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a compendium of bacterial and 
archaeal single-cell amplified 
genomes from oxygen deficient 
marine waters
Julia anstett  1,2,18, Alvaro M. Plominsky  2,17,18, Edward F. DeLong3, Alyse Kiesser4, 
Klaus Jürgens5, Connor Morgan-Lang6, Ramunas Stepanauskas  7, Frank J. Stewart8,9,10, 
Osvaldo Ulloa  11,12, Tanja Woyke  13,14, Rex Malmstrom  13,14 & Steven J. Hallam  1,2,6,15,16 ✉

Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine 
zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic 
microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs 
and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace 
gas production and consumption. Global warming is causing oxygen-deficient waters to expand and 
intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are 
necessary to both monitor and model the impacts of climate change on marine ecosystem functions and 
services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine 
environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs 
have been sequenced to different levels of completion, providing a strain-resolved perspective on the 
genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical 
clustering confirmed that samples from similar oxygen concentrations and geographic regions also 
had analogous taxonomic compositions, providing a coherent framework for comparative community 
analysis.

Background & Summary
Oxygen deficient zones are common oceanographic features (Fig. 1) arising when microbial respiratory oxygen 
demand during breakdown of organic matter exceeds oxygen availability. These waters are operationally defined 
based on oxygen conditions ranging from dysoxic (20–90 μM), suboxic (1–20 μM), anoxic (less than 1 μM) 
or anoxic sulfidic (no detectable oxygen)1,2. Oceanic midwater oxygen minimum zones (OMZs) such as the 
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North Pacific subtropical gyre present dysoxic conditions capable of supporting anaerobic metabolism through 
microbial remineralization of sinking particulate organic matter3 (Fig. 1a). Low oxygen coastal and open ocean 
OMZs such as the Northeastern Subarctic Pacific (NESAP) present suboxic conditions encompassing the redox 
transition for nitrate (NO3−) reduction (Fig. 1a). Anoxic marine zones (AMZs) are further differentiated by 
nitrite (NO2−) accumulation with or without sulfide accumulation (sulfidic bottom waters and open ocean 

Fig. 1 Oxygen minimum zone (OMZ) and anoxic marine zone (AMZ) geochemical profiles and global 
map of sampling locations. (a) The different geochemical profiles of oxygen-deficient marine waters are 
schematized (modified from Ulloa et al., 2012)4. Solid lines represent observed data, while the dashed line 
represent a sporadic accumulation event. (b) OMZ and AMZ sampling locations for single-cell amplified 
genomes (SAGs) are indicated. The total number (white) and sequenced (black) SAGs obtained from each 
location are denoted with a circle proportional to the corresponding number of samples in the dataset. The 
Ocean is coloured according to the lowest mean statistical value for the oxygen concentration reported for each 
1° and 5° grid in the 2018 annual NOAA World Ocean Atlas119, with white grids indicating locations where 
oxygen concentration data was unavailable. Sampling sites from oceanic midwaters include the North Pacific 
Subtropical Gyre (NPSG) and the South Atlantic Subtropical Gyre (SASG). Sample sites from low oxygen OMZs 
include the Northeastern Subarctic Pacific (NESAP). Sample sites from AMZs include the Eastern Tropical 
North Pacific Gyre (ETNP) and Eastern Tropical South Pacific Gyre (ETSP). Sites from coastal upwelling 
systems with ephemerally sulfidic bottoms include the Eastern South Pacific Coastal Upwelling (ESPCU) and 
Benguela coastal upwelling (Benguela). Sampling sites from sulfidic bottom basins include Saanich Inlet (SI) 
and the Baltic Sea. Geolocalization coordinates and the number of samples for each location are detailed in 
Table 1.
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or low-oxygen minimum zones (OMZs), respectively)4–6. For example, AMZs in the Eastern Tropical North 
Pacific (ETNP) and Eastern Tropical South Pacific (ETSP) present nanomolar oxygen conditions supporting 
NO3− reduction to NO2− and further reduced nitrogen products without hydrogen sulfide (H2S) accumulation 
(Fig. 1a). In contrast, coastal upwelling systems such as Benguela upwelling off the coast of Namibia present epi-
sodic shifts in oxygen deficiency, supporting the emergence of transient sulfidic plumes (Fig. 1a). Anoxic sulfidic 
conditions are also present in coastal fjords, such as the Saanich Inlet (SI), where glacial sills restrict water mass 
circulation. Sulfidic bottom conditions are also observed in marginal seas, such as the Baltic Sea (Fig. 1a).

