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OpCitance: Citation contexts 
identified from the PubMed Central 
open access articles
Tzu-Kun Hsiao   ✉ & Vetle I. Torvik   ✉

OpCitance contains all the sentences from 2 million PubMed Central open-access (PMCOA) articles, 
with 137 million inline citations annotated (i.e., the “citation contexts”). Parsing out the references and 
citation contexts from the PMCOA XML files was non-trivial due to the diversity of referencing style. 
Only 0.5% citation contexts remain unidentified due to technical or human issues, e.g., references 
unmentioned by the authors in the text or improper XML nesting, which is more common among 
older articles (pre-2000). PubMed IDs (PMIDs) linked to inline citations in the XML files compared to 
citations harvested using the NCBI E-Utilities differed for 70.96% of the articles. Using an in-house 
citation matcher, called Patci, 6.84% of the referenced PMIDs were supplemented and corrected. 
OpCitance includes fewer total number of articles than the Semantic Scholar Open Research Corpus, 
but OpCitance has 160 thousand unique articles, a higher inline citation identification rate, and a more 
accurate reference mapping to PMIDs. We hope that OpCitance will facilitate citation context studies in 
particular and benefit text-mining research more broadly.

Background & Summary
Citing prior work has long been a common practice in academic writing. In general, citations were used by 
authors to situate the reported work within the scope of the subject field and provide intellectual linkage between 
past and the reported work. Hence, citations have been broadly used for tracking the advance of science, access-
ing development of disciplines, and evaluating the impact of research output1–5. However, previous studies6–9 
showed that not all citations were equal, and scholars cited prior work for various kinds of purposes.

Many efforts have been put into studying the reasons for making citations and the importance of cited work 
to the citing work. Aside from surveying and interviewing authors10–13, analyzing citations using full-text articles 
(i.e., inline citations) provides an unobtrusive way for scholars to explore the motivation and importance behind 
each citation. Count-based features, location-based features, and textual features were the three popular catego-
ries of features used in previous studies. Count-based features measured the count of occurrences of a cited work 
in the text. For instance, the number of times for a cited work being mentioned in the entire citing article was 
reported as an informative feature for identifying important citations14. Location-based features provided insights 
about the role played by the cited work in the citing work8,15–17. For example, citations found in the introduction 
and literature review could be cited for providing background knowledge or supporting research arguments, 
while citations found in the result or discussion section implied comparisons between past and the reported 
research findings8,15. Zhao and Strotmann18 explored the influence of filtering out citations in introductory and 
background sections on evaluating authors’ research impact. On the other hand, textual features used seman-
tic cues extracted from the text surrounding citations to capture authors’ motives for making citations9,19–21.  
These surrounding texts are known as citation contexts. The window of a citation context can be a fixed number 
of characters, the citing sentence (sometimes including its preceding and following sentences), or a text block 
containing sentences related to the cited article22–25. In this study, the window for a citation context is defined as 
a sentence where a citation appears (i.e., the citing sentence).

