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SciSciNet: a large-scale open data 
lake for the science of science 
research
Zihang Lin  1,2,3,4, Yian Yin  1,2,3,5, Lu Liu1,2,3 & Dashun Wang  1,2,3,5 ✉

The science of science has attracted growing research interests, partly due to the increasing availability 
of large-scale datasets capturing the innerworkings of science. These datasets, and the numerous 
linkages among them, enable researchers to ask a range of fascinating questions about how science 
works and where innovation occurs. Yet as datasets grow, it becomes increasingly difficult to track 
available sources and linkages across datasets. Here we present SciSciNet, a large-scale open data lake 
for the science of science research, covering over 134M scientific publications and millions of external 
linkages to funding and public uses. We offer detailed documentation of pre-processing steps and 
analytical choices in constructing the data lake. We further supplement the data lake by computing 
frequently used measures in the literature, illustrating how researchers may contribute collectively to 
enriching the data lake. Overall, this data lake serves as an initial but useful resource for the field, by 
lowering the barrier to entry, reducing duplication of efforts in data processing and measurements, 
improving the robustness and replicability of empirical claims, and broadening the diversity and 
representation of ideas in the field.

Background & Summary
Modern databases capturing the innerworkings of science have been growing exponentially over the past dec-
ades, offering new opportunities to study scientific production and use at larger scales and finer resolution than 
previously possible. Fuelled in part by the increasing availability of large-scale datasets, the science of science 
community turns scientific methods on science itself1–6, helping us understand in a quantitative fashion a range 
of important questions that are central to scientific progress—and of great interest to scientists themselves—
from the evolution of individual scientific careers7–18 to collaborations19–25 and science institutions26–28 to the 
evolution of science2,3,5,29–34 to the nature of scientific progress and impact35–55.

Scholarly big data have flourished over the past decade, with several large-scale initiatives providing 
researchers free access to data. For example, CiteSeerX56, one of the earliest digital library search engines, offers 
a large-scale scientific library focusing on the literature in computer and information science. Building on a 
series of advanced data mining techniques, AMiner57 indexes and integrates a wide range of data about aca-
demic social networks58. Crossref (https://www.crossref.org/)59, as well as other initiatives in the open metadata 
community, have collected metadata such as Digital Object Identifier (DOI) in each publication record and 
linked them to a broad body of event data covering scholarly discussions. OpenAlex (https://openalex.org/)60, 
based on Microsoft Academic Graph (MAG)61–63, aims to build a large-scale open catalog for the global research 
system, incorporating scholarly entities and their connections across multiple datasets. In addition to data on 
scientific publications and citations capturing within-science dynamics, researchers have also tracked interac-
tions between science and other socioeconomic spheres by tracing, for example, how science is referenced in 
patented inventions64–66, regarding both front-page and in-text citations from patents to publications67,68. Table 1 
summarizes several exemplary datasets commonly used in the science of science literature, with information on 
their coverage and accessibility.

The rapid growth of the science of science community69–71, combined with its interdisciplinary nature, raises 
several key challenges confronting researchers in the field. First, it becomes increasingly difficult to keep track of 
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available datasets and their potential linkages across disparate sources, raising the question of whether there are 
research questions that are underexplored simply due to a lack of awareness of the data. Second, as data and their 
linkages become more complex, there are substantial data pre-processing steps involved prior to analyses. Many 
of these steps are often too detailed to document in publications, with researchers making their own analytical 
choices when processing the data. Third, as tools and techniques used in the science of science grow in sophis-
tication, measurements on these datasets can be computationally involved, requiring substantial investment of 
time and resources to compute these measures.

All these challenges highlight the need for a common data resource designed for research purposes, which 
could benefit the community in several important ways. First, it provides a large-scale empirical basis for 
research, helping to strengthen the level of evidence supporting new findings as well as increase the replicability 
and robustness of these findings. Second, it helps to reduce duplication of efforts across the community in data 
preprocessing and common measurements. Third, by compiling various datasets, linkages, and measurements, 
the data resource significantly lowers the barrier to entry, hence has the potential to broaden the diversity and 
representation of new ideas in the field.

To support these needs in the community, we present SciSciNet, a large-scale open data lake for the science of 
science research. The data lake not only incorporates databases that capture scientific publications, researchers, 
and institutions, but also tracks their linkages to related entities, ranging from upstream funding sources like 
NIH and NSF to downstream public uses, including references of scientific publications in patents, clinical trials, 
and media and social media mentions (see Fig. 1 and Table 2 for more details of entities and their relationships). 
Building on this collection of linked databases, we further calculate a series of commonly used measurements in 
the science of science, providing benchmark measures to facilitate further investigations while illustrating how 
researchers can further contribute collectively to the data lake. Finally, we validate the data lake using multiple 

Data source Highlights API
Data 
dump

Crossref Data on publications with DOIs registered in Crossref. ✓ ✓

OpenAlex Data connecting publications, authors, institutions, and concepts. ✓ ✓

Dimensions Data connecting publications, grants, datasets, trials, and patents. — —

Overton Policy documents and their citations to science and policy. — —

OpenCitations DOI-DOI open citation links. ✓ ✓

AMiner Advanced information generated through data mining techniques. ✓ ✓

CiteSeerX Full-text publications, one of the earliest digital library search engines. ✓ —

ORCID Data on researchers with ORCID IDs (funding, works, peer review, etc.). ✓ ✓

ROR Data on research organizations with ROR IDs, seeded by GRID. ✓ ✓

Retraction Watch Data on retracted papers and reasons for retraction. ✗ —

Semantic Scholar Publication dataset featuring AI-derived products (e.g., embeddings). ✓ —

Web of Science Curated by in-house experts, basis for Journal Citation Reports. — —

PubMed Biomedical literature with PubMed IDs, linked to NIH projects, clinical trials, and other biomedical 
entities. ✓ ✓

NIH RePORTER Data on NIH-funded projects, with linkages to publications, patents, and clinical studies. ✓ ✓

NSF Awards Data on NSF-funded projects, with linkages to publications. ✓ ✓

Clinical Trials Information on clinical studies and linkages to references worldwide. ✓ ✓

PatentsView Data on USPTO patents (citations, classifications, inventors, etc.). ✓ ✓

Patent Citation to 
Science Patent-science citations extracted from USPTO and EPO patents. ✗ ✓

Publications of 
Nobel laureates Publication records and prize-winning papers of Nobel laureates. ✗ ✓

Altmetric Data on online attention (e.g., mainstream and social media). ✓ —

CORE Metadata and full-text information of 87 M + papers. ✓ ✓

Unpaywall Publication metadata and open-access related information. ✓ ✓

DOAJ Community-curated data on open-access journals and papers. ✓ ✓

OpenAIRE Research 
Graph Data connecting scientific products, organizations, funded projects, etc. from 70 K + sources. ✓ ✓

Faculty Opinions 
with Gender

Metadata of authors from Faculty Opinions with gender classification from Faculty Opinions and 
Web of Science. — ✓

Scopus Documents selected by an independent review board of experts. — —

Lens Citation relationships within and across papers and patents. — —

Springer Nature 
SciGraph

Triples connecting multiple entities in the research landscape, including publications, funders, and 
affiliations. ✓ ✓

Google Scholar Large-scale data on publications, citations, and disambiguated scholar profiles indexed by Google. ✗ ✗

Table 1. Brief summary of major data sources commonly used in the science of science literature. ✓: publicly 
available, —: available upon application or subscription, ✗: not available to the best of our knowledge (a more 
detailed summary is given in Table S1).
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approaches, including internal data validation, cross-database verification, as well as reproducing canonical 
results in the literature.