Different geochemical profiles within OMZs and AMZs create ecothermodynamic gradients7 driving cou-
pled biogeochemical cycling of carbon, nitrogen and sulphur by cosmopolitan and endemic microorganisms 
adapted for life under low oxygen conditions (reviewed in2–4,8). Understanding how these metabolic inter-
actions contribute to nitrogen loss and climate active trace gas production is a critical challenge9–12. Global 
warming exacerbates water column oxygen deficiency through thermal stratification and changes in water mass 
circulation, resulting in OMZ and AMZ expansion and intensification13–15. Other factors, including excessive 
nutrient inputs (eutrophication), also contribute to coastal and marginal sea oxygen deficiency15–18. Efforts to 
model coupled biogeochemical cycles within OMZs and AMZs using both gene-centric and genome-resolved 
metagenomic approaches have identified key microbial populations that would benefit directly from availability 
of improved genome assemblies with increased taxonomic resolution19,20.

Cultivation-independent whole genome shotgun sequencing provides direct insights into microbial commu-
nity structure and function in natural and engineered environments21–27. As sequencing technologies improve, 
it becomes possible to assemble genomes from metagenomes with increasing taxonomic resolution20. However, 
despite an expanding reliance on metagenome-assembled genomes (MAGs), several challenges remain, includ-
ing resolving population microheterogeneity28, incomplete or chimeric genome assemblies (resulting from 
either assembly or binning), coverage bias, and limited availability of taxonomically characterized reference 
genomes for cross-validation29–31. Advances in fluorescence-activated cell sorting (FACS) and sequencing tech-
nologies enable study of uncultivated microorganisms at the individual cell level, providing more accurate tax-
onomic labels and associated mobile genetic elements (MGEs)32–38. Resulting single-cell amplified genomes 
(SAGs) and MGEs have been used to illuminate coding potential of “microbial dark matter”39, provide accurate 
linkages between taxonomy and function underlying biogeochemical cycles20,21,30,40, and to evaluate genome 
streamlining41, fine scale population structure28,37,42 and virus-host dynamics43. Recent release of the Global 
Ocean Reference Genomes Tropics, or GORG-Tropics provides a valuable compendium of taxonomically 
defined SAGs containing >12,000 partial genome sequences from tropical and subtropical euphotic ocean 
waters44. Although a small subset of GORG-Tropics SAGs were collected from ‘oceanic midwater low oxygen’ 
waters (2,136 of 20,288 sequenced SAGs)44, oxygen-deficient marine waters remain conspicuously underrepre-
sented, considering their substantial biogeochemical impact on marine ecosystem functions and services.

Here, we present a global compendium of bacterial and archaeal SAGs from OMZs and AMZs. This compen-
dium contains 5,129 taxonomically identified SAGs derived using a combination of targeted and untargeted cell 
sorting methods, and isolated from environments covering the full range of geochemical profiles associated with 
extant, oxygen-deficient marine waters4 (Fig. 1). Currently, 3,570 of these SAGs have been sequenced, assembled 
and decontaminated, based on established genomic standards45 (Fig. 2, S1a-c). Sequenced and assembled SAGs 
were processed through the Microbial Genome Annotation Pipeline46 for gene prediction and functional anno-
tation, and are available through the Integrated Microbial Genome platform (IMG; https://img.jgi.doe.gov/)47 
or IMG/ProPortal (https://img.jgi.doe.gov/proportal). The collection of SAG sequences provides an invaluable 
resource to infer metabolic traits, resolve population structures, and assess spatial and temporal trends of rele-
vant taxonomic lineages within OMZ and AMZ microbiomes.

Methods
Sample collection and cryopreservation. Approximately 1–2 mL seawater samples were collected in 
duplicate or triplicate during various oceanographic cruises within different OMZs and anoxic waters (Fig. 1 and 
Table 1). Samples were placed in sterile cryovials and amended with one of the following cryoprotectants: glycine 
betaine (6% [v/v] final concentration39,48), glycerol (10% [v/v] final concentration28,49), or glycerol-TE buffer39,50. 
Environmental seawater collection was performed using a Niskin-bottle rosette, or a Pump Profiling System 
for the NBP13-05 cruise (ETSP; R/V Nathaniel B. Palmer, July 5–7th, 2013), equipped with a conductivity-tem-
perature-depth profiler, dissolved O2 sensor, fluorometer and transmissometer. A modified sample collection 
protocol was used during the BiG RAPA cruise (ETSP, off the coast of Chile, November 19th 2010, 55 m depth) 
which was first enriched on-deck selecting for chlorophyll-containing microorganisms51. Triplicate samples were 
passed through a 60 μm size mesh and sorted through an InfluxTM (BD Biosciences) flow cytometer system. 
Approximately 4,000 cells were sorted into 1 mL of sterile glycerol-TE buffer. Sorting was triggered based on the 
pigment content of particles in the red emission channel (excited by the 488 laser), using forward scattered light 
as a proxy for particle size. All samples were cryopreserved in liquid nitrogen and then stored at −80 °C, before 
being processed for single-cell amplified genome generation.

