurement datasets can be used as standard datasets for evaluating the results from remote sensing and 
data assimilation. The spatial changes in soil properties (texture, SOM, and salinity) affect the dielectric constant 
measured by soil moisture sensors and the soil moisture accuracy. Therefore, it is necessary to consider the effects 
of soil properties to obtain high-accuracy soil moisture measurements for SONTE-China. The capacitance-based 
soil moisture sensor (5TM, Decagon Devices, Inc.) is used to measure the dielectric constant of soil.  
The specific working principles of the 5TM sensor can be found in the literature27. The soil moisture calibration 
experiment was designed to improve the measurement accuracy of the 5TM sensors by simulating different soil 
moisture contents (from dry to saturation). The volume of soil samples used in the calibration processes was 
approximately 0.03 m3 per station after pretreatment, and the volume used to obtain the true values by the gravi-
metric method was approximately 0.006 m3. The calibration processes are described as follows: (1) Soil samples 
were passed through a 5 mm sieve to remove structures, such as rocks and plants. Soil samples were oven-dried 
at 75 °C until constant weight. (2) Approximately 3% water by weight of the soil sample from step (1) was added 
and homogenously mixed. (3) Using three 5TM sensors, 5–6 measurements were recorded, and the average meas-
urement was taken as the result. (4) Soil samples were collected by ring knife from the position where the sensors 

Fig. 4  Comparison of root mean square error (RMSE) (unit: m3/m3) values of 5TM soil moisture for 17 SONTE-
China stations before and after calibration for station-based soil types.
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were inserted and, the “true” soil moisture value was measured using the gravimetric method. (5) Soil was added 
to maintain a constant weight of the measured soil samples. The weight of the added soil samples was equal to the 
weight of the gravimetric samples. (6) The above measurements were repeated until the soil sample was saturated. 
Station-based soil samples from 4 depths at 17 sites were used in the calibration experiments, and each soil sample 
was measured 7–12 times due to differences in soil texture.

The soil moisture values measured by the 5TM sensor (θ5TM) and the gravimetric method measurements 
(θtrue) were obtained after the calibration experiments. θ5TM was underestimated, but there were good linear rela-
tionships between θ5TM and θ5true for all 17 stations with high correlation coefficients (Fig. 4). Therefore, a linear 
calibration model (LCM) was reasonable for calibrating θ5TM. The calibration process for the LCM is described as 

Fig. 5  Comparison of θtrue with the sensor-based soil moisture (θ5TM and θLCM) for all stations and all four soil 
depths25.

https://doi.org/10.1038/s41597-023-02234-8
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follows: (1) the coefficients of the LCM (aLCM and bLCM) were determined by integrating θ5TM and θtrue into Eq. 2. 
Each soil sample had its own calibration coefficient; (2) the soil moisture of the LCM (θLCM) was calculated using 
Eq. 3, and the coefficients aLCM and aLCM were obtained from Eq. 2:

i j k a i j i j k b i j( , , ) ( , ) ( , , ) ( , ) (2)true LCM TM LCM5θ θ= × +

θ θ= × +i j k a i j i j k b i j( , , ) ( , ) ( , , ) ( , ) (3)LCM LCM TM LCM5

where aLCM and bLCM are coefficients in the LCM; I, j, k represent different stations with a range of 1 to 17; soil 
samples at different depths with a range of 1 to 4; and soil samples with different θ in the calibration experiments 
with a range of 1 to 12. Please refer to Li et al.27 for the specific calibration process and method.

High-resolution satellite soil moisture product inversion.  The radar and optical images with 10 m 
spatial resolution used here are from the sentinel-1 and sentinel-2 satellites of the ESA (https://scihub.copernicus.
eu/dhus/#/home). The data are downloaded based on the GEE platform. Sentinel-1 (IW mode) C-band radar 
data were preprocessed by orbit correction, radiometric calibration, multilook, filtering and terrain correction. 
Sentinel-2 data are pretreated with radiometric correction and atmospheric correction, and finally, the NDVI 
(Normalized Difference Vegetation Index) dataset is generated based on GEE. All preprocessed remote sensing 
data (Sentinel-1&2) were extracted according to the boundaries of the station, and the average of the remote 
sensing data (with multiple pixel values) in the extracted station range was taken as the effective station satellite 
observational data for soil moisture inversion.