The data lake, SciSciNet, is freely available at Figshare72. At the core of the data lake is the Microsoft Academic 
Graph (MAG) dataset61–63. The MAG data is one of the largest and most comprehensive bibliometrics data in  
the world, and a popular dataset for the science of science research. However, MAG was sunset by Microsoft  
at the end of 2021. Since then, there have also been several important efforts in the community to ensure the 

SciSciNet_Papers

PK PaperID: long

DOI: string

DocType: string

Year: int?

Date: DateTime?

JournalID: long?

ConferenceSeriesID: long?

Reference_Count: int

Citation_Count: int
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Institution_Count: int?

Disruption: float?

Atyp_Median_Z: float?

Atyp_10pct_Z: float?

WSB_mu: float?

WSB_sigma: float?

WSB_Cinf: int?

SB_B: float?

SB_T: int?

Patent_Count: int

Newsfeed_Count: int

Twitter_Count: int

NCT_Count: int

NIH_Count: int

NSF_Count: int

SciSciNet_Link_NIH

PK,FK1 PaperID: long

PK,FK2 NIH_Project_
Number: string

SciSciNet_Link_Patents

PK,FK1 PaperID: long

PK,FK2 PatentID: string

Type: int

SciSciNet_Link_NSF

PK,FK1 PaperID: long

PK,FK2 NSF_Award_
Number: string

Type: string

Diff_ZScore: float?

SciSciNet_Link_NobelLaureates

PK,FK1 PaperID: long

PK,FK2 LaureateID: int

Type: int

SciSciNet_Link_Newsfeed

PK,FK1 PaperID: long

PK,FK2 NewsfeedID: string

SciSciNet_Link_ClinicalTrials

PK,FK1 PaperID: long

PK,FK2 NCT_Number: string

SciSciNet_Authors

PK AuthorID: long

Author_Name: string

H-index: int

Productivity: int

Average_C10: float?

Average_LogC10: float?

SciSciNet_Affiliations

PK AffiliationID: long

Affiliation_Name: string

H-index: int

Productivity: int

Average_C10: float?

Average_LogC10: float?

GridID: string

SciSciNet_PaperAuthorAffiliations

PK,FK1 PaperID: long

PK,FK2 AuthorID: long

PK,FK3 AffiliationID: long?

AuthorSequence
Number: int

SciSciNet_PaperReferences

PK,FK1 Citing_PaperID: long

PK,FK2 Cited_PaperID: long

SciSciNet_Fields

PK FieldID: long

Field_Name: string

Field_Type: string

SciSciNet_PaperFields

PK,FK1 PaperID: long

PK,FK2 FieldID: long

Hit_1pct: int

Hit_5pct: int

Hit_10pct: int

C_f: float

SciSciNet_Link_Twitter

PK,FK1 PaperID: long

PK,FK2 TweetID: string

Fig. 1 The entity relationship diagram of SciSciNet. SciSciNet includes “SciSciNet_Papers” as the main data 
table, with linkages to other tables capturing data from a range of sources. For clarity, here we show a subset of 
the tables (see Data Records section for a more comprehensive view of the tables). PK represents primary key, 
and FK represents foreign key.
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continuity of data and services. For example, there are mirror datasets73 available online for MAG, and the 
OpenAlex (https://openalex.org) initiative builds on the MAG data, and not only makes it open to all but also 
provides continuous updates60. While these efforts have minimized potential disruptions, the sunsetting of 
MAG has also accelerated the need to construct open data resources designed for research purposes. Indeed, 
large-scale systematic datasets for the science of science mostly come in the form of raw data, which requires 
further data pre-processing and filtering operations to extract fine-grained research data with high quality. It 
usually takes substantial efforts and expertise to clean the data, and many of these steps are often too detailed 
to document in publications, with researchers making their own analytical choices. It thus suggests that there 
is value in constructing an open data lake, which aims to continue to extend the usefulness of MAG, with sub-
stantial data pre-processing steps documented. Moreover, the data lake links together several disparate sources 
and pre-computed measures commonly used in the literature, serving as an open data resource for researchers 
interested in the quantitative studies of science and innovation.

Importantly, the curated data lake is not meant to be exhaustive; rather it represents an initial step toward a 
common data resource to which researchers across the community can collectively contribute. Indeed, as more 
data and measurements in the science of science become available, researchers can help to contribute to the 
continuous improvement of this data lake by adding new data, measurements, and linkages, thereby further 
increasing the utility of the data lake. For example, if a new paper reports a new measurement, the authors could 
publish a data file linking the new measurement with SciSciNet IDs, which would make it much easier for future 
researchers to build on their work.

Methods
Data selection and curation from MaG. The Microsoft Academic Graph (MAG) dataset61–63 covers a 
wide range of publication records, authors, institutions, and citation records among publications. MAG has a rich 
set of prominent features, including the application of advanced machine learning algorithms to classify fields of 
study in large-scale publication records, identify paper families, and disambiguate authors and affiliations. Here 
we use the edition released on December 6th, 2021 by MAG, in total covering 270,694,050 publication records.

The extensive nature of the MAG data highlights a common challenge. Indeed, using the raw data for 
research often requires substantial pre-processing and data-cleaning steps to arrive at a research-ready database. 
For example, one may need to perform a series of data selection and curation operations, including the selection 
of scientific publications with reliable sources, aggregation of family papers, and redistribution of citation and 
reference counts. After going through these steps, one may generate a curated publication data table, which 
serves as the primary scientific publication data table in SciSciNet (Table 3, “SciSciNet_Papers”). However, each 
of these steps requires us to make specific analytical choices, but given the detailed nature of these steps, the 
specific choices made through these steps have remained difficult to document through research publications.

Here we document in detail the various procedures we took in constructing the data lake. From the original 
publication data in MAG, we use MAG Paper ID as the primary key, and consider a subset of main attributes, 
including DOI (Digital Object Identifier), document type and publication year. As we are mainly interested in 
scientific publications within MAG, we first remove paper records whose document type is marked as patent. 

File Lines Short Description (all files are in TSV format)

SciSciNet_Papers 134,129,188 File containing primary papers with Paper IDs, categories, counts, and calculated 
foundational metrics.

SciSciNet_PaperAuthorAffiliations 413,869,501 File containing paper-author-affiliation linkages.

SciSciNet_PaperReferences 1,588,739,703 File containing paper reference pairs within primary papers that appear in SciSciNet_
Papers.

SciSciNet_Fields 311 File containing Field IDs with names and types (top-level or sub-level).

SciSciNet_Journals 49066 File containing Journal IDs with names, ISSNs, publishers, and official webpages.

SciSciNet_ConferenceSeries 4551 File containing Conference Series IDs with names.

SciSciNet_Authors_Gender 134,197,162 File containing Author IDs with names and individual career-level metrics.

SciSciNet_PaperFields 277,494,994 File containing linkages between Paper ID and Field ID.

SciSciNet_PaperDetails 136,726,948 File containing detailed information of papers (covering retracted papers and affiliated 
papers in paper families as well) including titles, journals, and publishers.

SciSciNet_Affiliations 26,998 File containing Affiliation IDs with names and institution-level metrics.

SciSciNet_Link_NSF 1,309,518 File containing linkages between Paper ID and NSF Award Number.

SciSciNet_Link_NIH 6,013,187 File containing linkages between Paper ID and NIH Project Number.

SciSciNet_Link_ClinicalTrials 438,220 File containing linkages between referenced Paper ID and NCT Number.

SciSciNet_Link_NobelLaureates 87,316 File containing linkages between Paper ID and Nobel Laureate ID.

SciSciNet_Link_Twitter 55,846,550 File containing linkages between Paper ID and Tweet ID.

SciSciNet_Link_Newsfeed 595,241 File containing linkages between Paper ID and Newsfeed ID.

SciSciNet_Link_Patents 38,740,313 File containing linkages between Paper ID and Patent ID.

SciSciNet_NSF_Metadata 489,446 File containing metadata of NSF awards from nsf.gov.