Microbial isolation and Single-cell Amplified Genome (SAG) generation. Samples were thawed 
and microbial cells sorted at the Bigelow Laboratory for Ocean Sciences’ Single Cell Genomics Center (SCGC) or 
the Joint Genome Institute (JGI). Samples were passed through a sterile 40 μm size mesh before microorganisms 
were sorted by either a non-targeted isolation procedure or specific selection for cyanobacteria. For non-target 
isolation, the microbial particles were labelled with a 5 μM final concentration of the DNA stain SYTO-9 (Thermo 
Fisher Scientific). Microbial cells were individually sorted using a MoFloTM (Beckman Coulter) or an InFluxTM 
(BD Biosciences) flow cytometer system equipped with a 488 nm laser for excitation and a 70 μm nozzle orifice52. 
The gates for the untargeted isolation of microbial cells stained with SYTO-9 were defined based on the green 
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fluorescence of particles as a proxy for nucleic acid content, and side scattered light as a proxy for particle size. 
For isolation of cyanobacterial cells, gates were defined based on autofluorescence in the red emission channel. 
An improved discrimination of cyanobacterial cells from detrital particles was performed based on the ratio of 
green (SYTO-9 DNA label) versus red (chlorophyll content) fluorescence. The cytometer was triggered on the 
side-scatter using the “single-1 drop” mode. All microbial single-cells were sorted into 384-well plates containing 
600 nL of 1X TE buffer per well and then stored at −80 °C until further processed. A subset of microbial cells, that 
generated the SAGs identified with the ‘AAA001’ prefix (part of the SAGs collected at the SASG, 800 m depth), 
were sorted into ‘prepGEMTM Bacteria reaction mix’ (ZyGEM)48. For samples processed in the Bigelow Single 
Cell Genomics Center, 64 of the 384-wells on each plate were used as negative controls (no droplet deposition), 
and 3 wells received 10 cells each to serve as positive controls.

The microbial single-cells sorted into TE buffer were lysed as described previously by adding either cold 
KOH53, or 700 nl of a lysis buffer consisting of 0.4 mM KOH, 10 mM EDTA and 100 mM dithiothreitol52. 
Samples were incubated for 10 min at either 4 or 20 °C for samples lysed with cold KOH or lysis buffer, respec-
tively. Microbial cells sorted into ‘prepGEMTM Bacteria reaction mix’ were first lysed following the manufactur-
er’s instructions and then processed through the cold KOH lysis procedure48. The microbial nucleic acids were 
then whole genome amplified in individual wells through either through traditional Phi29-mediated “Legacy 
Multiple Displacement Amplification” (L-MDA39,53) or using a more thermostable Phi29 polymerase via “Whole 
Genome Amplification-X” (WGA-X52). The products of this procedure are here referred to as SAGs.

Taxonomic identification of SAGs. While WGA-X generated single-cell genome amplification 
products were not taxonomically pre-screened, nearly all SAGs processed using L-MDA with the non ther-
mostable polymerase were taxonomically identified by sequencing small subunit ribosomal RNA (SSU or 
16 S rRNA) gene amplicons. Both bacterial (27-F: 5′- AGAGTTTGATCMTGGCTCAG -3′54, 907-R: 5′- 
CCGTCAATTCMTTTRAGTTT -3′55) and archaeal primers (Arc_344F: 5′- ACGGGGYGCAGCAGGCGCGA 
-3′56, Arch_915R: 5′- GTGCTCCCCCGCCAATTCCT -3′57) were used. Real-time PCR and sequencing of the 
resulting amplicons were performed as previously described39,52. Resulting SSU rRNA gene amplicon sequences 
were queried against the SILVA database v138.158 with blastn, from BLAST + v2.9.059. The top blastn hit (i.e. 
highest coverage, bit-score, and identity, as well as lowest e-value) was used as the primary taxonomic classifi-
cation for each pre-screened SAG (Table S1)60. Additionally, SSU rRNA gene amplicon sequences were queried 
against the NCBI-RefSEQ v2021-08-14 database61. Top hits were determined using the same criteria described 
above, and denoted here as the secondary taxonomic assignments of the SAGs (Table S1)60. Sequences denoted as 
“Unclassified” had no significant sequence homology to any of the references within these databases (Table S1)60.

Two methods were used to assign taxonomy to the SAGs. Initially, taxonomic assignments for SAGs gener-
ated through L-MDA were conducted by extracting SSU rRNA gene sequences directly from the whole genome 
assemblies, or from the amplicons described above. For all SAGs generated through the WGA-X procedure that 
were not screened for any phylogenetic marker prior to genome sequencing, a search was conducted to identify 