The sensitivity of the radar signal to soil moisture decreases in the frozen soil period. It is assumed that 0 °C 
is the threshold of the frozen soil period, and long-term soil moisture data below 0 °C are eliminated. Sentinel-1 
(GuYuan site: 91 scenes and MinQin site: 138 scenes) IW mode C-band radar data are adopted to analyse its 
relationship with station-based soil moisture. A cosine normalization model is used to normalize the incident 
angle effect of radar data28,29. The incidence angle ranges of the radar data for the GuYuan site and MinQin site 
are 31° to 42° and 35° to 45°, respectively, and 35° and 40° are selected as the normalized reference angles. The 
NDVI of the Sentinel-2 data caused by cloud contamination has abnormal and missing values, and S-G filtering 
is used for reconstruction of the NDVI30.

The vegetation canopy has a direct influence on radar backscattering, which affects the accuracy of the SAR 
soil moisture retrieval. The water cloud (W-C) model was used to eliminate the effect of the vegetation canopy 
on radar signals31-34.

(4)pp veg soil
0 0 2 0σ σ δ σ= +

σ θ δ= ⋅ ⋅ ⋅ −A V cos (1 ) (5)veg
0

1
2

BVexp( 2 sec ) (6)2
2δ θ= −

where soil
0σ  represents the scattering term of soil; σveg

0  represents the scattering term of vegetation; δ2 is the 
two-layer attenuation coefficient of vegetation; and V1 and V2 represent the description factors of the vegetation 
canopy, which are expressed by the NDVI in this paper. A and B are empirical coefficients.

After S-G filtering of the NDVI time series, incidence angle correction and vegetation correction based on 
the W-C model, soil

0σ  is obtained under a uniform incident angle. For regions with small surface roughness, sim-

Fig. 6  Comparison of calibrated/uncalibrated soil moisture values with true values at the JinYueTan, 
XiLinHaoTe and YuCheng sites.
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ple linear relationships can be used to retrieve soil moisture. For areas with medium-high roughness, an expo-
nential function can better describe the relationship between soil moisture and σ° 35. The simple regression 
model based on the exponential relationship is given as follows:

σ= ∗ −SM C Dexp( ) (7)soil
0

where C and D are empirical coefficients. D can represent the soil
0σ  variation resulting from surface roughness.

Data Records
We have completed major procedures, including network design, sensor installation, data collection, sensor cali-
bration, pixel scale data, and data archive. All data were quality controlled by checking soil moisture time series 
one by one to remove suspected or wrong data. The metadata include station geographic position, elevation, 
land cover, and soil texture, as well as SOC content and start time.

Fig. 7  Temporal changes in soil moisture and soil temperature at multiple observed soil depths. (a,b) Guyuan, 
(c,d) Minqin, (e,f) Xitianshan, (g,h) Qianyanzhou, (I,j) Naqu, (k,l) Jingyuetan.

https://doi.org/10.1038/s41597-023-02234-8
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This dataset provides the daily mean data at the pixel scale of 17 typical ecosystem sites through the end 
of 2021. The SONTE-China dataset presented in this article is available at the following link: https://doi.org/ 
10.6084/m9.figshare.21302955.v2. The dataset is stored in EXCEL format36.

Technical Validation
Soil moisture calibration for station-based soil types.  According to the soil samples corresponding 
to the buried soil depth of the 5TM sensor collected in the field, laboratory calibration of the 5TM sensor was 
carried out. The RMSE of the 5TM soil moisture measurement before and after calibration for specific soil types 
is shown in Fig. 4. Before calibration, the maximum, minimum and average RMSEs are 0.095 m3/m3, 0.019 m3/
m3 and 0.049 m3/m3, respectively, and their values become 0.057 m3/m3, 0.014 m3/m3 and 0.027 m3/m3 after cali-
bration, respectively. Obviously, the accuracy of the 5TM soil moisture is significantly improved after calibration 
for station-based soil types.

Fig. 8  Statistical values (maximum, minimum and median) of soil moisture and soil temperature at the 0–5 cm 
soil depth among all 17 observation sites from August 30, 2020, to July 30, 2021.

