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Responses of pyramidal cell somata 
and apical dendrites in mouse visual 
cortex over multiple days
Colleen J. Gillon  1,2,3,15, Jérôme A. Lecoq  4,15, Jason E. Pina  5,6, Ruweida ahmed4, 
Yazan N. Billeh  4, Shiella Caldejon4, Peter Groblewski4, Timothy M. Henley  5,6, India Kato4, 
Eric Lee  4, Jennifer Luviano4, Kyla Mace4, Chelsea Nayan4, Thuyanh V. Nguyen4, 
Kat North4, Jed Perkins4, Sam Seid4, Matthew T. Valley4, Ali Williford4, Yoshua Bengio  3,7,8, 
timothy P. Lillicrap9,10, Joel Zylberberg5,6,8,11,15 ✉ & Blake A. Richards  3,8,12,13,14,15 ✉

The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from 
associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally 
recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number 
of theories in computational neuroscience postulate a unique role for apical dendrites in learning. 
However, due to technical challenges in data collection, little data is available for comparing the 
responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected 
through the Allen Institute Mindscope’s OpenScope program that addresses this need. This dataset 
comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of 
visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were 
presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, 
enabling analyses of how their responses change over time. This dataset allows neuroscientists to 
explore the differences between apical and somatic processing and plasticity.

Background & Summary
Pyramidal neurons are the primary excitatory neurons in the neocortex, and are thus of major importance in 
sensation, behaviour, and cognition. Pyramidal neurons have a striking anatomical structure: while their cell 
bodies lie at different depths within the cortex, they each have a long apical dendrite that extends, in many cases, 
up to the cortical surface. The inputs to these apical dendrites are typically from neurons in other downstream 
cortical regions or associative thalamic regions1–3, in contrast to the basal dendrites which lie near the soma 
and are heavily innervated by inputs from nearby neurons within the same cortical region, or from sensory 
subcortical structures like the primary thalamic nuclei1,2. Moreover, there are profound physiological differences 
between the apical and basal dendrites related to the distribution of ion channel and synaptic receptor types. For 
example, the apical dendrites have more voltage-gated calcium channels that make them more prone to devel-
oping plateau potentials in response to strong synaptic inputs4–6. These anatomical and physiological differences 
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suggest that inputs to the apical versus basal dendrites might serve different computational roles, which has 
motivated the development of many computational models of learning and inference in neocortical circuits7–9.

Despite the strong interest in how apical dendrites contribute to learning and inference, there have, to-date, 
been few experimental datasets that can speak to these myriad theoretical models. This limitation primarily 
arises from the significant challenge of obtaining high-resolution chronic recordings from the apical dendrites 
of multiple cells in awake behaving animals. Their small diameter, e.g. on the order of 1μm, means that there 
is a relatively low signal to noise ratio (SNR) when imaging these cellular processes, and resolving them neces-
sitates a high spatial resolution. Motion artifacts due to the animal’s locomotion, heartbeat, whisking, or other 
movements, add to this challenge. Segmenting microscopy data to identify individual dendritic segments, and 
removing background sources is also a challenge. Finally, all of these challenges conspire to make it difficult to 
identify the same dendritic segments in recordings from the same animal on different days. But, this matching is 
necessary for tracking any changes (due to learning, homeostasis10,11, or other processes) in the signals observed 
at these dendritic segments.

To fill this gap in the range of datasets available, we leveraged the unique capabilities and thorough quality 
control pipeline of the Allen Brain Observatory at the Allen Institute. This enabled us to record from the apical 
dendrites (in cortical layer 1) and somata of pyramidal cells in mouse visual cortex, with the same imaging 
planes recorded over 3 different days (Fig. 1). During these recording sessions, animals were exposed to visual 
stimuli that were either consistent, or inconsistent, with those that they experienced during the week of habitua-
tion they underwent prior to the recording sessions. We presented these stimuli because many of the theories of 
learning in the neocortex postulate a special role for inconsistent stimuli12. By segmenting the data in each plane 
into regions of interest (ROIs), and registering these ROIs across recording days, we were able to identify single 
ROIs that were present in each day’s recording. This enabled us to track the location of individual apical dendrite 
segments or somata over the 3 days. Finally, we repeated these experiments in two different mouse lines: the 
Cux2-CreERT2;Camk2a-tTA;Ai93 line, where L2/3 pyramidal cells expressed the calcium indicator, and the 
Rbp4-Cre_KL100;Camk2a-tTA;Ai93 line, where L5 pyramidal cells expressed the calcium indicator. In addition 
to the neural data, we collected pupil position and diameter, as well as locomotion data during the recordings.

In this report, we provide an overview of the above-described experimental data13 and scripts to perform 
some basic analyses, both of which are freely available. The data format and scripts have all been designed to be 
as easy as possible for other groups to access and use. We hope, and anticipate, that other scientists can expand 
on these analyses, and that this resource will help the community to determine the role of pyramidal cell apical 
dendrites in sensory processing and learning.