Although studies on inline citations have been developed for more than forty years26, theories and methods 
of capturing the motivations behind citations and measuring the importance of cited work to the citing work are 
still in progress. One of the challenges is acquiring data. Citation studies used to rely heavily on bibliographic 
data obtained from bibliography databases such as Web of Science (WoS) and Scopus. These databases have 
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limited access to full-text articles and require subscriptions. The movement to make scholarly articles open 
access (OA) has gradually changed the landscape. Piwowar et al.27 used DOIs to estimate the percentage of 
scholarly articles that were open access and found that it ranged from 27.9% to 47.0%, depending on the source 
of the DOIs and the time of publication. In line with the OA trend, citation data is no longer restricted to sub-
scription databases28. For instance, Crossref provides APIs for retrieving citation links. The NIH Open Citation 
Collection (NIH-OCC)29 provides open citation data for PubMed articles. Although the open science trend 
and the massive growth of OA articles allow for large-scale studies of inline citations and citation contexts30–32, 
it is still not an easy task to identify inline citations from full-text articles. Efforts have been made in the com-
putational linguistics and computer science communities. The ACL anthology network (AAN) corpus33, the 
Semantic Scholar Open Research Corpus (S2ORC)34, the COVID-19 Open Research Dataset (CORD-19)35, 
and a dataset collected using the Academic Citation Typing (ACT) platform36,37 are the existing large-scale 
citation contexts datasets. The AAN corpus contains 77,753 citation contexts from 18,290 articles, and S2ORC 
contains over 12 million full-text articles with inline citations annotated33,34. The ACT dataset contains 11,233 
citing sentences annotated by six citation purposes (background, uses, compare_contrast, motivation, extension, 
and future)36,37. Part of the ACT dataset has been enhanced with 12 features and released as the ACT2 dataset38.  
These datasets were generated from PDF version of articles. CORD-19 contains over 72 thousand full-text arti-
cles on COVID-19 and related historical coronaviruses35. These articles were sourced from PDF and XML ver-
sions of articles: The PDF version of articles were from PubMed, PubMed Central (PMC), the World Health 
Organization’s COVID-19 database, and preprint servers (bioRxiv, medRxiv, and arXiv); the XML version of 
articles were from PMC35. Here, we introduce OpCitance, a dataset generated from the XML version of the arti-
cles in the PMC Open Access Subset (PMCOA subset) (https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). 
OpCitance contains all sentences from over 2 million articles. For sentences with inline citations, the inline cita-
tions and their PMIDs (if applicable) are annotated. These sentences are defined as citation contexts (or citances) 
in OpCitance. The sentence-level information retrieval and extraction focus have a long history in PubMed and 
PMC, such as the National Library of Medicine’s (NLM) LitSense39 search system and SemRep40 information 
extraction system. The OpCitance data is complementary to these tools and can be combined in new types of 
text-mining and citation analysis.

Journal Article Tag Suite (JATS) is a standardized markup scheme for tagging journal articles in the XML for-
mat (https://jats.nlm.nih.gov/about.html). JATS was developed by the National Library of Medicine (NLM) and 
currently maintained by the National Information Standards Organization (NISO). In PMC, JATS was adopted 
as the preferred XML tagging style for article submissions. The unified XML tagging style gave the possibility to 
automatically extract citation contexts at a large-scale. In this study, we developed an XML parser which could 
process XML files in the PMCOA subset and meet the following goals: (1) parsing each article into sentences, 
(2) identifying citation contexts and PMIDs of the cited work, (3) identifying section titles and mapping section 
titles with standardized IMRaD structure (introduction, method, results, and conclusion and discussion), and 
(4) labeling each sentence by text progression and the corresponding IMRaD category.

This article describes the method of identifying inline citations and their citation contexts from the PMCOA 
subset and makes OpCitance available to the public. To construct this dataset, we collected the PMCOA sub-
set in May 2019. At the time of data collection, there were 2,407,660 articles in the PMCOA subset, in which 
2,049,871 articles had at least one identifiable citation context. This dataset could benefit scientists interested in 
studying citation motives and citation behaviours. Moreover, this dataset could be used for text-mining projects 
such as studying scientific writing styles and other citation analysis research.

Methods
This section describes how inline citations and citation contexts were extracted. In OpCitance, an inline citation 
refers to a citation that appears in a paragraph, table, or figure/table caption, whereas a citation context refers to 
the sentence or table cell that contains the inline citation. Below is an example of a citation context produced by 
our XML parser for PMCID: 5219817 with two inline citations denoted by |B1| and |B2|.

If for any reason this process fails, gradually the person will suffer from 
osteoporosis |B1|, |B2|.