SciSciNet_Newsfeed_Metadata 947,160 File containing metadata of scientific mentions in Newsfeed from Crossref Event API.

SciSciNet_Twitter_Metadata 59,593,281 File containing metadata of scientific mentions in Twitter from Crossref Event API.

Table 2. Dataset descriptions.
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We also remove those with neither document type nor DOI information. Each scientific publication in the 
database may be represented by different entities (e.g., preprint and conference), indicated as a paper “family” 
in MAG. To avoid duplication, we aggregate all papers in the same family into one primary paper. We also do 
not include retracted papers in the primary paper table in SciSciNet. Instead, we include records of retracted 
papers and affiliated papers in paper families in another data table “SciSciNet_PaperDetails” (Table 8) linked 
to the primary paper table, recording information of DOIs, titles, original venue names, and original counts 
for citations and references in MAG. Following these steps, the primary data table “SciSciNet_Papers” contains 
134,129,188 publication records with unique primary paper ids, including 90,764,813 journal papers, 4,629,342 
books, 3,932,366 book chapters, 5,123,597 conference papers, 145,594 datasets, 3,083,949 repositories, 5,998,509 
thesis papers, and 20,451,018 other papers with DOI information.

For consistency, we recalculate the citation and reference counts within the subset of 134 M primary papers, 
such that each citation or reference record is also included in this subset and can be found in “SciSciNet_
PaperReferences” (Table 5). For papers in the same family, we aggregate their citations and references into the 
primary paper and drop duplicated citation pairs. Building on the updated citations, we recalculate the number 
of references and citations for each primary paper.

MAG also contains information of authors, institutions, and fields. While author disambiguation58,74–79 
remains a major challenge, we adopt the author disambiguation method from MAG and create an author table, 
which offers a baseline for future studies of individual careers. We also supplement the author table with empir-
ical name-gender associations to support gender research80, drawing from work by Van Buskirk et al.80; this 
allows us to build “SciSciNet_Authors_Gender” (Table 9) with 134,197,162 author records including their full 
names.

For fields, we use the fields of study records from MAG and focus on the records related to the selected pri-
mary papers (19 Level-0 fields and 292 Level-1 fields, Table 6). We incorporate this information into two tables, 
the “SciSciNet_PaperAuthorAffiliations” (Table 4) and “SciSciNet_PaperFields” (Table 7), with 413,869,501 and 
277,494,994 records, respectively.

We further use the information of “PaperExtendedAttributes” table from MAG to construct high-quality 
linkages between MAG Paper ID and PubMed Identifier (PMID). We drop duplicate links by only keeping 
the MAG primary paper record (if one PMID was linked to multiple MAG Paper IDs) or the latest updated 
PubMed record (if one MAG Paper ID was linked to multiple PMIDs), obtaining 31,230,206 primary MAG 
Paper ID-PMID linkages (95.6% of the original records) to further support linkage with external sources.

Index Format Short Description

PaperID Integer Unique MAG Paper ID of the paper.

DOI String Digital Object Identifier (DOI) of the paper.

DocType String Book, BookChapter, Conference, Dataset, Journal, Repository, Thesis, or NULL (unknown).

Year Integer Publication year of the paper.

Date DateTime Publication date of the paper formatted as YYYY-MM-DD.

JournalID Integer MAG Journal ID for published journal of the paper.

ConferenceSeriesID Integer MAG ConferenceSeries ID for published conference series of the paper.

Reference_Count Integer Total reference count of the paper.

Citation_Count Integer Total citation count of the paper.

C5 Integer The number of citations 5 years after publication.

C10 Integer The number of citations 10 years after publication.

Disruption Float Disruption score of the paper defined in Wu et al.20

Atyp_Median_Z Float Median Z-score of the paper defined in Uzzi et al.47

Atyp_10pct_Z Float 10th percentile Z-score of the paper defined in Uzzi et al.47

Atyp_Pairs Integer The number of journal pairs cite by the paper defined in Uzzi et al.47

WSB_mu Float Immediacy μ of the paper as introduced in WSB model46.

WSB_sigma Float Longevity σ of the paper as introduced in WSB model46.

WSB_Cinf Integer Ultimate impact of the paper predicted by WSB model46.

SB_B Float Beauty coefficient of the paper as introduced in Ke et al.93

SB_T Integer Awakening time of the paper as introduced in Ke et al.93

Team_Size Integer The number of researchers in the paper.

Institution_Count Integer The number of institutions in the paper.

Patent_Count Integer The number of citations by patents from USPTO and EPO.

Newsfeed_Count Integer The number of mentions by news from Newsfeed.

Tweet_Count Integer The number of mentions by tweets from Twitter.

NCT_Count Integer The number of citations by clinical trials from ClinicalTrials.gov.

NIH_Count Integer The number of supporting grants from NIH.

NSF_Count Integer The number of supporting grants from NSF.

Table 3. Data type for records of SciSciNet_Papers.
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Index Format Short Description

Citing_PaperID Integer MAG Paper ID of the citing paper in the citation pair.

Cited_PaperID Integer MAG Paper ID of the cited paper in the citation pair.

Table 5. Data type for records of SciSciNet_PaperReferences.

Index Format Short Description

FieldID Integer MAG Field ID of the field of study.

Field_Name String Original field name of the field of study.

Field_Type String Top or Sub. Top indicates the top-level field. Sub indicates the subfield.

Table 6. Data type for records of SciSciNet_Fields.

Index Format Short Description

PaperID Integer MAG Paper ID in the paper-author-affiliation record.

AuthorID Integer MAG Author ID in the paper-author-affiliation record.

AffiliationID Integer MAG Affiliation ID in the paper-author-affiliation record.

AuthorSequenceNumber Integer Original author sequence number starting with 1.

Table 4. Data type for records of SciSciNet_PaperAuthorAffiliations.

Index Format Short Description

PaperID Integer MAG Paper ID of the paper.

DOI String Digital Object Identifier (DOI) of the paper.

DocType String Book, BookChapter, Conference, Dataset, Journal, Repository, Thesis, or NULL (unknown).

PaperTitle String Title of the paper.

BookTitle String Book title of the paper.

Year Integer Publication year of the paper.

Date DateTime Publication date of the paper formatted as YYYY-MM-DD.

Publisher String Publisher name of the paper.

JournalID Integer MAG Journal ID for published journal of the paper.

ConferenceSeriesID Integer MAG ConferenceSeries ID for published conference series of the paper.

OriginalVenue String Original published venue name of the paper.

Volume String Volume of the paper.

Issue String Issue of the paper.

FirstPage String First page of the paper.

LastPage String Last page of the paper.

FamilyID Integer Primary MAG Paper ID of the paper in the same paper family.

RetractionType String “Retracted Publication”, “Retraction Notice”.

ReferenceCount Integer Reference count of the paper in MAG original papers data table.

CitationCount Integer Citation count of the paper in MAG original papers data table.

Table 8. Data type for records of SciSciNet_PaperDetails.

Index Format Short Description

PaperID Integer MAG Paper ID in the paper-field linkage record.

FieldID Integer MAG Field ID in the paper-field linkage record.

Hit_1pct Integer 1 is hit paper with top 1% total citations within the same level field and the same year, and 0 is not.

Hit_5pct Integer 1 is hit paper with top 5% total citations within the same level field and the same year, and 0 is not.

Hit_10pct Integer 1 is hit paper with top 10% total citations within the same level field and the same year, and 0 is not.

C_f Float Normalized citation as defined by Radicchi et al.48

Table 7. Data type for records of SciSciNet_PaperFields.
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Together, the resulting SciSciNet includes 134,129,188 publications (Table 3), 134,197,162 authors (Table 9), 
26,998 institutions (Table 10), 49,066 journals (Tables 21), 4,551 conference series (Tables 22), 19 top-level fields of 
study, 292 subfields (Table 6), and the internal links between them, including 1,588,739,703 paper-references records 
(Table 5), 413,869,501 paper-author-affiliations records (Table 4), and 277,494,994 paper-fields records (Table 7).