Methods
Experimental animals and calcium imaging. The dataset presented in this paper13 was collected as 
part of the Allen Institute Mindscope’s OpenScope initiative14. All animal procedures were approved by the 
Institutional Animal Care and Use Committee (IACUC) at the Allen Institute, under protocol 1801. Two trans-
genic mouse lines (Cux2-CreERT2;Camk2a-tTA;Ai93 and Rbp4-Cre_KL100;Camk2a-tTA;Ai93) were used to 
drive expression of GCaMP6f in layer 2/3 and layer 5 pyramidal neurons, respectively. Mice first underwent 
cranial window surgery, following which they were housed in cages individually and maintained on a reverse 
dark-light cycle with experiments conducted during the dark phase. Mice were then habituated over two weeks 
to head fixation on a running disc, with the visual stimulus presentation being added the second week (see below 
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Fig. 1 (a) Illustration of experimental setup. (b) Example images from the four imaging planes recorded.  
(c) Illustration of the location in the cortical laminae of each imaging plane.
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for detailed descriptions of the visual stimuli). Following habituation, they underwent three 70-minute optical 
imaging sessions within a span of three to six days, with no more than one session occurring per day (Fig. 2a). For 
each mouse, retinotopic mapping was performed under anaesthesia using intrinsic signal imaging (ISI) (for more 
details, see15). This enabled the two-photon calcium imaging recordings to be targeted precisely to the same area 
across mice, namely the retinotopic center of primary visual cortex (VisP). For each mouse, two-photon calcium 
imaging was performed in either the cell body layer for somatic recordings (175 μm depth for layer 2/3 and 375 μm  
depth for layer 5) or in cortical layer 1 for distal apical dendritic recordings (50–75 μm depth for layer 2/3 and 
20 μm depth for layer 5) across all optical imaging sessions. In order to reduce Z-drift during imaging sessions, 
the cranial window pushes gently against the surface of the brain. This leads to slight compression of the brain, 
and is why our L5 somata, for example, were recorded at a shallower depth than might otherwise be expected in 
mouse VisP. 13 mice in total underwent imaging (L2/3-D: n = 3, L2/3-S: n = 3, L5-D: n = 4, L5-S: n = 3) with at 
least three optical imaging sessions recorded in each (see Tables 1, 2). Additional details on the Cre lines, surgery, 
habituation, and quality control can be found in previously published work from the Allen Institute15. In particu-
lar, supplementary figs. 12–19 of reference15 describe in detail the data generation and quality control pipelines. 
Additional details on the recording sessions are provided in the Data Records section.

Data were collected and processed using the Allen Brain Observatory data collection and processing pipelines15.  
Imaging was performed with Nikon A1R MP + two-photon microscopes equipped with 16X Nikon water dip-
ping objectives (N16XLWD-PF). Laser excitation was provided at a wavelength of 910 nm by a Ti:Sapphire 
laser (Chameleon Vision-Coherent). Calcium fluorescence movies were recorded at 30 Hz with resonant scan-
ners over a 400 μm field of view with a resolution of 512 × 512 pixels (see Video 1, deposited on FigShare16). 
Temporal synchronization of calcium imaging, visual stimulation, running disc movement, and infrared pupil 
recordings was achieved by recording all experimental clocks on a single NI PCI-6612 digital IO board at 
100 kHz. Neuronal recordings were motion corrected, and ROI masks of neuronal somata were segmented as 
described previously15.

For recordings in layer 1, ROI masks of neuronal dendrites were segmented using the robust estimation algo-
rithm EXTRACT17,18 (https://github.com/schnitzer-lab/EXTRACT-public), which allows non-somatic shaped 
ROIs to be identified. The parameters used with EXTRACT are described next. First, the motion-corrected 
recordings were high-pass filtered spatially (spatial_highpass_cutoff = 10) and downsampled tem-
porally to 15 Hz (downsample_time_by = 2). The algorithm was set to enable spatially discontinuous den-
dritic segments to be identified as part of single ROIs (dendrite_aware = True). Once putative ROIs had  
been identified, the following inclusion parameters were applied: (1) minimum peak spatial SNR of 2.5 (cell-
find_min_snr = 2.5), (2) minimum temporal SNR of 5 (T_min_snr = 5), and (3) maximum spatial corrup-
tion index of 1.5 (spatial_corrupt_thresh = 1.5). Details of the parameter definitions can be found in 
the EXTRACT GitHub repository18. For all other EXTRACT parameters, the default settings were used.
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Fig. 2 (a) Illustration of experimental timeline. (b) Example segmented calcium images across sessions, one 
from a dendritic plane, one from a somatic plane. (c) Full field examples of tracked ROIs in each of the imaging 
planes across sessions. Colours for each session same as those in a. & b. (d) Close-ups of the tracked ROIs from 
c. (areas indicated by black dotted squares in c.).
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Following segmentation, fluorescence traces for both somatic and dendritic ROIs were extracted, 
neuropil-subtracted, demixed, and converted to ΔF/F traces, as described previously15,19. Together, neuropil 
subtraction and the use of a 180-second (5401 sample) sliding window to calculate rolling baseline fluorescence 
levels (F) for the ΔF/F computation ensured that the ΔF/F traces obtained were robust to potential differences 
in background fluorescence between mice and imaging planes. Finally, any remaining ROIs identified as being 
duplicates or unions, overlapping the motion border or being too noisy (defined as having a mean ΔF/F below 
0 or a median ΔF/F above the mid-range ΔF/F, i.e., the midpoint between the minimum and maximum) were 
rejected. In the somatic layers, 15–224 ROIs per mouse per session were identified and retained for analysis, 
compared to 159–1636 ROIs in the dendritic layers. Lastly, maximum-projection images were obtained for each 
recording, examples of which are shown in Figs. 1b, 2b. Briefly, the motion corrected recordings were down-
sampled to ~4 Hz by averaging together every 8 consecutive frames, following which the maximum value across 
downsampled frames was retained for each pixel. The resulting images were then rescaled to span the full 8-bit 
pixel value range (0–255).