Fig. 2 Overview of the workflow for processing and generating microbial Single-cell Amplified Genomes 
(SAGs). A more detailed scheme is presented in the supplementary information (Supplemental Figure S1-S3) 
(modified from Rinke et al., 2013)50.
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SSU rRNA gene sequences > 500 bp within the genome assembly (Supplemental Figure S2). This search was per-
formed through the Integrated Microbial Genomes & Microbiome system (IMG/M, https://img.jgi.doe.gov/m/)
based on its gene prediction and annotation pipeline (see below)45,46. Additionally, SSU rRNA sequences were 
recovered from a subset of SAG assemblies with the Recovering ribosomal RNA gene sequences workflow with 
Anvi’o v7.062. These SSU rRNA gene sequences were processed as described above to assign taxonomy (Table 
S1)60. Because 1,281 SAGs did not provide sufficient SSU rRNA gene sequence information (Table S2)60, all 
SAG assemblies were also processed through the Genome Taxonomy Database Tool Kit GTDB-Tk v2.1.063–70 
with GTDB R07-R207_v271–73 reference data for multi-locus taxonomic assignment. This allowed for taxonomic 
identification of SAGs missing SSU rRNA gene sequences, and offered an additional reference compared to those 
assigned by partial or complete phylogenetic marker sequences. The number of taxonomic assignments that 
were generated using both methods are detailed in Table S360, with the assignments being available in Table S160.