Linking publication data with external sources. While the main paper table captures citation relation-
ships among scientific publications, there has been growing interest in studying how science interacts with other 
socioeconomic institutions35,36,41,55,81,82. Here, we further trace references of scientific publications in data sources 
that go beyond publication datasets, tracking the linkage between papers to their upstream funding supports and 
downstream uses in public domains. Specifically, here we link papers to the grants they acknowledge in NSF and 
NIH, as well as public uses of science by tracking references of scientific publications in patents, clinical trials, 
and news and social media.

NIH funding. The National Institutes of Health (NIH) is the largest public funder for biomedical research in 
the world. The recent decade has witnessed increasing interest in understanding the role of NIH funding for the 
advancement of biomedicine81,82 and its impact on individual career development83,84. NIH ExPORTER provides 
bulk NIH RePORTER (https://report.nih.gov/) data on research projects funded by the NIH and other major 
HHS operating divisions. The database also provides link tables (updated on May 16, 2021) that connects funded 
projects with resulting publications over the past four decades.

To construct the funded project-paper linkages between SciSciNet Paper ID and NIH Project Number, we 
use the PMID of MAG papers (from our previously curated “PaperExtendedAttributes” table based on MAG) as 
the intermediate key, matching more than 98.9% of the original NIH link table records to primary Paper ID in 
SciSciNet. After dropping duplicate records, we end up with a collection of 6,013,187 records (Table 11), linking 

Index Format Short Description

AuthorID Integer MAG Author ID of the author.

Author_Name String Original name of the author.

H-index Integer H-index of the author.

Productivity Integer Total number of publications of the author.

Average_C10 Float Average c10 of the author.

Average_LogC10 Float Average logc10 of the author.

Inference_Sources Integer The number of name-gender inference source datasets80.

Inference_Counts Integer The number of empirical count of humans with the first name and 
gendered label in the source datasets80.

P(gf) Float The probability that indicates to what extent a name belongs to an 
individual gendered female80.

Table 9. Data type for records of SciSciNet_Authors_Gender.

Index Format Short Description

AffiliationID Integer MAG Affiliation ID of the affiliation.

Affiliation_Name String Original name of the affiliation.

GridID String GRID (Global Research Identifier Database) ID of the affiliation.

Official_Page String Official webpage of the affiliation.

ISO3166Code String ISO 3166 two-letter country codes of the affiliation.

Latitude Float Latitude of the affiliation.

Longitude Float Longitude of the affiliation.

H-index Integer H-index of the affiliation.

Productivity Integer Total number of publications of the affiliation.

Average_C10 Float Average c10 of the affiliation.

Average_LogC10 Float Average log c10 of the affiliation.

Table 10. Data type for records of SciSciNet_Affiliations.

Index Format Short Description

PaperID Integer MAG Paper ID.

NIH_Project_Number String NIH core project number.

Table 11. Data type for records of SciSciNet_Link_NIH.
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2,636,061 scientific papers (identified by primary MAG Paper IDs) to 379,014 NIH projects (identified by core 
NIH-funded project numbers).

NSF funding. Beyond biomedical research, the National Science Foundation (NSF) funds approximately 25% 
of all federally supported basic research conducted by the United States’ colleges and universities across virtually 
all fields of science and engineering. NSF provides downloadable information on research projects it has funded, 
including awardee, total award amount, investigator, and so forth, but no information on funded research publi-
cations. While Federal RePORTER offers downloadable files on NSF awards with links to supported publications 
(662,072 NSF award-publication records by 2019), it only covers a limited time period and has been retired by 
March 2022. To obtain a more comprehensive coverage of records linking NSF awards to supported papers, we 
crawl the webpages of all NSF awards to retrieve information on their resulting publications. In particular, we first 
created a comprehensive list of all NSF award numbers from https://www.nsf.gov/awardsearch/download.jsp.  
We then iterate over this list to download the entire webpage document of each NSF award (from the URL 
https://www.nsf.gov/awardsearch/showAward?AWD_ID = [Award number]), and use “Publications as a result 
of this research” column to identify scientific publications related to this award. We then extract paper titles and 
relevant information provided by using the Python library ElementTree to navigate and parse the webpage doc-
ument structurally. We end up collecting 489,446 NSF awards since 1959 (Table 20), including linkages between 
131,545 awards and 1,350,915 scientific publications.

To process information crawled from NSF.gov, which is presented as raw text strings, we design a text-based 
multi-level matching process to link NSF awards to SciSciNet scientific publications:

 (1) For records with DOI information in the raw texts of funded research publications, we perform an exact 
match with SciSciNet primary papers through DOI. If the DOI in an NSF publication record matched that 
of one primary paper, we create a linkage between the NSF Award Number and the primary Paper ID. We 
matched 458,463 records from NSF awards to SciSciNet primary papers, where each DOI appeared only 
once in the entire primary paper table, thus enabling association with a unique Paper ID (exact match). Af-
ter dropping duplicates where the same DOI appears repeatedly in the same NSF award, we yield 350,611 
records (26.0%) from NSF awards to SciSciNet primary papers.

 (2) To process the rest of the records, we then use the title information of each article for further matching. Af-
ter extracting the title from NSF records and performing a standardization procedure (e.g., converting each 
letter into lowercase and removing punctuation marks, extra spaces, tabs, and newline characters), our 
exact matches between paper titles in the NSF award data and SciSciNet primary paper data yield 246,701 
unique matches (18.3% in total) in this step.

 (3) We further develop a search engine for records that have not been matched in the preceding steps. Here 
we use Elasticsearch, a free and open search and analytics engine, to index detailed information (paper 
title, author, journal or conference name, and publication year) of all SciSciNet primary papers. We then 
feed raw texts of the crawled NSF publications into the system and obtain results with the top two highest 
scores associated with the indexed primary papers. Similar to a previous study55, we use scores of the 
second matched primary papers as a null model, and then identify the first matched primary paper as a 
match if its score is significantly higher than the right-tail cutoff of the second score distribution (P = 0.05). 
Following this procedure, we match the remaining 467,159 records (34.6%) from the two previous steps 
with significantly higher scores (Fig. 2a). Note that this procedure likely represents a conservative strategy 
that prioritizes precision over recall. Manually inspecting the rest of potential matchings, we find that those 
with large differences between the top two Z-scores (Fig. 2b) are also likely to be correct matches. To this 
end, we also include these heuristic links, together with the difference of their Z-scores, as fuzzy matching 
linkages between SciSciNet papers and NSF awards.

 (4) We further supplement these matchings with information from Crossref data dump, an independent 
dataset that links publications to over 30 K funders including NSF. We collect all paper-grant pairs where 
the funder is identified as NSF. We then use the raw grant number from Crossref and link paper records 
between Crossref and SciSciNet using DOIs. We obtain 305,314 records after cleaning, including 196,509 
SciSciNet primary papers with DOIs matching to 83,162 NSF awards.

By combining records collected from all these steps, we collect 1,130,641 unique linkages with high confi-
dence levels and 178,877 additional possible linkages from fuzzy matches (Table 12). Together these links con-
nect 148,148 NSF awards and 929,258 SciSciNet primary papers.

Patent citations to science. The process in which knowledge transfers from science to marketplace applica-
tions has received much attention in science and innovation literature35,41,85–88. The United States Patent and 
Trademark Office (USPTO) makes patenting activity data publicly accessible, with the PatentsView platform 
providing extensive metadata including as related to patent assignees, inventors, and lawyers, along with patents’ 
internal citations and full-text information. The European Patent Office (EPO) also provides open access to 
patent data containing rich attributes.