Visual stimulation. During each habituation and imaging session, mice viewed both a Gabor sequence stim-
ulus and a visual flow stimulus. The stimuli were presented consecutively for an equal amount of time and in 
random order. They appeared on a grayscreen background and were projected at 60 Hz on a flat 24-inch monitor 
positioned 10 cm from the right eye. The monitor was rotated and tilted to appear perpendicular to the optic axis 
of the eye, and the stimuli were warped spatially to mimic a spherical projection screen. Whereas habituation 
sessions increased in duration over days from 10 to 60 minutes, optical imaging sessions always lasted 70 minutes, 
comprising 34 minutes of Gabor sequence stimulus and 17 minutes of visual flow stimulus in each direction. Each 
stimulus period was flanked by 1 or 30 seconds of grayscreen for the habituation and optical imaging sessions, 
respectively.

The Gabor sequence stimulus was adapted from a previously published study20. Specifically, it consisted of 
repeating 1.5-second sequences, each comprising five consecutive images (A-B-C-D-G) presented for 300 ms 
each. Whereas G images were uniformly gray, images A, B, C, and D were defined by the locations and sizes of 
the 30 Gabor patches they each comprised. In other words, throughout a session, the locations and sizes of the 
Gabor patches were the same for all A images, but differed between A and B images, etc. Furthermore, these 
locations and sizes were always resampled between mice, as well as between days, such that no two sessions 
comprised the same Gabor sequences, even for the same mouse. The location of each Gabor patch was sampled 
uniformly over the visual field, while its size was sampled uniformly from 10 to 20 visual degrees. Within each 
repeat of the sequence (A-B-C-D-G), the orientations of each of the Gabor patches were sampled randomly from 
a von Mises distribution with a shared mean and a κ (dispersion parameter) of 16. The shared mean orientation 
was randomly selected for each sequence and counterbalanced for all four orientations {0°, 45°, 90°, 135°}. As 
such, although a large range of Gabor patch orientations were viewed during a session, orientations were very 
similar within a single sequence. “Inconsistent” sequences were created by replacing D images with U images in 
the sequence (A-B-C-U-G). U images differed from D images not only because they were defined by a distinct set 
of Gabor patch sizes and locations, but also because the orientations of their Gabor patches were sampled from a 
von Mises distribution with a mean shifted by 90° with respect to the preceding regular images (A-B-C), namely 
from {90°, 135°, 180°, 225°} (Fig. 3a, and Video 2 on FigShare16).

The visual flow stimulus consisted of 105 white squares moving uniformly across the screen at a velocity of 
50 visual degrees per second, with each square being 8 by 8 visual degrees in size. The stimulus was split into 
two consecutive periods ordered randomly, and each defined by the main direction in which the squares were 
moving (rightward or leftward, i.e., in the nasal-to-temporal direction or vice versa, respectively). Inconsistent 
sequences, or flow violations, were created by reversing the direction of flow of a randomly selected 25% of the 
squares for 2–4 seconds at a time, following which they resumed their motion in the main direction of flow 
(Fig. 3b, and Video 3 on FigShare16).