Region Depth Month Year Site_ID Lat Long
Total 
SAGs

Sequenced 
SAGs Reference

Baltic 104.3 Nov 2011 Baltic_104.3_Nov_2011 57.318 20.0511 114 29 This Study

Baltic 109.1 Nov 2011 Baltic_109.1_Nov_2011 57.318 20.0511 110 34 This Study

Baltic 129.1 Nov 2011 Baltic_129.1_Nov_2011 57.318 20.0511 114 20 This Study

Benguela 91 May 2015 Benguela_91_May_2015 −22.3933 14.03183 76 54 109

ESPCU_1 80 Mar 2015 ESPCU_1_80_Mar_2015 −36.45 −73 93 64 51,88,109–113

ETNP 100 Jun 2013 ETNP_100_Jun_2013 18.9 −104.5 57 19 51,88,109–113

ETNP 125 Jun 2013 ETNP_125_Jun_2013 18.9 −104.5 31 15 51,88,109–113

ETNP 150 Jun 2013 ETNP_150_Jun_2013 18.9 −104.5 26 6 51,88,109–113

ETNP 300 Jun 2013 ETNP_300_Jun_2013 18.9 −104.5 66 25 51,88,109–113

ETNP 60 Jun 2013 ETNP_60_2013 18.9 −104.5 5 1 51,88,109–113

ETSP_1 20 Nov 2010 ETSP_1_20_Nov_2010 −20.08 −70.8 259 237 51,88,114,115

ETSP_1 53 Nov 2010 ETSP_1_53_Nov_2010 −20.083 −70.8 84 45 51,88,114,115

ETSP_1 55 Nov 2010 ETSP_1_55_Nov_2010 −20.08 −70.8 323 323 44,49

ETSP_2 115 Jul 2013 ETSP_2_115_Jul_2013 −12.998 −82.199 23 11 51,115

ETSP_2 250 Jul 2013 ETSP_2_250_Jul_2013 −12.998 −82.199 52 13 51

ETSP_2 405 Jul 2013 ETSP_2_405_Jul_2013 −12.998 −82.199 73 13 51,115

ETSP_3 112 Nov 2010 ETSP_3_112_Nov_2010 −23.46 −88.77 311 310 44,49

ETSP_3 14 Nov 2010 ETSP_3_14_Nov_2010 −23.46 −88.77 328 325 44,49

ETSP_4 14 Dec 2010 ETSP_4_14_Dec_2010 −26.25 −103.96 311 307 44,49

ETSP_4 180 Dec 2010 ETSP_4_180_Dec_2010 −26.25 −103.96 316 315 44,49

NESAP 1000 Jun 2010 NESAP_1000_Jun_2010 50 −145 66 65 This Study

NESAP 3000 Jun 2010 NESAP_3000_Jun_2010 50 −145 35 28 This Study

NPSG 100 Nov 2009 NPSG_100_Nov_2009 22.75 −158 276 272 44,49

NPSG 1000 May 2016 NPSG_1000_May_2016 22.75 −158 16 16 116

NPSG 125 Dec 2015 NPSG_125_Dec_2015 22.75 −158 53 53 116

NPSG 200 Dec 2015 NPSG_200_Dec_2015 22.75 −158 21 21 116

NPSG 200 Sep 2009 NPSG_200_Sep_2009 22.75 −158 3 3 48,50

NPSG 25 Dec 2015 NPSG_25_Dec_2015 22.75 −158 46 46 116

NPSG 25 Sep 2009 NPSG_25_Sep_2009 22.75 −158 147 10 48,50

NPSG 3000 Sep 2009 NPSG_3000_Sep_2009 22.75 −158 6 6 48,50

NPSG 4000 May 2016 NPSG_4000_May_2016 22.75 −158 38 38 116

NPSG 4800 Sep 2009 NPSG_4800_Sep_2009 22.75 −158 10 10 48,50

NPSG 5 Aug 2009 NPSG_5_Aug_2009 22.75 −158 302 299 44,49

NPSG 500 Dec 2015 NPSG_500_Dec_2015 22.75 −158 33 33 116

NPSG 60 Jan 2009 NPSG_60_Jan_2009 22.75 −158 13 13 42

NPSG 60 Jul 2009 NPSG_60_Jul_2009 22.75 −158 5 5 42

NPSG 750 May 2016 NPSG_750_May_2016 22.75 −158 41 41 116

NPSG 770 Sep 2009 NPSG_770_Sep_2009 22.75 −158 245 32 48,50

SASG 10 Nov 2007 SASG_10_Nov_2007 −12.4948 −4.99867 89 5 40,48,117

SASG 800 Nov 2007 SASG_800_Nov_2007 −12.4948 −4.99867 258 32 40,48,117

SI 100 Aug 2011 SI_100_Aug_2011 48.59167 −123.505 248 149 7,78,118

SI 150 Aug 2011 SI_150_Aug_2011 48.59167 −123.505 186 116 7,78,118

SI 185 Aug 2011 SI_185_Aug_2011 48.59167 −123.505 220 111 7,78,118

Table 1. Number of SAGs generated and sequenced for each sampling location (per depth). References 
shown here point to articles where the SAGs have been studied and/or those offering further sampling and 
environmental contextual data for these SAGs, as well as cognate metagenomes and/or metatranscriptomes.
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Genome sequencing, de novo assemblies and decontamination. SAGs were sequenced as 
described previously39,52, and their reads assembled into contigs using SPAdes v2.2.10 to v3.10.074. Contigs of 
<2,000 bp were removed from SAG assemblies. Completeness and contamination levels of SAG assemblies were 
then determined using CheckM v1.2.175. To comply with established genomic standards45, assemblies exceeding 
5% estimated contamination were run through ProDeGe v2.2 to v2.376 to eliminate the conflicting contigs until 
there was no improvement in their contamination estimates. The contamination and completeness levels for 
these SAGs were then re-evaluated using CheckM v1.2.175 and those that still exceeded 5% contamination were 
manually decontaminated through the Metagenomics Workflow and Refining MAG bin workflows available in 
Anvi’o v562.

Manual decontamination of Saanich inlet SAGs. A total of 14 SAGs exceeded 5% contamination after 
being processed through the ProDeGe decontamination pipeline76 and short-contig trimming (Table S5)60. These 
SAGs were manually decontaminated with Anvi’o v5 using the Metagenomics Workflow and Refining MAG 
bin workflows62. A contig database and the corresponding Hidden Markov Model for each database was gen-
erated for each of these SAGs. The taxonomy for each gene was then assigned using the Centrifuge Database77. 
Additional manual curation of these SAGs was carried out using differential coverage of each SAG based on 
metagenomic reads from Saanich Inlet metagenomes (August 2011 100 m, 150 m, and 2012 100 m, 150 m. 
Biosamples SAMN05224439, SAMN05224444, SAMN05224441, SAMN05224518, BioProject PRJNA247822)78. 
Raw metagenomic reads were mapped with bwa v0.7.17-r118879 and samtools v1.6-19-g1c03df680. Anvi profile 
databases were generated for each SAG by utilizing the contig databases and the read mapping files. Individual 
contigs were manually removed through the interactive interface based on taxonomic identity, average tetranu-
cleotide identity, and low differential coverage. The new assemblies were exported as fasta files and re-assessed 
with CheckM.

SAG quality classification. After CheckM was run on all decontaminated SAG assemblies, the quality of 
each SAG was determined based on Bowers et al. 201745. SAGs that were <50% estimated completeness were con-
sidered low quality SAGs. SAGs that had ≥50% estimated completeness and <10% estimated contamination were 
considered to be at least medium quality. To determine if a SAG was high quality, in addition to having >90% 
estimated completeness and <5% estimated contamination, SAGs need to have 23 S, 16 S, and 5 S rRNA genes 
and at least 18 tRNAs present in the final assembly. To identify and quantify the rRNAs and tRNAs, SAGs were 
passed through Barrnap v0.9 (https://github.com/tseemann/Barrnap)81 and tRNA-SE v2.0.1182 respectively. Any 
SAGs having >90% estimated completeness and <5% estimated contamination but missing one or more rRNA 
genes with at least 18 tRNAs were classified as medium quality. The rRNA and tRNA counts, as well as Quality 
classifications for each SAG can be found Table S160.

Genome annotation. All genome assemblies were annotated through the Joint Genome Institute’s IMG plat-
form and annotated using the JGI Microbial Genome Annotation Pipeline46. The IMG (https://img.jgi.doe.gov/)  
or IMG/ProPortal (https://img.jgi.doe.gov/proportal) systems host all final assembled and decontaminated SAG 
sequences, with gene calls and functional annotations publicly available through these portals. All IMG accession 
numbers for sequenced SAGs are provided (Table S1)60.

Hierarchical clustering. The recovered SSU rRNA gene amplicon sequences covering the V4-V5 varia-
ble region were clustered at 97% identity using CD-Hit83–85, and assigned identifiers based on a representative 
sequence from each cluster. Based on the taxonomic identity of these representative sequences, the proportion of 
SAGs associated with each cluster was determined on a per sample basis. These proportions were used to calculate 
Bray-Curtis Dissimilarity indices using the vegdist() command in the vegan R package v2.5-786. The samples were 
clustered based on Bray-Curtis dissimilarity, using an average linking method for hierarchical clustering using the 
hclust command in base R and visualized (Fig. 3).