Building on recent advances in linking papers to patents35,67,68, Marx and Fuegi developed a large-scale data-
set of over 40 M citations from USPTO and EPO patents to scientific publications in MAG. Using this corpus 
(Version v34 as of December 24, 2021), we merge 392 K patent citation received by affiliated MAG papers to 
their respective primary IDs in the same paper family. Dropping possible duplicate records with the same pair 
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of primary Paper ID and Patent ID results in 38,740,313 paper-patent citation pairs between 2,360,587 patents 
from USPTO and EPO and 4,627,035 primary papers in SciSciNet (Table 15).

Clinical trials citations to science. Understanding bench-to-bed-side translation is essential for biomedical 
research81,89. ClinicalTrials.gov provides publicly available clinical study records covering 50 U.S. states and 220 
countries, sourced from the U.S. National Library of Medicine. The Clinical Trials Transformation Initiative 
(CTTI) makes available clinical trials data through a database for Aggregate Analysis of ClinicalTrials.gov 
(AACT), an aggregated relational database helping researchers better study drugs, policies, publications, and 
other related items to clinical trials.

Overall, the data covers 686,524 records linking clinical trials to background or result papers (as of January 
26th, 2022). We select 480,893 records with papers as reference background supporting clinical trials, of which 
451,357 records contain 63,281 unique trials matching to 345,797 reference papers with PMIDs. Similar to 
the process of linking scientific publications to NIH-funded projects, we again establish linkages between 
SciSciNet primary Paper ID and NCT Number (National Clinical Trial Number) via PMID, aided by the curated 
“PaperExtendedAttributes” table as the intermediary. After standardizing the data format of the intermediate 
index PMID to merge publications and clinical trials, we obtain 438,220 paper-clinical linkages between 61,447 
NCT clinical trials and 337,430 SciSciNet primary papers (Table 13).

News and social mentions of science. Understanding how science is mentioned in media has been another 
important research direction in the science of science community44,90. The Newsfeed mentions in Crossref Event 
Data link scientific papers in Crossref59 with DOIs to news articles or blog posts in RSS and Atom feeds, pro-
viding access to the latest scientific news mentions from multiple sources, including Scientific American, The 
Guardian, Vox, The New York Times, and others. Also, Twitter mentions in Crossref Event Data link scientific 
papers to tweets created by Twitter users, offering an opportunity to explore scientific mentions in Twitter.

We use the Crossref Event API to collect 947,160 records between 325,396 scientific publications and 387,578 
webpages from news blogs or posts (from April 5th, 2017 to January 16th, 2022) and 59,593,281 records between 
4,661,465 scientific publications and 58,099,519 tweets (from February 7th, 2017 to January 17th, 2022).

For both news media and social media mentions, we further link Crossref ’s publication records to SciSciNet’s 
primary papers. To do so, we first normalize the DOI format of these data records and converted all alphabetic 
characters to lowercase. We use normalized DOI as the intermediate index, as detailed below:

For news media mentions, we construct linkages between primary Paper ID and Newsfeed Object ID (i.e., 
the webpage of news articles or blog posts) by inner joining normalized DOIs. We successfully link 899,323 
records from scientific publications to news webpages in the Newsfeed list, accounting for 94.9% of the total 
records. The same news mention may be collected multiple times. After removing duplicate records, we end up 
with 595,241 records, linking 307,959 papers to 370,065 webpages from Newsfeed (Table 17).

Similarly, for social media mentions, we connect primary Paper IDs with Tweet IDs through inner joining 
normalized DOIs, yielding 56,121,135 records, more than 94% of the total records. After dropping duplicate 
records, we keep 55,846,550 records, linking 4,329,443 papers to 53,053,505 tweets (Table 16).

We also provide metadata of paper-news linkages, including the mention time and the detailed mention 
information in Newsfeed, to better support future research on this topic (Table 18). Similarly, we also offer the 
metadata of paper-tweet links, including the mention time and the original collected Tweet ID so that interested 
researchers can merge with further information from Twitter using the Tweet ID (Table 19).

a b

Fig. 2 Matching NSF reference string to MAG records. (a) Distribution of Z-scores for papers matched in 
ElasticSearch with the first and second highest scores. The vertical red line denotes the right-tail cutoff of the 
second score distribution (P = 0.05). (b) Distribution of pairwise Z-score differences for papers matched in search 
engine but with the first score no higher than the right-tail cutoff of the second score distribution (P = 0.05).
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Nobel Prize data from the dataset of publication records for Nobel laureates. We integrate a recent dataset by 
Li et al.91 in the data lake, containing the publication records of Nobel laureates in science from 1900 to 2016, 
including both Nobel prize-winning works and other papers produced in their careers. After mapping affiliated 
MAG Paper IDs to primary ones, we obtain 87,316 publication records of Nobel laureates in SciSciNet primary 
paper Table (20,434 in physics, 38,133 in chemistry, and 28,749 in physiology/medicine, Table 14).

Index Format Short Description

PaperID Integer MAG Paper ID.

PatentID String Patent ID from the dataset by Marx and Fuegi’s work67,68.

Type Integer 1 is from USPTO, and 0 is not.

Table 15. Data type for records of SciSciNet_Link_Patents.

Index Format Short Description

PaperID Integer MAG Paper ID.

NCT_Number String National Clinical Trial 
number.

Table 13. Data type for records of SciSciNet_Link_ClinicalTrials.

Index Format Short Description

PaperID Integer MAG Paper ID.

NewsfeedID String Newsfeed ID.

Table 17. Data type for records of SciSciNet_Link_Newsfeed.

Index Format Short Description

PaperID Integer MAG Paper ID.

TweetID Integer Tweet ID.

Table 16. Data type for records of SciSciNet_Link_Twitter.

Index Format Short Description

PaperID Integer MAG Paper ID.

NSF_Award_Number String NSF award number.

Type String “First” and “Crossref ” are exact matches, and “Second” is fuzzy match. “Crossref ” type is derived from 
Crossref funder-paper links.

Diff_ZScore Float The difference of Z-scores using heuristic method for the “Second” type.

Table 12. Data type for records of SciSciNet_Link_NSF.

Index Format Short Description

NewsfeedID String Newsfeed ID of the news article or blog post.

Occurred_Time DateTime Publication time of the news.

ObjectID String DOI object link of the mention.

Subject_Infomation String Detailed information of the subject news mention.

Table 18. Data type for records of SciSciNet_Newsfeed_Metadata.

Index Format Short Description

PaperID Integer MAG Paper ID.

LaureateID Integer Nobel Laureate ID mentioned in Li et al.91

Type Integer 1 is prize-wining paper, and 0 is not.

Table 14. Data type for records of SciSciNet_Link_NobelLaureates.
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calculation of commonly used measurements. Using the constructed dataset, we further calculate a 
range of commonly used measurements of scientific ideas, impacts, careers, and collaborations. Interested readers 
can find more details and validations of these measurements in the literature15,19,20,46–48,92–98.

Publication-level. The number of researchers and institutions in a scientific paper. Building on team science 
literature19,27, we calculate the number of authors and the number of institutions for each paper as recorded in 
our data lake. We group papers by primary Paper ID in the selected “SciSciNet_PaperAuthorAffiliations” table 
and aggregate the unique counts of Author IDs and Affiliation IDs as the number of researchers (team size) and 
institutions, respectively.

Five-year citations (c5), ten-year citations (c10), normalized citation (cf), and hit paper. The number of citations 
of a paper evolves over time46,48,99,100. Here we calculate c5 and c10, defined as the number of citations a paper 
received within 5 years and 10 years of publication, respectively. For the primary papers, we calculate c5 for all 
papers published up to 2016 (As the last version of MAG publication data is available until 2021) by counting 
the number of citation pairs with time difference less than or equal to 5 years. Similarly, we calculate c10 for all 
papers published up to 2011.