Subject ID Sex Date of Birth (YYYYMMDD) Imaged Cell Type Imaging Plane

408021 M 20180623 L2/3 Pyr somata

411400 F 20180711 L5 Pyr distal apical dendrites

411424 F 20180711 L2/3 Pyr somata

411771 M 20180713 L5 Pyr somata

412933 M 20180718 L2/3 Pyr distal apical dendrites

413663 M 20180721 L2/3 Pyr distal apical dendrites

418779 F 20180820 L5 Pyr somata

420011 F 20180826 L5 Pyr distal apical dendrites

433414 F 20181106 L2/3 Pyr distal apical dendrites

433448 M 20181106 L5 Pyr distal apical dendrites

433451 M 20181106 L5 Pyr distal apical dendrites

433458 M 20181106 L5 Pyr somata

440889 F 20181212 L2/3 Pyr somata

Table 1. List of experimental animals and their attributes.
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Inconsistent sequences, accounting for approximately 7% of the Gabor sequences and 5% of visual flow stim-
ulus time, only occurred on optical imaging days, and not on habituation days. In particular, each 70-minute 
imaging session was broken up into approximately 30 blocks, each comprising 30–90 seconds of consistent 
sequences followed by several seconds of inconsistent sequences (3–6 seconds for Gabor sequence stimulus and 
2–4 seconds for the visual flow stimulus). All durations were sampled randomly and uniformly for each block, 

Subject ID Session ID Imaging Date Depth (μm) # ROIs # Tracked ROIs QC Stimulus Seed

408021 758519303 20180926 175 96 59 passed 30587

408021 759189643 20180927 175 74 59 passed 5730

408021 759660390 20181001 175 107 59 passed 36941

411400 759666166 20181001 20 942 0 failed 11883

411400 759872185 20181002 20 289 0 failed 8005

411400 760269100 20181003 20 524 0 failed 34380

411400 761730740 20181009 20 630 162 passed 44023

411400 762415169 20181011 20 637 162 passed 29259

411400 763646681 20181015 20 597 162 passed 1118

411424 761624763 20181009 175 87 55 passed 997

411424 761944562 20181010 175 90 55 passed 33856

411424 762250376 20181011 175 80 55 passed 23187

411771 760260459 20181003 375 90 47 passed 33767

411771 760659782 20181004 375 70 47 passed 32698

411771 761269197 20181008 375 79 47 passed 17904

412933 763949859 20181016 75 1041 0 failed 44721

412933 764897534 20181017 75 948 0 failed 32579

412933 765427689 20181018 75 836 0 failed 26850

412933 766755831 20181022 50 344 98 passed 39002

412933 767254594 20181023 50 168 98 passed 6698

412933 768807532 20181025 50 250 98 passed 8612

413663 764704289 20181017 50 628 136 passed 12470

413663 765193831 20181018 50 348 136 passed 7038

413663 766502238 20181022 50 512 136 passed 23433

418779 777496949 20181112 375 15 12 passed 32706

418779 778374308 20181113 375 26 12 passed 8114

418779 779152062 20181114 375 29 12 passed 11744

420011 777914830 20181113 20 205 51 passed 20846

420011 778864809 20181114 20 159 51 passed 35159

420011 779650018 20181115 20 182 51 passed 34931

433414 826187862 20190220 75 727 118 passed 303

433414 826773996 20190221 75 300 118 passed 13515

433414 827833392 20190222 75 333 118 passed 32899

433448 826338612 20190220 20 1636 112 passed 38171

433448 826819032 20190221 20 445 112 passed 38273

433448 828816509 20190225 20 496 112 passed 18246

433448 829283315 20190226 20 436 0 passed 17769

433451 823453391 20190215 20 966 353 passed 18665

433451 824434038 20190218 20 1029 353 passed 36

433451 825180479 20190219 20 986 353 passed 7754

433458 826659257 20190221 375 99 70 passed 35969

433458 827300090 20190222 375 87 70 passed 10378

433458 828475005 20190225 375 97 70 passed 10576

433458 829520904 20190227 375 88 0 passed 42270

440889 832883243 20190306 175 224 147 passed 27797

440889 833704570 20190307 175 224 147 passed 16745

440889 834403597 20190308 175 210 147 passed 10210

440889 836968429 20190314 175 205 0 passed 24253

440889 837360280 20190315 175 217 0 failed 19576

440889 838633305 20190318 175 227 0 failed 30582

Table 2. List of imaging sessions and their attributes.
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across multiples of 1.5 seconds for the Gabor sequence stimulus and of 1 second for the visual flow stimulus. See 
the Code Availability section for details on where to find the code to reproduce these stimuli.

Running and pupil tracking. Mice were allowed to run freely on a disc while head-fixed during habituation 
and optical imaging sessions (Fig. 4a, and Video 4 on FigShare16). Running information was collected at 60 Hz 
and converted from disc rotations per running frame to cm/s. The resulting velocities were median-filtered with 
a five-frame kernel size, and any remaining outliers, defined as resulting from a single frame velocity change of at 
least ±50 cm/s, were omitted from analyses.

To track pupil position and diameter during imaging sessions, an infrared LED illuminated the eye ipsilat-
eral to the monitor (right eye), allowing infrared videos to be recorded (Fig. 4b, and Video 5 on FigShare16,21). 
We trained a DeepLabCut model from ~200 manually labelled examples to automatically label points around 
the eye, from which we estimated the pupil diameter and centroid position (~0.01 mm per pixel conversion)22 
(Fig. 4c,d). For the pupil centroid position, data for each label is stored as pupil_position_x, pupil_
position_y, which indicate the horizontal and vertical distances, respectively, in mm from the top-left 

Visual flow stimuli

25% of squares:
Main visual flow:

Main visual flow:

Inconsistent flow:

Consistent flow:

~20 vis. °

b

...