Data Records
File 1: Table S1. OMZ SAG biosamples with associated cruise and geolocation metadata. This file 
contains all Bioproject and Biosample accessions, IMG genome IDs, SRA accessions, Genbank 
accessions, CheckM outputs, GTDB-tk outputs, and SSU rRNA BLAST results can be found in: Table S1_
Metadata-template-Bio-Med-SAGdescriptor-OMZ_April_06_2023.xlsx (10.6084/m9.figshare.20481603)60.

File 2: Table S2. Number of SAGs generated with each DNA amplification method, and how many recovera-
ble SSU rRNA gene sequences were recovered from each dataset. Note that there are some samples that had both 
amplicon and whole genome derived SSU rRNA gene sequences. This information can be found in (10.6084/
m9.figshare.20539005)60 and: https://github.com/hallamlab/OMZ_SAG_Compendium_Figures/blob/main/
Outputs/Table_S2_Summary_Table_WGA_Approach_Mar_21_2023.csv

File 3: Table S3. Number of SAGs that were assigned a taxonomy with SILVA v138.1 and GTDB-tk v2.1.0 
and their summary CheckM % completeness and % contamination estimates. This information can be found in 
(10.6084/m9.figshare.20539056)60 and: https://github.com/hallamlab/OMZ_SAG_Compendium_Figures/blob/
main/Outputs/Table_S3_QA_QC_Summary_Mar_21_2023.csv

File 4: Table S4. Primary and secondary contact for each 384 microwell plate that contains the SAGs used in this 
compendium. This information can be found in Table S4_PI_Contact_Info.xlsx (10.6084/m9.figshare.20483595)60.

File 5: A zip-file compressed tar archive containing the genomic assemblies (10.6084/m9.figshare.20459526)60.
fna – Nucleic acid file in multi-fasta format

https://doi.org/10.1038/s41597-023-02222-y
https://github.com/tseemann/Barrnap
https://img.jgi.doe.gov/
https://img.jgi.doe.gov/proportal
https://github.com/hallamlab/OMZ_SAG_Compendium_Figures/blob/main/Outputs/Table_S2_Summary_Table_WGA_Approach_Mar_21_2023.csv
https://github.com/hallamlab/OMZ_SAG_Compendium_Figures/blob/main/Outputs/Table_S2_Summary_Table_WGA_Approach_Mar_21_2023.csv
https://github.com/hallamlab/OMZ_SAG_Compendium_Figures/blob/main/Outputs/Table_S3_QA_QC_Summary_Mar_21_2023.csv
https://github.com/hallamlab/OMZ_SAG_Compendium_Figures/blob/main/Outputs/Table_S3_QA_QC_Summary_Mar_21_2023.csv
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File 6: A zip-file compressed tar archive containing the genomic SSU rRNA gene sequences, and the partial SSU 
rRNA gene amplicon sequences used for taxonomic assignment can be found in (10.6084/m9.figshare.20537919)60.
fna – Nucleic acid file in multi-fasta format