To compare citation counts across disciplines and time, Radicchi et al.48 proposed the relative citation indi-
cator cf, as the total number of citations c divided by the average number of citations c0 in the same field and the 
same year. Here we calculate the normalized citation indicator for each categorized paper in both top-level fields 
and subfields, known as Level-0 fields (19 in total) and Level-1 fields (292 in total) categorized by MAG, respec-
tively. Note that each paper may be associated with multiple fields, hence here we report calculated normalized 
citations for each paper-field pair in the “SciSciNet_PaperFields” data table.

Another citation-based measure widely used in the science of science literature16,19,83 is “hit papers”, defined 
as papers in the top 5% of citations within the same field and year. Similar to our calculation of cf, we use the 
same grouping by fields and years, and identify all papers with citations greater than the top 5% citation thresh-
old. We also perform similar operations for the top 1% and top 10% hit papers.

Citation dynamics. A model developed by Wang, Song, and Barabási (the WSB model)46 captures the 
long-term citation dynamics of individual papers after incorporating three fundamental mechanisms, including 
preferential attachment, aging, and fitness. The model predicts the cumulative citations received by paper i at 

time t after publication: =
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x, m captures the average number of references per paper, and μi, σi, and λi indicate the immediacy, longevity, 
and fitness parameters characterizing paper i, respectively.

We implement the WSB model with prior for papers published in the fields of math and physics. Following 
the method proposed by Shen et al.92, we adopt the Bayesian approach to calculate the conjugate prior, which 
follows a gamma distribution. The method allows us to better predict the long-term impact through the poste-
rior estimation of λi, while helping to avoid potential overfitting problems. Fitting this model to empirical data, 
we compute the immediacy μi, the longevity σi, and the ultimate impact = −∞ λc em[ 1]i

i  for all math and 
physics papers with at least 10 citations within 10 years after publication (published no later than 2011). To facil-
itate research on citation dynamics across different fields48, we have also used the same procedure to fit the 
citation sequences for papers that have received at least 10 citations within 10 years across all fields of study from 
the 1960s to the 1990s.

Sleeping beauty coefficient. Sometimes it may take years or even decades for papers to gain attention from the 
scientific community, a phenomenon known as the “Sleeping Beauty” in science93. The sleeping beauty coeffi-

cient B is defined as B t
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tm and c0 in the year of publication. Here we calculate the sleeping beauty coefficient from yearly citation records 
of a paper. We match the publication years for each citing-cited paper pair published in journals and then aggre-
gate yearly citations since publication for each cited paper. Next, we group the “SciSciNet_PaperReferences” 
table by each cited paper and compute the coefficient B, along with the awakening time. As a result, we obtain 
52,699,363 records with sleeping beauty coefficients for journal articles with at least one citation.

Novelty and conventionality. Research shows that the highest-impact papers in science tend to be grounded 
in exceptionally conventional combinations of prior work yet simultaneously feature an intrusion of atypical 
combinations47. Here following this work47, we calculate the novelty and conventionality score of each paper by 

Index Format Short Description

TweetID Integer Unique Tweet ID of the tweet.

Occurred_Time DateTime Publication time of the tweet.

ObjectID String DOI object link of the mention.

OriginalTweetID String Web link of the tweet.

Table 19. Data type for records of SciSciNet_Twitter_Metadata.
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computing the Z-score for each combination of journal pairs. We further calculate the distribution of journal 
pair Z-scores by traversing all possible duos of references cited by a particular paper. A paper’s median Z-score 
characterizes the median conventionality of the paper, whereas a paper’s 10th percentile Z-score captures the tail 
novelty of the paper’s atypical combinations.

More specifically, we first use the information of publication years for each citing-cited paper pair both pub-
lished in journals and shuffle the reference records within the citing-cited year group to generate 10 randomized 
citation networks, while controlling the naturally skewed citation distributions. We then traverse each focal 
paper published in the same year. We further aggregate the frequency of reference journal pairs for papers in 
the real citation network and 10 randomized citation networks, calculating the Z-score of each reference journal 
pair for papers published in the same year. Finally, for each focal paper, we obtain its 10th percentile and median 
of the Z-scores distribution, yielding 44,143,650 publication records with novelty and conventionality measures 
for journal papers from 1950 to 2021.

Disruption score. Disruption index quantifies the extent to which a paper disrupts or develops the existing 
literature20,51. Disruption, or D, is calculated through citation networks. For a given paper, one can separate its 
future citations into two types. One type only cites the focal paper itself while ignoring all the references that the 
paper builds upon, and the other is to cite both the focal paper and its references. D is expressed as: 
D p p

n n

n n ni j
i j

i j k
= − =

−

+ +
, where ni is the number of subsequent works that only cite the focal paper, nj is the 

number of subsequent works that cite both the focal paper and its references, and nk is the number of subsequent 
works that cite the references of the focal paper only. Following this definition, we calculate the disruption scores 
for all the papers that have at least one forward and backward citation (48,581,274 in total).

The number of NSF and NIH supporting grants. For external linkages from scientific publications to upstream 
supporting funding sources, we calculate the number of NSF/NIH grants associated with each primary paper 
in SciSciNet.

The number of patent citations, Newsfeed mentions, Twitter mentions, and clinical trial citations. For exter-
nal linkages from scientific publications to downstream public uses of science, we also calculate the number 
of citations each primary paper in SciSciNet received from domains that go beyond science, including patents 
from USPTO and EPO, news and social media mentions from Newsfeed and Twitter, and clinical trials from 
ClinicalTrials.gov.

Individual- and Institutional-level measures. Productivity. Scientific productivity is a widely used measure for 
quantifying individual careers9,15. Here we aggregate the unique primary Paper ID in SciSciNet, after grouping 
the records in the “SciSciNet_PaperAuthorAffiliations” data table by Author ID or Affiliation ID and calculate 
the number of publications produced by the same author or affiliation.

H-index. H-index is a popular metric to estimate a researcher’s career impact. The index of a scientist is h, if 
h of her papers have at least h citations and each of the remaining papers have less than h citations94,101. Here we 
compile the full publication list associated with each author, sort these papers by their total number of citations 
in descending order, and calculate the maximum value that satisfies the condition above as the H-index. By 
repeating the same procedure on each research institution, we also provide an institution-level H-index as well.

Scientific impact. Building on our c10 measure at the paper level, here we further calculate the average c10 
(<c10>) for each author and affiliation, which offers a proxy to individual and institutional level scientific 
impact. Similarly, we calculate the average logc10 (<logc10>), which is closely related to the Q parameter15 of 
individual scientific impact.

Here we group by Author and Affiliation ID in the “PaperAuthorAffiliations” table, and then aggregate 
c10 and logc10 (pre-calculated at the paper level) of all papers published by the same id. Following previous 
works15,16,102, to avoid taking logarithm of zeros, we increase c10 by one when calculating the <logc10>.

Name-gender associations. The availability of big data also enables a range of studies focusing on gender dis-
parities, ranging from scientific publications and careers17,103–106 to collaboration patterns25,107 and the effects of 
the pandemic on women scientists45,108–110. Here we apply the method from a recent statistical model80 to infer 
author gender based on their first names in the original author table. The method feeds unique author names 
into a cultural consensus model of name-gender associations incorporating 36 separate sources across over 
150 countries. Note that for all the 134,197,162 authors, 23.26% of the authors (31,224,458) have only the first 
initials, which are excluded from the inference. By fine-tuning the annotated names from these data sources 
following the original method, we obtain 409,809 unique names with max uncertainty threshold set to 0.26 and 
85% of the sample classified. Finally, we merge these name-gender inference records into the original SciSciNet_
Authors table, resulting a SciSciNet_Authors_Gender table, which contains 86,286,037 authors with inferred 
probability that indicates a name belongs to an individual gendered female, denoted as P(gf), as well as the 
number of inference source datasets and empirical counts. Together, by combining new statistical models with 
our systematic authorship information, this new table provides name-gender information, useful in studying 
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Fig. 3 Summary statistics of scientific publications in SciSciNet. (a) The number of publications in 19 top-level 
fields. For clarity we aggregated the field classification into the top level (e.g., a paper is counted as a physics 
paper if it is associated with physics or any other subfields of physics). (b) The exponential growth of science 
over time. (c) Average team size by field from 1950 to 2020. The bold black line is for papers in all the 19 top-
level fields. Each colored line indicates each of the 19 fields (color coded according to (a)).