...

A B C D G

A B C U G

s1: θ = 0°

s2: θ = 90°

s10: θ = 135°

sn: θ = 0°
~40 vis. ° 300 ms

Gabor sequencesa

C
on

si
st

en
t

In
co

ns
is

t.

...

Fig. 3 (a) Illustration of the Gabor stimuli presented to the mice. The red box marks the inconsistent 
occurrence of a U image. (b) Illustration of the visual flow stimuli presented to the mice. The red boxes mark 
squares moving in the opposite direction to the main flow.

Fig. 4 (a) Example image of a mouse on a running disc, under the two-photon microscope objective.  
(b) Example image of a mouse pupil. (c) (left) Example of a pupil in which 8 poles have been labelled using 
DeepLabCut to allow pupil position (average position of the 8 poles) and diameter (average length of the  
4 diameters formed by the poles) to be estimated. (right) Inferred pupil ellipse.
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corner of the pupil recording videos. When analysing pupil diameter traces, we omitted outlier frames, defined 
as resulting from a single-frame diameter change of at least 0.05 mm, which usually reflected blinking.

ROI tracking across sessions. To track ROIs across days, we employed a custom-modified version of the 
ROI-matching package developed to track cell bodies across multiple recording days by the Allen Institute for 
Brain Science15. This pipeline implements the enhanced correlation coefficient image registration algorithm to 
align ROI masks, and the graph-theoretic blossom algorithm to optimize the separation and degree of overlap 
between pairwise matches, as well as the number of matches across all provided sessions23. This process produced 
highly plausible matches for the somatic ROIs. However, it provided some implausible matches for the smaller 
and more irregularly shaped dendritic ROIs. For the dendritic ROIs, we therefore further constrained the putative 
matches to those that overlapped by at least 10–20%. Finally, we merged results across all session orderings (e.g., 
1-2-3, 1-3-2, 3-1-2), eliminating any conflicting matches, i.e., non-identical matchings that shared ROIs. In total, 
the modified matching algorithm produced ~100–500 highly plausible matched ROIs per plane, i.e., ~32–75% 
of the theoretical maximum number of trackable ROIs (L2/3-D: n = 254, L2/3-S: n = 261, L5-D: n = 516, L5-S: 
n = 129) (Fig. 2b,c).

Data Records
The full dataset is publicly available in the Neurodata Without Borders (NWB) format24 on the DANDI Archive 
(https://dandiarchive.org/dandiset/000037)13. In addition, illustrative videos with example calcium imaging, 
stimulus, and behavioural recordings are available on FigShare16.

Data organization. The dataset is organized as follows on the DANDI Archive. The files for the 50 total 
sessions recorded are organized by subject into folders. For example, files for sessions recorded in subject 408021 
are stored in folder sub-408021. Within the folders, each file contains data for a single recording session. 
Notably, however, we created three versions of each session file, each with increasingly more data included. The 
versions are the basic version [B], the version with the stimulus frame images [I], and the version with the motion 
corrected two-photon calcium imaging stack [S]. The contents of the files are as follows:

 1. ROI ΔF/F traces [B, I, S]
 2. ROI masks [B, I, S]
 3. ROI tracking indices, for tracked sessions [B, I, S]
 4. Recording plane image [B, I, S]
 5. Running velocity traces [B, I, S]
 6. Pupil diameter traces [B, I, S]
 7. Pupil centroid position traces [B, I, S]
 8. Detailed stimulus parameter table [B, I, S]
 9. Stimulus frame images [I, S]
 10. Motion corrected two-photon calcium imaging stack [S]

The multiple versions were created under the expectation that most users will only need the data contained in 
the basic version [B], amounting to about 130 MB to 1.7 GB per file. Adding the stimulus frame images increased 
the file sizes by about 1.5 GB each [I]. Further adding the motion corrected imaging stack increased the file sizes 
much more, by about 45 GB per file [S]. Although NWB files on the DANDI Archive can be accessed remotely 
and streamed, we anticipated that the added data could create a substantial burden in terms of both bandwidth 
and storage for users wishing to download the dataset and use it locally.