File 7: Table S5. An xlsx file containing the list of SAGs that underwent manual decontamination from Saanich 
Inlet, as well as the depth they originated from. The depths were used to select the metagenome reads used for the 
manual decontamination process. This table can be found in (10.6084/m9.figshare.20538936)60.
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Fig. 3 A SAG-based assessment of microbial composition across OMZs. The dot-plot presents the taxonomic 
designation and proportion of anonymously sorted SAGs sequenced (colored dot) in each taxa at the phylum 
level and Proteobacteria at the class level from each location. Underlying grey dots represent SAGs collected and 
taxonomically screened, but not currently sequenced. Taxonomy was determined by SSU rRNA gene amplicon 
sequences as defined by SILVA v138.1. Dot colour represents environmental oxygen concentrations at time of 
sampling. Sampling locations were clustered according to the similarity of the SAG taxonomic composition 
collected at each location. Clustering scale represents the Bray-Curtis dissimilarity among the microbial 
diversity from each location based on SAG sequence information. Annotation bars denote DNA amplification 
mentod and OMZ type. Location information is colour encoded as shown for DNA amplification method, 
OMZ or AMZ type, and oxygen concentration at time of sampling. Sampling location names, on the tips of the 
dendrogram, are denoted as ‘location_depth (m)_collection month and/or year’. Location acronyms correspond 
to: Saanich Inlet (SI), Northeastern Subarctic Pacific (NESAP), North Pacific Subtropical Gyre (NPSG), Eastern 
Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP), Eastern South Pacific Coastal Upwelling 
(ESPCU), Benguela coastal upwelling (Benguela), South Atlantic Subtropical Gyre (SASG), and the Baltic Sea 
(Baltic).
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technical Validation
Early implementation of SAG workflows involved MDA of anonymously sorted single cells in 384-well plate 
format followed by PCR amplification of selected phylogenetic markers e.g., SSU rRNA gene, to identify SAGs 
of interest for sequencing39. Recent development of WGA-X coupled with low-coverage genome sequencing 
(LoCoS) provides a more economical workflow to identify hundreds of SAGs per sample without potential PCR 
bias52. Targeted methods of sorting based on spectral properties of cells or substrates have also been applied to 
SAG selection and sequencing, including cyanobacteria and cells binding to fluorescently labelled substrates, 
such as cellulose87–89. Although the SSU rRNA gene remains one of the most extensively used phylogenetic 
markers and has well-established and curated databases (e.g. SILVA58), multi-locus phylogenetic assignment 
tools, such as GTDB-Tk63–70 generate equally valid results using more information. For this compendium, 
microbial diversity was assessed using taxonomic labels and abundance information for SAGs sequenced using 
non-targeted cell-sorting approaches. However, not all SAGs had a match for their SSU rRNA gene taxonomy 
due to either their amplicon sequences being too short (188 L-MDA SAGs with < 500 bp amplicons; Table S2) 
or no SSU rRNA gene was recovered from the random genome amplification (i.e. 1,093 WGA-X SAGs; Table 
S2). Thus, an additional taxonomic classifier was run for all SAGs, based on whole-genome assignment using 
GTDB-Tk63–70. Both sets of classifications are in Table S1. Hierarchical clustering (of 3,217 SAGs that contained 
an assignable V4-V5 SSU rRNA gene amplicon sequence) revealed a higher similarity among those from depths 
and geographic locations with similar oxygen conditions (Fig. 3), a result consistent with prior observations2–4,8. 
It should also be noted that many of the SAGs amplified with the WGS-X method originated from highly oxy-
genated samples, which had similar taxonomic compositions and therefore clustered together. Based on this 
information, the OMZ and AMZ SAG sequences presented here should serve to complement previous SAG 
collections obtained from (oxygenated) euphotic ocean waters44,49.

Usage Notes
This compendium is intended to fill a critical gap in taxonomically labelled reference genomes from marine 
oxygen-deficient waters. Included SAG sequences were processed using well-established assembly and decon-
tamination workflows. However, links to the raw data are also available for users interested in using future 
software versions or implementing alternative workflows. Any approach should aim to discern contaminating 
sequences associated with FACS (co-sorting two or more cells into a single well, environmental DNA contam-
ination) and WGA (reagent contamination)90. It is important to emphasize that SAG sequences often contain 
MGEs, including plasmids and viruses43,91–93. These sequences are typically filtered out during the decontamina-
tion process, although differentiating between endogenous chromosomal intervals such as islands or prophage 
from MGEs requires careful manual curation. Users interested in MGEs are encouraged to work with the 
raw data or initial assemblies prior to decontamination. Note that genome assembly contamination estimates 
obtained by CheckM should be handled with caution, as this tool is prone to both over and under estimating 
completeness and contamination94. As described above, recent advances in MDA using WGA-X have led to 
improved SAG completion and the adoption of LoCoS has obviated the need for SSU rRNA gene amplicon 
screening to select SAGs of interest for sequencing52. The sequences included in this compendium include both 
older and more contemporary SAG sequencing approaches. The results are integrated by presenting SSU rRNA 
gene and multi-locus taxonomic assignments based on SILVA, NCBI, and GTDB.

Despite improvements introduced with WGA-X52, single-cell genomics invariably results in incomplete 
genome assemblies (Fig. 4, Supplemental Figure S4). This limitation can be overcome in part when multiple 
SAGs sharing extremely high levels of nucleotide identity are obtained from the same sample. Such closely 
related sequences can be analysed together, enabling more complete metabolic reconstruction7,33,42,51, or used 
to generate combined assemblies50,95. In addition, population-level genomes can be obtained through hybrid 
assemblies combining SAG sequences and metagenomic sequences96,97. In all cases, SAG contigs should be 
quality filtered to eliminate the presence of contaminating sequences and comply with established genomic 
standards45. All SAG assemblies reported here were thoroughly decontaminated, reaching <5% contamination 
for all except four SAGs (that only had between 5–10% contamination; Fig. 4, Supplemental Figure S4, Table S2).

Many SAGs included in this compendium have not been sequenced, and the DNA remains in storage. Users 
are encouraged to identify underrepresented microorganisms from OMZ and AMZ microbiomes based on the 
provided taxonomic information that can be prioritized for sequencing and shared with the user community. At 
the same time, we recognize that there are also underrepresented OMZ and AMZ environments not included in 
this compendium. Sequences from the Black Sea, South China Sea, Arabian Sea and Bay of Bengal, among oth-
ers, would provide a more robust representation of oxygen-deficient marine waters for use in comparative stud-
ies and modelling efforts. Finally, the SAG sequences included in this compendium can be used as taxonomically 
characterized reference genomes to recruit metagenomic data sets from marine environments, improve pathway 
prediction methods29,98–106 or expand reference packages for gene-centric analysis of functional markers107.