XPath syntax was used to navigate through the XML tags. Python’s lxml package was utilized to parse XML 
files because it had better compatibility with XPath syntax. Figure 1 depicts the overall workflow of generating the 
dataset. First, references and their PMIDs (if any) were identified. Second, the components (abstract, main text, 
tables, figures, and other ancillary components) in each article and the paragraphs in each component were iden-
tified. Third, the section titles of paragraphs, tables, and figures were extracted and mapped to the IMRaD cate-
gories. Fourth, inline citations in each component were marked. Fifth, the text was parsed into sentences and the 
citation contexts were identified. For each inline citation per citation context, the PMID was appended if the XML 
file had a PMID for the inline citation. Sixth, citation contexts and sentences were labeled by text progression, 
component names, and the belonging IMRaD categories. Seventh, the PMIDs were verified with citation data 
collected from the NCBI Entrez Programming Utilities (https://www.ncbi.nlm.nih.gov/pmc/tools/cites-citedby/)  
(hereinafter referred to as the Entrez citation data) and Patci41, a citation matcher. Specifically, the NCBI Entrez 
Programming Utilities take PMIDs of the PMC articles as inputs and return lists of PMIDs cited by each input 
PMID. Patci matches reference strings to records from a set of bibliographic databases (e.g., PubMed, DBLP, and 
ADS) and returns the source link IDs (e.g., PMIDs) and the match probability of each ID. The details of each step 
are addressed in the following sections.
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Identifying references and their PMIDs from XML files. References were identified through the 
<ref> tags. Typically, one <ref> tag pointed to one reference, and the ID of the reference (referred to as ref-ID 
below) could be identified through the “id” attribute of the <ref> tags. However, in the cases that multiple 
references nested under one <ref> tag (as shown in Fig. 2), the IDs of the nested references were collected 
through the “id” attributes with tag names containing citation (e.g., <mixed-citation>, <element-citation>, and 
<nlm-citation>). Aside from collecting the IDs given by the publisher, we also searched whether references had 
PMIDs. The PMIDs were identified through the “pmid” attribute associated with <pub-id> tags.

Identifying components in an article. A set of tags were used to identify abstract, main text, tables, fig-
ures, and other ancillary components (e.g., glossary, appendix, and conflict of interests). Abstracts were identified 
through <front//abstract> and <front//trans-abstract> tags. Main text was identified through the <body> tag. 
Tables and figures were retrieved through tag names starting with <table-warp> and, or through the <tbody> 
tag under <array> tag. Ancillary components were identified through the <back> tag. After the components 
were identified, <p> and <disp-quote> tags were used to find text fragments in each component.

Mapping section titles to IMRaD categories. The IMRaD categories were identified using section titles 
and section type information extracted from the XML files. We decided to use IMRaD categories as standardized 
section types for two reasons: First, the IMRaD structure has been widely adopted in the scientific literature 
since the 1970s42. Second, empirical studies on inline citations have utilized the IMRaD categories for analyzing 
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Fig. 1 Workflow of generating the dataset.

Fig. 2 Example of nested references. (left: text shown in article; right: XML structure).
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citation functions, sentiments, and importance43,44. Providing the IMRaD categories could be beneficial to future 
research on similar topics. The section titles were extracted through the <title> tags or <label> tags being 
the child node of <sec> tags, and the section type information was extracted through the “sec-type” attribute.  
The section titles and section types were then concatenated into a string and processed by a rule-based matching 
algorithm. The algorithm matched the string with a set of cue words and phrases (Table 1). If a match was found, 
the corresponding IMRaD category would be returned. To identify the cue words and phrases, we sorted sec-
tion titles and section types by the number of occurrences. Section titles and types with high occurrences were 
manually inspected, and the cue words and phrases commonly used in scientific articles for denoting the IMRaD 
categories were identified. We understood that this rudimentary approach might cause some misidentifications, 
and the IMRaD categories of some sections (e.g., introduction, background, and discussions) could be easier to 
identify than the other sections. However, the distribution of the identified IMRaD categories along with text 
progression (see Technical Validation below) was aligned with the common structure of scientific articles.

Finding inline citations. Inline citations were identified through the <xref> tags. In JATS, <xref> tags 
represent cross-references to objects within the document. The referred object can be a table, a figure, a citation, 
etc. To verify whether a <xref> tag was indeed pointing to a citation, we collect the ID of each <xref> tag 
through the “rid” attribute (addressed as xref-ID below). Each of the xref-IDs was then matched with the ref-IDs. 
Only the xref-IDs matched with ref-IDs were marked as inline citations.