The naming convention for the three versions on DANDI is as follows: sub-{unique subject ID}_
ses-{unique session ID}_{content}.nwb, where:

 1. B (basic): content = behavior + ophys, e.g., sub-408021_ses-758519303_behav-
ior + ophys.nwb

 2. I (with stimulus images): content = behavior + image + ophys, e.g., sub-408021_ses-
758519303_behavior + image + ophys.nwb

 3. S (with motion corrected imaging stack): content = obj-raw_behavior + image + ophys, e.g., 
sub-408021_ses-758519303_obj-raw_behavior + image + ophys.nwb

animal and recording session attributes. As noted above, data for 50 recording sessions total were 
gathered from 13 animals. Of these, two animals had at least one session that did not meet the Allen Institute’s 
previously-described15 quality control thresholds, and could therefore be considered for exclusion from analysis. 
In addition, for some animals, more than three imaging sessions were collected, for example if an early session 
had not passed quality control thresholds. We note that, due to including recordings from 4 distinct imaging 
planes, there may be an insufficient number of animals to perform robust splits of some cohorts. For example, 
while the dataset is well-split between male (7) and female (6) subjects, splitting the data further by sex may result 
in some groups with N = 1 (e.g., there is only 1 female L2/3-D mouse). Table 1 summarizes all of the experimen-
tal subjects. For each animal, the following information is provided: (1) Subject ID: unique ID assigned to the 
animal (6 digits), (2) Sex: subject’s sex, (3) Date of Birth: subject’s date of birth in the YYYYMMDD format, 
(4) Imaged Cell Type: the type of cell in which imaging was performed, i.e., either layer 2/3 pyramidal neurons 
(L2/3 Pyr) or layer 5 pyramidal neurons (L5 Pyr), and (5) Imaging Plane: the cortical plane in which two-photon 
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calcium imaging was performed, i.e., either the plane in which the cell bodies are located (somata) or the plane in 
which the distal apical dendrites are located.

Table 2 summarizes all of the imaging sessions, with the following information provided: (1) Subject ID: 
unique ID assigned to the animal (6 digits), (2) Session ID: unique ID assigned to the recording session (9 digits),  
(3) Imaging Date: date on which imaging was performed in the YYYYMMDD format, (4) Depth (μm): cortical 
depth to which the imaging was targeted, in μm, (5) # ROIs: total number of ROIs segmented for the session,  
(6) # Tracked ROIs: number of ROIs tracked across sessions for the subject (0 for sessions that were not 
included in the tracking), (7) QC: whether the session passed the Allen Institute’s quality control thresholds, 
and (8) Stimulus Seed: the random number generator seed used to generate the stimuli for the session.

Additional notes on the imaging sessions are included in the full metadata table (Supplementary Table 1,  
also available on the GitHub repository, https://github.com/jeromelecoq/allen_openscope_metadata/blob/mas-
ter/projects/credit_assignement/metadata.csv. The table comprises the same columns as Tables 1, 2, with a few 
additional ones: (1) Dandiset: the DANDI dataset number (000037), (2) Local Subject #: the subject number 
within the dataset (1–13), (3) Local Session #: the session number for the subject (1–6), (4) Imaging Date and 
Time (UTC): the imaging start date and time in the UTC time zone, in the YYYYMMDDTHHMMSS format, 
(5) Imaging Age (Weeks): age of the subject in weeks at the time of imaging, and (6) Experimental Notes: Any 
experimental notes recorded for the session.

Overview of data. To provide some intuition for the nature of the data, we present here population-wide 
responses to the stimuli over days, and a brief example of the behavioural data. As this is a data descriptor paper, 
we leave aside any statistical analyses and interpretations, and only present an overview of the fluorescence signals 
observed, using some randomly selected examples. Both the somatic and dendritic ROIs showed clear responses 
to both the Gabor and visual flow stimuli, with many showing increased fluorescence responses to the onset of 
the stimuli (Fig. 5). There were also clear differences in the responses to the consistent versus inconsistent stimuli 
as well (Fig. 5a versus b, and c & d).

With respect to the behavioural data, we provide plots showing the raw behavioural signal in an example 
mouse (Fig. 6a) and distributions of the signals across recording sessions, aggregated across mice (Fig. 6b). 
These records can enable analyses of the behavioural changes (if any) induced by the different stimuli.

Technical Validation
In the dataset, we provide the pre-processed fluorescence responses of the spatial ROIs (cell bodies or distal 
apical dendrite segments, depending on the imaging plane) segmented from our microscopy recordings. These 
data were included in addition to the raw calcium imaging files, because most analyses of two-photon calcium 
imaging data focus on extracted ROI activity traces, and they are much more compact than the raw imaging 
data. As described above, raw fluorescence traces are extracted for each ROI, and then baselined using a sliding 
window to obtain a measure of change in fluorescence relative to baseline, i.e., a ΔF/F. There are several steps to 
the pre-processing that we validate here, including the stability and quality of the microscopy, the quality of the 
segmentation, and the ability to match the ROIs across days.

To validate the quality and stability of our optical imaging data, we computed the SNR of each ROI in each 
recording session. SNR was computed as follows. First, the parameters (mean and standard deviation) of a nor-
mal distribution over noisy activity were estimated based on the lower half of each ROI’s full activity distribu-
tion. The 95th percentile of the parameterized noise distribution was then defined as that ROI’s noise threshold. 
ROI SNRs were then calculated as the ratio between their mean activity above the noise threshold (signal), and 
the standard deviation of their parameterized noise distribution. These are shown in Fig. 7A, and demonstrate 
that our recordings have relatively high SNR (>1) and that this is quite stable over days. Similarly, the mean 
ΔF/F signal was stable over days (Fig. 7b).