Fig. 9  Relationship between the Sentinel-1 C-band radar backscattering coefficient and soil moisture for the 
GuYuan station. (a) and (d) denote the original σVV and σVH, (b) and (e) denote σVV and σVH after incidence 
angle correction, and (c) and (f) denote σVV and σVH after incidence angle and vegetation correction.

https://doi.org/10.1038/s41597-023-02234-8
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The calibration results indicated that θ5TM was significantly underestimated, which was demonstrated by a 
total of 611 soil sample datasets from 17 sites (Fig. 5). The underestimation of θ5TM increases with soil moisture, 
and only 39.7% of the θ5TM results achieve a factory accuracy of ±0.03 m3/m3. After calibrating θ5TM based on the 
LCM, experimental datasets from 17 sites showed an improvement in average R from 0.95 to 0.99 and a decrease 
in average RMSE from 0.049 to 0.027 m3/m3.

To further verify the soil moisture accuracy of SONTE-China, the calibrated soil moisture (θLCM) was com-
pared with field soil moisture. Figure 6 shows the comparison of the calibrated/uncalibrated soil moisture 
with the measured values at the JinYueTan, XiLinHaoTe and YuCheng sites. After calibration, the correlation 
(R) improved from 0.93 to 0.95, and the RMSE decreased from 0.05 to 0.03 m3/m3. Obviously, the calibrated 
soil moisture weakens the underestimation problem of SONTE-China soil moisture, especially for high soil 
moisture.

Fig. 10  Relationship between the Sentinel-1 C-band radar backscattering coefficient and soil moisture for the 
MinQin station. (a) and (c) denote the original σVV and σVH, and (b) and (d) denote σVV and σVH after incidence 
angle correction.

Fig. 11  Comparison of station-based soil moisture and retrieved soil moisture from the Sentinal-1 C-band 
radar backscattering coefficient after correcting the incidence angle and vegetation for the GuYuan station.  
(a) VV polarization, (b) VH polarization.
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Temporal and spatial changes in station-based soil moisture and soil temperature.  The 
SONTE-China data are distributed across different climatic zones and land cover types in China. According to 
the geographical location and land cover type, six stations (Guyuan, Minqin, Xitianshan, Qianyanzhou, Naqu 
and Jingyuetan) were selected to analyse the temporal and spatial changes in soil moisture and soil temperature 
(Fig. 7). There was strong seasonality for the multilayer soil temperature observed at six representative stations. 
The soil temperature is high in summer and low in winter, and the seasonality of a single site over the years is 
basically stable. This result is consistent for multiple soil depths. Taking the soil temperature at depths of 5 cm and 
40 cm at the Jingyuetan site as an example, in summer, the soil temperature at a depth of 5 cm was higher than that 
at a depth of 40 cm; in winter, the opposite was true.

The soil moisture observed at each station showed seasonality (Fig. 7). The soil moisture observed in summer 
is generally higher than that observed in winter. Compared with deep soil moisture, shallow soil moisture has 
a larger amplitude due to the difference in precipitation and evapotranspiration. For example, the soil moisture 
at a depth of 5 cm at the Minqin station has a small number of observations with high variation, which may be 
related to rainfall/artificial irrigation. In addition, the soil moisture value of the station shows an increasing 
trend with soil depth. Notably, Naqu shows the opposite behaviour, and the moisture value of the 5 cm soil sur-
face is the wettest. The main reason is that there is a layer of organic matter in the soil surface of the Naqu site, 
which can maintain water11.

Here, the spatial change in soil temperature and soil moisture was investigated from the observed values of 
the 17 SONTE-China stations at the 0–5 cm soil depth (Fig. 7). In terms of soil temperature, the observed data 
in northern China are generally lower than those in southern China. For example, the median temperature at 
the Hulunbeier site (1.66 °C), a typical site in the north, is the lowest value of the 17 sites, and the median tem-
peratures of Guyuan and Jingyuetan are lower than 5 °C. The median temperature of typical sites in the south 
(such as Guangzhou and Qianyanzhou) is higher than 20 °C, and the median temperature of the Guangzhou 
site (22.41 °C) is the highest. This finding is consistent with the typical characteristics of the soil temperature 
distribution in the middle and high latitudes of the Northern Hemisphere, and the soil temperature decreases 
with increasing latitude. In addition, Haibei and Naqu have lower median temperatures, which are 3.22 °C and 
3.48 °C, respectively. The two sites are located on the QTP at high altitudes. Topographic elevation becomes the 
main factor affecting soil temperature.