Code availability
The scripts used to calculate the number of SAGs, the Bray-Curtis Dissimilarity Matrix, conduct the hierarchical 
cluster, and generate the Figs. 1b, 3, 4, Supplemental Figures S4–S8 written under R version 4.1.3. These scripts 
utilize the following R packages: tidyverse, egg, vegan, dendexted, sf, rnaturalearth, and rnaturalearthdata will 
produce the tables and figures presented in this paper. Direct link to relevant software and specifications can 
be found online at the Hallam Lab Github repository https://github.com/hallamlab/OMZ_SAG_Compendium_
Figures.

https://doi.org/10.1038/s41597-023-02222-y
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Additional software used, including version numbers, adjustable variables and other parameters include the 
following:

Trimmomatic 0.35108: -phred33 LEADING:0 TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:36
 ILLUMINACLIP:Trimmomatic-0.35108: /adapters/TruSeq. 3-PE.fa:2:3:10 LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:36
SPAdes 3.0.0-3.1074: --careful--sc--phred-offset 33
ProDeGe v2.3.076

CheckM v1.2.175: checkm lineage_wf --tab_table -x.fna --threads 8 --pplacer_threads 8
CheckM v1.2.175: checkm qa -o 2 --tab_table
GTDB-Tk v2.1.063–70: gtdbtk classify_wf --genome_dir --out_dir -x.fna --cpus 8
 Nucleotide-Nucleotide BLAST 2.9.0+59: blastn -query -db -outfmt “6 qacc sacc stitle staxid pident bitscore” -max_
target_seqs. 1 -num_threads 4 -out
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Fig. 4 CheckM completeness and contamination estimates of sequenced SAGs for all sequenced SAGs with 
the point size representing the assembly length in Megabase Pairs (MBP). Of these, the solid line represents the 
estimated completeness and contamination threshold for medium quality SAGs (> = 50% Completeness, <10% 
Contamination) and the dashed line represents the threshold for high quality SAGs (>90% Completeness, 
<5% Contamination)45. Plots are coloured based on (a) region, (b) OMZ ecotype, (c) depth, (d) environmental 
oxygen concentration level, (e) DNA amplification method, and (f) taxonomic group (class level for 
Proteobacteria, phylum level for other taxa) as defined by SILVA v138.1. Note that SAGs >5% estimated 
contamination have been excluded from this figure.
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 Nucleotide-Nucleotide BLAST 2.9.0+59: blastn -query -db -outfmt “6 qacc stitle pident bitscore” -max_target_seqs. 
1 -num_threads 4 -out
Anvi’o v562: anvi-gen-contigs-database -f -o -n
Anvi’o v562: anvi-run-hmms -c
Anvi’o v562: anvi-get-sequences-for-gene-calls -c -o
Anvi’o v562: $CENTRIFUGE_BASE/p + h + v/p + h + v gene-calls.fa -S centrifuge_hits.tsv
Anvi’o v562: anvi-import-taxonomy-for-genes -c -p
BWA v 0.7.17-r118879:bwa index
BWA v 0.7.17-r118879:bwa mem
Samtools v 1.6-19-g1c03df6 (using htslib 1.6-55-gb065a60)80: samtools view -b F 4
Samtools v 1.6-19-g1c03df6 (using htslib 1.6-55-gb065a60)80: samtools index file.sorted.bam
Anvi’o v562: anvi-profile -i -c --min-contig-length 2000 --output.dir --cluster-contigs
Anvi’o v562: anvi-merge path_to_profile1/PROFILE.db path_to_profile2/PROFILE.db -o --skip-concoct-binning
Anvi’o v562: anvi-interactive -p
Anvi’o v562: anvi-summarize -c -p -C
Anvi’o v762: anvi-gen-contigs-database -f -o
Anvi’o v762: anvi-run-hmms -c --num-threads 8
Anvi’o v762: anvi-get-sequences-for-hmm-hits
 barrnap81: barrnap --kingdom bac --threads {threads} --outseq {working_dir}/barrnap/*rRNA.fasta {input.
fasta_dir}/$g.fasta > {working_dir}/barrnap/$g.rRNA.gff
 barrnap v0.982: barrnap --kingdom arc --threads {threads} --outseq {working_dir}/barrnap/*rRNA.fasta 
{input.fasta_dir}/$g.fasta >{working_dir}/barrnap/$g.rRNA.gff
 tRNAscan-SE v 2.0.1182: tRNAscan-SE -B -o {working_dir}/trnascan/$g.output.txt -m {working_dir}/trnas-
can/$g.stats.txt -b {working_dir}/trnascan/$g.bed -j {working_dir}/trnascan/$g.gff -a {working_dir}/trnas-
can/$g.trna.fasta -l {working_dir}/trnascan/$g.log --thread {threads} {input.fasta_dir}/$g.fasta
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