In assessing the reliability of the ROI segmentation, we were mostly concerned that the algorithm iden-
tifying the ROIs could over-segment the apical dendrites, yielding multiple ROIs that are, in fact, part of the 
same dendritic process. Segmenting the somata is much more straightforward because the somata are roughly 
circular in our imaging data and tend not to overlap (see, e.g., Fig. 2d). In contrast, the apical dendrite segments 
are elongated and often intersect with one another. If our algorithm were over-segmenting the branching apical 
dendrite structure, we would expect to see many pairs of highly-correlated dendrite ROIs (i.e., pairs of ROIs that 
are actually part of the same dendritic process). Thus, to validate the segmentation we computed the correlation 
of the ΔF/F traces for each pair of ROIs in each recording. The distributions of correlation coefficients were very 
similar for the apical dendrite ROIs and for the somatic ROIs (Fig. 7c), suggesting that we were unlikely to be 
heavily over-segmenting the dendritic data. Instead, the high number of dendritic segments identified in many 
planes likely include many independently active segments of the same neurons and dendrites vertically travers-
ing the imaging planes. To be more conservative, ROIs with correlations above 0.8 (e.g., approximately 0.01% of 
possible pairs of L2/3 dendrites) or those with similar trial-averaged visual stimulus-triggered responses could 
be merged. The raw data is available for independent segmentation and analysis.

One valuable aspect of our dataset is that we image the same fields of view over multiple days, enabling us 
to track how individual ROIs change their responses over days. This requires that ROIs be matched across days, 
in order to identify which ROI ID in one day’s recording matches a given ROI ID in another day’s recording. 
This can be very challenging, as it requires being able to find the exact same plane, in all 3 dimensions, at each 
recording session. Even if this is done successfully, the segmentation routine is not guaranteed to identify the 
same ROIs (or even the same number of ROIs) in each recording session. Lastly, the outcome of the ROI match-
ing routine depends to some degree on the order in which it receives the different sessions’ ROI masks. For this 
reason, we repeated the ROI matching using all possible permutations of session ordering, and then used the 
union of the set of matches (over permutations) minus the conflicts (matches comprising at least one ROI that 
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also appears in a different match within another permutation) as our putative ROI matches. Figure 8 shows the 
ROI matches from an example set of apical dendrite recordings (3 sessions), and from an example set of somatic 
recordings (3 sessions). The ROI masks from each session overlap substantially in the merged image, reflecting 
the consistency of our imaging planes and reliability of our ROI matching procedure.
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Fig. 5 (a) ΔF/F response traces to each consistent Gabor sequence (gray) for example ROIs. Mean (±SEM) 
ΔF/F responses across sequences are plotted in blue or green. Dashed vertical lines mark onset of D images. 
Plotted ROIs were randomly selected from session 1 ROIs deemed consistently responsive to Gabor sequences, 
based on the following criteria: (1) their SNR was above the median for the session, (2) the median pairwise 
correlation between their individual sequence responses, as well as the standard deviation and skew of their 
mean response, were each above the 75th percentile for the session. Responses to individual sequences were 
smoothed using a four-point moving average, for correlation calculation and plotting, only. (b) Same as a., 
but for inconsistent sequences. (c) ΔF/F response traces to the onset of inconsistent flow, during temporal-to-
nasal visual flow. Dashed vertical lines mark onset of inconsistent flow at time 0. Plotted ROIs were randomly 
selected from session 1 ROIs deemed responsive to the onset of inconsistent visual flow, based on the following 
criteria: (1) their SNR was above the median for the session, (2) the median pairwise correlation between their 
individual sequence responses to inconsistent flow, as well as the difference in mean response to inconsistent 
vs consistent flow, were each above the 75th percentile for the session. (d) Same as c., but for nasal-to-temporal 
visual flow.
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Finally, to validate that our stimuli are temporally well-aligned with our neural recordings and that the cal-
cium signal is tracking visually evoked responses, we computed the mean ΔF/F in the time windows surround-
ing the stimulus onsets (transition from gray screen to Gabor sequences or visual flow) and offsets (transition 
from Gabor sequences or visual flow to gray screen). These ΔF/F traces show distinct transients that align with 
the stimulus onsets and offsets (Fig. 9), validating our temporal alignment, and demonstrating clear stimulus 
responses in the identified ROIs.