In terms of soil moisture, the southern site is generally wetter, and the northern site is relatively drier (Fig. 8).  
For example, the highest value of median soil moisture at 17 sites appears at the Nanjing site (0.53 m3/m3), 
and the median soil moisture of Hefei and Dongtinghu at typical southern sites is also high, at 0.42 m3/m3 and 
0.37 m3/m3, respectively. The minimum value of median soil moisture appears in the typical northern site of 
Minqin, with a value of 0.05 m3/m3. The median soil moisture values of Guyuan (0.15 m3/m3) and Xilinhaote 
(0.16 m3/m3) are also low. This finding is consistent with the characteristics of dry and wet climate zones in 
China. Notably, Minqin belongs to a temperate continental arid climate area with less precipitation and a dry 
climate. The annual soil moisture difference in Minqin is only 0.07 m3/m3.

Applications for radar soil moisture inversion.  Radar remote sensing is usually used for soil moisture 
estimation because of its sensitivity to soil moisture and penetration of vegetation canopies. By analysing the 
correlation between the measured soil moisture and Sentinel-1 radar backscattering coefficient, on the one hand, 
the effectiveness of SONTE-China at obtaining soil moisture is observed; on the other hand, the feasibility of esti-
mating surface soil moisture using radar data is observed. Here, the station-based soil moisture of the 0–5 cm soil 
depth at the GuYuan site (July 2018 to July 2021) and the MinQin site (June 2019 to August 2021) are considered 
to be representative application cases. Figures 9, 10 show the correlation between radar signals and station-based 
soil moisture at the GuYuan station and MinQin station.

At the GuYuan station, the original radar signal has a good correlation with the measured soil moisture 
(R2 = 0.62) under VV polarization. The correlation between the radar signal after angle correction and the meas-
ured soil moisture (R2 = 0.66) is further improved. The correlation between radar signals after angle correction 

Fig. 12  Comparison of station-based soil moisture and retrieved soil moisture from the Sentinel-1 C-band 
radar backscattering coefficient after correcting the incidence angle for the MinQin station. (a) VV polarization, 
(b) VH polarization.

https://doi.org/10.1038/s41597-023-02234-8


1 2

www.nature.com/scientificdata

Scientific Data | (2023) 10:424 | https://doi.org/10.1038/s41597-023-02234-8

www.nature.com/scientificdata/

and vegetation correction and measured soil moisture is better than that with only angle correction, and R2 is 
0.67. The correlation between the original radar signal and the measured soil moisture under VH polarization 
(R2 = 0.45) is good overall but slightly worse than that under VV polarization. The correlation between the 
angle-corrected radar signals and soil moisture was not significantly improved, nor was the correlation between 
the angle-corrected and vegetation-corrected radar signals and soil moisture.

Compared with the GuYuan station, the correlation between soil moisture and the radar signal at the MinQin 
station is poor, with R2 values of 0.23 and 0.11 under VV and VH polarizations, respectively. The MinQin station 
has a continental desert climate, and its sand content reaches 87.94%. The water holding capacity of the soil is 
poor. The relatively low variation range of soil moisture at the MinQin station results in the same small response 
range of the corresponding radar signal. The effect of the vegetation canopy on the radar signal at MinQin 
Station can be ignored, so the W-C model is not used to remove the vegetation effect at this station. The corre-
lation between the radar signal and soil moisture was further improved after correction of the incident angle 
effect, and the R2 values of VV and VH polarizations were 0.28 and 0.13, respectively.

Based on the fitting relationship between the corrected radar signal and station-based soil moisture 
(Figs. 9c,f, 10b,d), soil moisture can be computed. The comparison of station-based and computed soil mois-
ture is given in Figs. 11, 12. A strong correlation was found for both VV and VH polarizations at the Guyuan 
station; the R2 values under VV and VH polarizations were 0.69 and 0.54, respectively, and the RMSE values 
were 0.04 m3/m3 and 0.05 m3/m3, respectively. At the Minqin station, the inversion and measured values of soil 
moisture have lower RMSEs, which are 0.01 m3/m3 under VV and VH polarizations.

Code availability
MATLAB scripts that implement normalization of incidence angle effect, vegetation removal, soil moisture 
inversion, and mapping are available at (https://figshare.com/articles/online_resource/Example_of_sm_
inversion_zip/21376089). Further questions can be directed towards Chunmei Wang (wangcm@ aircas.ac.cn)
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