It is worth noticing that citations could be implicitly mentioned in text in some referencing styles. The com-
mon cue of an implicit mention was a hyphen between the citation markers such as “[3–6]” or “(3–6)”. In cases 
like this, not every inline citation was tagged in full-text articles but could be inferred from the citation markers. 
These untagged inline citations were the implicitly-mentioned citations.

Two tagging styles of implicitly-mentioned citations were found in the XML files. The first one was wrap-
ping the implicitly-mentioned citations by two <xref> tags; the second one was using one <xref> tag to rep-
resent a set of citations. Examples of the two tagging styles would look like “[3–6]” and “[3–6]”, respectively.  
The underlines in the examples denoted the citation markers associated with <xref> tags. For the first case, the 
implicitly-mentioned citations were identified through enumerating the citations between the two <xref> tags. 
For the second case, the enumeration went until the end of the label (e.g., the “6” in [3–6]).

Identifying citation contexts and sentence labelling. Along with the process of searching inline cita-
tions, the text in the paragraphs, tables, and figures was also collected. Also, when a citation was identified, the 
citation marker was replaced by the ID of the citation, wrapping by two vertical bars (e.g., |ref1|). After the above 
labelling process, the collected text was parsed into sentences. The Natural Language Toolkit (NTLK library) 
was used for tokenizing text found in paragraphs and figure captions into sentences while text in tables was 
collected element by element. NLTK was selected for sentence tokenization (i.e., parsing text in paragraphs 
and figure captions into sentences) since it is a well-established library for processing biomedical articles39,45,46 
and because it is fast. For a typical article in our dataset, NLTK takes about 1 second to tokenize all sentences, 
while the Stanford NLP group’s Stanza library takes about 3 seconds. Sentences containing citations were cita-
tion contexts. Furthermore, citation contexts and sentences were labeled by the belonging component names  
(abstract, body, etc.) and IMRaD categories identified in the above steps. Note that IMRaD identification was 
not applied to abstracts and ancillary components. The IMRaD labels for sentences in abstracts and ancillary 
components (e.g., glossary, appendix, and conflict of interests) are all NoIMRaD. The labels for the component 
names and the IMRaDs could be found in the dataset’s location and IMRaD columns, respectively. If a citation had 
a PMID from the XML file, the PMID was also attached.

Verifying and correcting PMIDs identified from XML files. The cited PMIDs identified from the XML 
files (hereinafter referred to as the XML-tagged PMIDs) were verified and corrected with two approaches. First, 
the XML-tagged PMIDs were compared to the Entrez citation data (as of December 2018), which included cita-
tions from 4,243,594 PMC articles to PubMed articles. The intxt_pmid_source indicator was created as a result 
of this comparison: if the XML-tagged PMID could be confirmed by the Entrez citation data, it received the 
value xml,pmc; otherwise, it received the value xml. Second, we determined the best source link IDs for the ref-
erences (e.g., PMIDs and non-PMIDs: DBLP IDs and ADS IDs) and mapped these IDs to the inline citations.  
The best IDs for 98.25% (135,340,795) of the OpCitance’s 137,748,787 inline citations were identified using 
Patci, a tool that took reference strings (extracted from the XML files) as input and returned source link IDs 
as well as the match probability of each ID. The best ID of each reference string was determined with a match 
probability threshold. The default threshold is 0.997 and was lower for non-PMIDs or for PMIDs that could 
be confirmed by one of the nine public sources such as iCite, the Entrez citation data, and OpenCitations.  

Label IMRaD category Cue words and phrases

I Introduction/Background intro*, overview, background, history, related work, related stud*, previous 
work, previous stud*, review

M Method method, material, experimental procedure, protocol, data

R Result result, finding

D Conclusion/Discussion conclud*, conclusion, summary, discuss*, future

NoIMRaD — The string does not contain the above terms.