Fig. 4 Linking scientific publications with socioeconomic institutions. Panels (a,b and d,e) show the distribution 
of paper-level downstream applications (a: Twitter mentions; b: Newsfeed mentions; d: Patents; e: Clinical trials). 
Panels (c and f) show the distribution of supporting scientific grants from NIH (c) and NSF (f).
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gender-related questions. It is important to note that such name-based gender inference algorithms, including 
the one used here as well as other popular tools such as genderize.io, have limitations and are necessarily imper-
fect. The limitations should be considered carefully when applying these methods96.

Fig. 5 Commonly used metrics in SciSciNet. (a) The distribution of disruption score for 48,581,274 papers20 
(50,000 bins in total). (b) Cumulative distribution function (CDF) of 44,143,650 journal papers’ 10th percentile 
and median Z-scores47. (c) Distribution of e logc10〈 〉 for scholars15 with at least 10 publications in SciSciNet. The red 
line corresponds to a log-normal fit with μ = 2.14 and σ = 1.14. (d) Survival distribution function of sleeping 
beauty coefficients93 for 52,699,363 papers, with a power-law fit: exponent α = 2.40. (e) Data collapse for a selected 
subset of papers with more than 30 citations within 30 years across journals in physics in the 1960s, based on WSB 
model46. The red line corresponds to the cumulative distribution function of the standard normal distribution.
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Data Records
The data lake, SciSciNet, is freely available at Figshare72.

Data structure. Table 2 presents the size and descriptions of these data files.
Table 3 contains information about “SciSciNet_Papers”, which is the data lake’s primary paper table, con-

taining information on the primary scientific publications, including Paper ID, DOI, and others, along with the 
Journal ID or Conference Series ID, which can link papers to corresponding journals or conference series that 
take place regularly. The short description in each data field includes the corresponding explanation of that field.

Tables 4–22 include the data fields and corresponding descriptions of each data table. Each data field spec-
ified is clear from its index name. An ID of the data field in a data table can be linked, if this field has the same 
ID name as another field in another table. Further, the data link tables provide linkages from scientific publica-
tions to external socioeconomic institutions. For example, the paper with primary “PaperID” as “246319838”, 
which studied the hereditary spastic paraplegia111, lead to three core NIH project number “R01NS033645”, 
“R01NS036177”, and “R01NS038713” in the Table 11 “SciSciNet_Link_NIH”. We can not only extract detailed 
information and metrics of the paper in the data lake (e.g., title from Table 8 “SciSciNet_PaperDetails”, or cita-
tion counts from the primary paper Table 3 “SciSciNet_Papers”) but also obtain further information of the 
funded-projects, such as the total funding amount, from NIH RePORTER (https://report.nih.gov).

Descriptive statistics. Next, we present a set of descriptive statistics derived from the data lake. Figure 3a–c 
show the distribution of papers across 19 top-level fields, the exponential growth of scientific publications in 
SciSciNet over time, and the average team size of papers by field over time.

Building on the external linkages we constructed, Fig. 4a–f show the distribution of paper-level upstream 
funding sources from NIH and NSF, and downstream applications and mentions of science, including USPTO/
EPO patents, clinical trials, news mentions from Newsfeed, and social media mentions from Twitter.

Figure 5 presents the probability distributions of various commonly used metrics in the science of science 
using our data lake, which are broadly consistent with the original studies in the literature.

technical Validation
Validation of publication and citation records. As we select the primary papers from the original MAG 
dataset, we have re-counted the citations and references within the subset of primary papers. To test the reliability 
of updated citation and reference counts in SciSciNet, here we compare the two versions (i.e., raw MAG counts 
and redistributed SciSciNet counts), by calculating the Spearman correlation coefficients for both citations and 
references. The Spearman correlation coefficients are 0.991 for citations and 0.994 for references, indicating that 
these metrics are highly correlated before and after the redistribution process.

We also examine the coverage of our publication data through a cross-validation with an external data-
set, Dimensions112. By using DOI as a standardized identifier, we find that the two databases contain a similar 
number of papers, with 106,517,016 papers in Dimensions and 98,795,857 papers in SciSciNet associated with 
unique DOIs. We further compare the overlap of the two databases, finding the two data sources share a vast 

Index Format Short Description

NSF_Award_Number String Unique NSF award number of the NSF award.

Title String Original title of the NSF award.

Publication_Research String Publications associated with the NSF award.

Date DateTime Date when the NSF award is signed by the NSF Grants Officer.

Table 20. Data type for records of SciSciNet_NSF_Metadata.

Index Format Short Description

JournalID Integer MAG Journal ID of the journal.

Journal_Name String Original name of the journal.

ISSN String ISSN (International Standard Serial Number) of the journal.

Publisher String Original publisher of the journal.

Webpage String Original web link of the journal.

Table 21. Data type for records of SciSciNet_Journals.

Index Format Short Description

ConferenceSeriesID Integer MAG ConferenceSeries ID of the conference series.

Abbr_Name String Abbreviated name of the conference series.

ConferenceSeries_Name String Original name of the conference series.

Table 22. Data type for records of SciSciNet_ConferenceSeries.
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majority of papers in common (84,936,278 papers with common DOIs, accounting for 79.74% of Dimensions 
and 85.97% of SciSciNet).

Further, the citation information recorded by the two datasets appears highly consistent. Within the 84.9 M 
papers we matched with common DOIs, SciSciNet records a similar, yet slightly higher number of citations on 
average (16.75), compared with Dimensions (14.64). Our comparison also reveals a high degree of consistency 
in paper-level citation counts between the two independent corpora, with a Spearman correlation coefficient 
0.946 and a concordance coefficient98,113 of 0.940. Together, these validations provide further support for the 
coverage of the data lake.

Validation of external data linkages. We further perform additional cross-validation to understand 
the reliability of data linkages from scientific publications to external data sources. Here we focus more on the 
NSF-SciSciNet publications linkages we created from raw data collection to final data linkage. We also use the 
same approach to validate the NIH-SciSciNet publications linkages.

Here we compare the distribution and coverage of paper-grants linkages between SciSciNet and Dimensions—
one of the state-of-the-art commercial databases in publication-grant linkages112. Figure 6a,b present the distri-
bution of the number of papers matched to each NSF award and NIH grant, showing that our open-source 
approach offers a comparable degree of coverage. We further perform individual grant level analysis, by com-
paring the number of papers matched to each grant reported by the two sources (Fig. 6c,d), again finding high 
degrees of consistency (Spearman correlation coefficient: 0.973 for NIH grants and 0.714 for NSF grants).

We further calculate the confusion matrices of linkage from SciSciNet and Dimensions. By connecting 
the two datasets through paper DOIs and NSF/NIH grant project numbers, we compare their overlaps and 

a

c

b

d

Fig. 6 Validation of data linkages between SciSciNet and Dimensions. Panels (a,b), The distribution of number 
of papers matched to each NIH and NSF grant, respectively. Panels (c,d), The number of papers matched to each 
NIH and NSF grant, respectively. All panels are based on data in a 20-year period (2000–2020).
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differences in grant-paper pairs. For NSF, the confusion matrix is shown in Table 23. The two datasets provide 
a similar level of coverage, with Dimensions containing 670,770 pairs and SciSciNet containing 632,568 pairs. 
78.9% pairs in Dimensions (and 83.7% pairs in SciSciNet) can be found in the other dataset, documenting a high 
degree of consistency between the two sources. While there are data links contained in Dimensions that are not 
in SciSciNet, we also find that there exists a similar amount of data records in SciSciNet but not in Dimensions. 
Table 24 shows the confusion matrix of NIH grant-paper pairs between the two datasets. Again, the two data-
sets share a vast majority of grant-paper pairs in common, and 95.3% pairs in Dimensions (and 99.7% pairs 
in SciSciNet) can also be found in the other dataset. These validations further support the overall quality and 
coverage of data linkages in SciSciNet.