Usage Notes
For users with experience using the NWB data format who are interested in running their own analyses from 
scratch, the dataset can be downloaded directly from the DANDI Archive and inspected using tools like PyNWB 
if using Python, and MatNMB, if using MATLAB24. As described above, 50 sessions were recorded across the 
mice, and for each session, three files are available for download. The file versions with only the basic data range 
in size from 130 MB to 1.7 GB. If only the basic data files for sessions 1 to 3 that passed quality control are needed, 
the total download size is approximately 15 GB for 33 files in total. For users wishing to work with the stimulus 
images as well, the file versions that also include the stimulus frame images range in size from 1.5 to 3.1 GB each.  
Lastly, the file versions that also include the full motion corrected two-photon calcium imaging stack are approx-
imately 45 GB each. These may be useful, for example, for users wishing to deploy their own segmentation 
and ΔF/F conversion pipelines on our data. They can also be used to compute statistics for converting raw 
fluorescence to photons, if desired25. The following notebook on GitHub provides example code for computing 
photon gain and offset directly from raw imaging stacks: https://github.com/jeromelecoq/QC_2P/blob/master/
Example%20use%20of%20QC_2P.ipynb. Lastly, although running velocity, pupil diameter and pupil centroid 
position are provided in the data files, other behavioural metrics like direction of gaze were not computed for 
this dataset. For users wishing to work with this type of data, behaviour and pupil recording videos (see Fig. 4) 
are available upon request to the corresponding author.
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Data is stacked across all mice (11), with each mouse represented by a different shade of gray. Insets for the 
running velocity histograms (top) show close-ups of the areas marked by the dotted rectangles.
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For users wishing to work with existing code, detailed resources for analysing and exploring this specific 
dataset in Python are provided in a GitHub repository (https://github.com/colleenjg/OpenScope_CA_Analysis). 
Users can install the conda environment provided, following the instructions in the README, and download 
specific sessions of interest. A few jupyter notebooks are provided for users to become familiar with the dataset. 
First, under examples, the session_demonstration_script.ipynb notebook provides users with 
step-by-step examples of how to load a file into a custom Python object, i.e. the Session object, and to plot 
average stimulus responses for individual ROIs, retrieve ROI tracking information, and display ROI masks. 
Second, a jupyter notebook is provided under minihack called mini_hackathon.ipynb which provides 
examples of various analyses users could be interested in running on the data. Lastly, in the main directory, the 
run_paper_figures.ipynb notebook shows how the codebase can be used to reproduce the figures pre-
sented here directly on the dataset.

Code availability
Data pre-processing was performed in Python 3.626 with custom scripts that are freely available on GitHub 
(https://github.com/colleenjg/OpenScope_CA_Analysis) and were developed using the following packages: 
NumPy27, SciPy28, Pandas29, Matplotlib30, Scikit-learn 0.21.131, and the AllenSDK 1.6.0. (https://github.com/
AllenInstitute/AllenSDK). Stimuli were generated by Python 2.732 custom scripts based on PsychoPy 1.82.0133 
and CamStim 0.2.4. The code is freely available (along with instructions to reproduce the stimuli, and example 
videos) on GitHub (https://github.com/colleenjg/cred_assign_stimuli). Dendritic segmentation was run in Matlab  
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Fig. 7 (a) ΔF/F trace SNRs for each ROI. For each session and plane, boxplots show the medians of the 
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percentiles. Dashed horizontal lines mark 1, i.e., noise level. (b) Mean ΔF/F trace signal, where each datapoint 
corresponds to an ROI. Boxplots drawn as in a., and signal is the mean activity above the noise threshold used 
to calculate SNR. (c) Distributions of pairwise ROI correlations, plotted on a log scale. The log scale is linearized 
near 0, as signalled by the axis break, overemphasizing the lower tail for visibility. Pairwise correlations were 
computed over full session fluorescence traces, which were smoothed using a four-point moving average.
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as a., but for a L5-S mouse. The variation in number of matched ROIs across session orderings for somata was 
generally far less than that for dendrites due to their larger sizes and more regular shapes. Combining matched 
ROIs across all permutations did nonetheless, in this example mouse, enable two of the pairwise matches to be 
identified as conflicts and removed, yielding 47 final matches.
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Fig. 9 (a) Mean (±SEM) ΔF/F response traces across ROI mean responses to stimulus onset (Gabor sequence) 
from grayscreen. Dashed vertical line at time 0 marks stimulus onset, also signalled by the gray bar becoming 
red (bottom of right column). (b) Same as a., but for stimulus offset. Dashed vertical line at time 0 marks 
stimulus offset, as signalled by the red bar becoming gray (bottom of right column).
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2019a using a robust estimation algorithm17,18 (https://github.com/schnitzer-lab/EXTRACT-public). Pupil 
tracking was performed using DeepLabCut 2.0.522 (http://www.mackenziemathislab.org/deeplabcut). ROIs 
were matched across sessions using a custom-modified version of the n-way cell matching package developed 
by the Allen Institute (https://github.com/AllenInstitute/ophys_nway_matching). Code for estimating photon 
conversion statistics on the raw imaging stacks is available on GitHub25 (https://github.com/jeromelecoq/QC_2P/
blob/master/Example%20use%20of%20QC_2P.ipynb).
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