Validation of calculations of commonly used measurements. We also seek to validate the calculated 
metrics included in SciSciNet. In addition to manual inspection of independent data samples during data pro-
cessing, along with presenting the corresponding distributions of indicators in the Descriptive statistics section, 
which capture general patterns, we further double-check the calculation results of these popular measurements 
in SciSciNet by reproducing canonical results in the science of science under a series of standardized and trans-
parent processes.

Disruption. For disruption scores, we plot the median disruption percentile and average citations on different 
team sizes for 48,581,274 publications with at least one citation and reference record in SciSciNet. As shown in 
Fig. 7a, when team size increases, the disruption percentile decreases while the average citations increase, which 
is consistent with the empirical findings that small teams disrupt whereas large teams develop20. In addition, the 
probability of being among the top 5% disruptive publications is negatively correlated with the team size, while 
the probability of being among the most impactful publications increases is positively correlated with the team 
size (Fig. 7b). These results demonstrate the consistency with results obtained in the literature.

Novelty and conventionality. The combinations of conventional wisdom and atypical knowledge tend to pre-
dict a higher citation impact47. Here we repeat the original analysis by categorizing papers based on (1) median 
conventionality: whether the median score of a paper is in the upper half and (2) tail novelty: whether the paper 
is within the top 10th percentile of novelty score. We then identified hit papers (within the subset of our analy-
sis), defined as papers rank in the top 5% of ten-year citations within the same top-level field and year. The four 
quadrants in Fig. 7d suggest that papers with high median conventionality and high tail novelty present a higher 
hit rate of 7.32%, within the selection of SciSciNet papers published from 1950 to 2000. Also, papers with high 
median conventionality but low tail novelty show a hit rate of 4.18%, roughly similar to the baseline rate of 5%, 
while those with low median conventionality but high tail novelty display a hit rate of 6.48%. Meanwhile, papers 
with both low median conventionality and low tail novelty exhibit a hit rate of 3.55%. These results are broadly 
consistent with the canonical results reported in47.

WSB model. In Fig. 5e, we select 36,802 physics papers published in the 1960s with more than 30 citations 
within 30 years of publication. By rescaling their citation dynamics using the fitted parameters, we find a 
remarkable collapse of rescaled citation dynamics which appears robust across fields and decades. We further 
validate the predictive power of the model with prior based on Shen et al.92, by calculating the out-of-sample 
prediction accuracy. We find that with a training period of 15 years, the predictive accuracy (defined as a strict 
absolute tolerance threshold of 0.1) stays above 0.65 for 10 years after the training period, and the Mean Absolute 
Percentage Error (MAPE) is less than 0.1. The MAPE stays less than 0.15 for 20 years after the training period.

Sleeping beauty. We first fit the distribution of the sleeping beauty coefficients in SciSciNet (Fig. 5d) to a 
power-law form using maximum likelihood estimation114, obtaining a power-law exponent α = 2.40 and mini-
mum value Bm = 23.59. By using fine-grained subfield information provided by MAG, we further calculate the 
proportion of external citations. Consistent with the original study93, we find that papers with high B scores are 
more likely to have a higher proportion of external citations from other fields (Fig. 7c).

NSF grant-paper pairs In SciSciNet Not in SciSciNet

In Dimensions 529,382 141,388

Not in dimensions 103,186 \

Table 23. Confusion table of pairs of NSF grant-paper with DOI between SciSciNet and Dimensions.

NIH grant-paper pairs In SciSciNet Not in SciSciNet

In Dimensions 5,356,652 264,119

Not in dimensions 15,157 \

Table 24. Confusion table of pairs of NIH grant-paper with DOI between SciSciNet and Dimensions.
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Usage Notes
Note that, recognizing the recent surge of interest in quantitative understanding of science95,97,98,115,116, the meas-
urements currently covered in the data lake are not meant to be comprehensive; rather they serve as examples 
to illustrate how researchers from the broader community can collectively contribute and enrich the data lake. 
There are also limitations of the data lake that readers should keep in mind when using the data lake. For exam-
ple, our grant-publication linkage is focused on scientific papers supported by NSF and NIH; patent-publication 
linkage is limited to citations from USPTO and EPO patents; clinical trial-publication linkage is derived from 
clinitrials.gov (where the geographical distribution may be heterogenous across countries, Table 25); and 
media-publication linkage is based on sources tracked by Crossref. Further, while our data linkages are based 
on state-of-the-art methods of data extraction and cleaning, as with any matching, the methods are necessarily 
imperfect and may be further improved through integration with complementary commercial products such 
as Altmetric and Dimensions. Finally, our data inherently represents a static snapshot, drawing primarily from 
the final edition of MAG (Dec 2021 version). While this snapshot is already sufficient in answering many of the 
research questions that arise in the field, future work may engage in continuous improvement and update of the 
data lake to maximize its potential.
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Fig. 7 Calculating commonly used measurements in the science of science literature. (a,b), Small teams disrupt 
while large teams develop in SciSciNet. (c), The cumulative distribution functions (CDFs) of proportion of 
external citations for papers with high (top 10,000, B > 307.55), medium (from 10,001st to top 2% SBs, 33< B 
< = 307.55); and low (B < = 33) sleeping beauty indexes. (d), The probability of a 5% hit paper, conditional on 
novelty and conventionality for all journal articles in SciSciNet from 1950 to 2000.
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Overall, this data lake serves as an initial step for serving the community in studying publications, funding, 
and broader impact. At the same time, there are also several promising directions for future work expanding 
the present effort. For example, the rapid development in natural language processing (NLP) models and tech-
niques, accompanied by the increasing availability of text information from scientific articles, offers new oppor-
tunities to collect and curate more detailed content information. For example, one can link SciSciNet to other 
sources such as OpenAlex or Semantic Scholar to analyze large-scale data of abstract, full-text, or text-based 
embeddings. Such efforts will not only enrich the metadata associated with each paper, but also enable more 
precise identification and linkage of bio/chemical entities studied in these papers117. Further, although plat-
forms like MAG have implemented advanced algorithms for name disambiguation and topic/field classifica-
tion at scale, these algorithms are inherently imperfect and not necessarily consistent across datasets, hence it 
is essential to further validate and improve the accuracy of name disambiguation and topic classifications118. 
Related, in this paper we primarily focus on paper-level linkages across different datasets. Using these link-
ages as intermediary information, one can further construct and enrich individual-level profiles, allowing us to 
combine professional information (e.g., education background, grants, publications, and other broad impact) 
of researchers with important demographic dimensions (e.g., gender, age, race, and ethnicity). Finally, the data 
lake could contribute to an ecosystem for the collective community of the science of science. For example, there 
are synergies with the development of related programming packages, such as pySciSci119. By making the data 
lake fully open, we also hope it inspires other researchers to contribute to the data lake and enrich its coverage. 
For example, when a research team publishes a new measure, they could put out a data file that computes their 
measure based on SciSciNet, effectively adding a new column to the data lake. Lastly, science forms a complex 
social system and often offers an insightful lens to examine broader social science questions, suggesting that the 
SciSciNet may see greater utility by benefiting adjacent fields such as computational social science120,121, network 
science122,123, complex systems124, and more125.

code availability
The source code for data selection and curation, data linkage, and metrics calculation is available at https://github.
com/kellogg-cssi/SciSciNet.
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