Table 1. Terms for mapping section titles with standardized section types.
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These sources are listed by name in a field in OpCitance. The harvested and cleaned citation data for PubMed articles 
from the nine public sources is derived from an inhouse project tentatively called uCite for which the working manu-
script is available by request. The thresholds were set by manually inspecting a collection of references that appeared 
to be borderline. Furthermore, PMID was the preferred ID unless the non-PMID’s match probability was consid-
erably higher. The best IDs for the remaining 1.75% (2,407,992) of inline citations were the XML-tagged PMIDs  
(if any). These 2,407,992 inline citations that were not cross-checked with Patci were mainly due to the citing 
papers’ publication years. Patci is based on a snapshot of PubMed citation data collected in 2018. Out of these 
2,407,992 inline citations, 2,284,590 (94.88%) are from papers published in 2018 or later. Each best ID has two 
indicators: The best_source indicator states the sources that confirm the ID (e.g., xml,pmc,mag); the best_id_diff 
indicator (Table 2) denotes the comparison result between the XML-tagged PMID and the best ID.

Further details of the comparison results are addressed in the Technical Validation section.

Data Records
The May 2019 XML version of the PMC open access subset contains 2,407,660 articles, of which about 85.14% 
of articles (2,049,871 articles) have a reference section and at least one <xref> tag pointing to a reference 
(i.e., having at least one inline citation). These 2,049,871 articles contain 720,649,608 sentences (a text cell in 
a table counts as a sentence). Of these 720,649,608 sentences/text cells, 75,848,689 (10.53%) are citation con-
texts, yielding 137,748,787 inline citations. On average, there are 1.82 inline citations per citation context. These 
137,748,787 inline citations include 86,035,875 references that account for 99.49% of the total of 86,473,346 
references (0.51% of references do not have citation contexts). As stated in the Method section, not all inline cita-
tions were tagged with the <xref> tag. Of the 137,748,787 inline citations, 127,810,293 (92.79%) were captured 
through <xref> tags, and 9,938,494 (7.21%) were implicitly-mentioned citations (extracted from citation mark-
ers associated with a <xref> tag but pointing to multiple references, e.g., [3–6]) identified by our XML parser.

The 2,049,871 articles having at least one inline citation and its citation context identified were published in 
8,770 journals. The years of publication spread from 1979 to 2019. Although PMC was launched in early 2000, 
PMC had digitalized back issues of historically-significant biomedical journals up to 1923 for US journals and 
up to 1877 for foreign journals. In OpCitance, 5,449 (0.27%) articles were published prior to 2000, and 2,044,422 
(99.73%) were published after 2000. Figure 3 presents the distribution of the number of references, the number 
of inline citations, and the number of citation contexts in the two periods (1979–1999 and 2000–2019). On aver-
age, the number of references and the number of inline citations increased in the later period. The mean number 
of references increased from 30.30 to 32.47, and the mean number of inline citations increased from 47.04 to 
48.64. For articles published in 2000 and after, the number of references, inline citations, and citation contexts 
on log scale appear to follow a normal distribution, except for an excess portion in the left tail that are likely due 
to shorter types of articles (e.g., letters). 95% of the articles have between 5–122 references, 6–214 inline cita-
tions, and 4–115 citation contexts. It is also worth noticing that publication types are more diverse in the second 
period. Articles published before 2000 only covered 11 publication types, and the most common type, research 
article, accounted for 90.95% of the articles, while 1.96% were review articles. In 2000 and after, there were  
33 publication types, and research articles dropped to 78.81%, while review articles increased to 7.71%. This helps 
explain the increase in articles with more than 100 references in the second period.

Figure 4 shows a snippet of data records in OpCitance. The data files are formatted as tab-separated values 
(TSV). Each row in the dataset contains a citation context or a sentence associated with fourteen attributes. 
The columns, pmcid and pmid, are the unique identifiers of the citing article in PMC and PubMed, respectively. 
Location gives information about article component (abstract, main text, table, figure, etc.) where each cita-
tion context/sentence belongs. IMRaD addresses the IMRaD section where each citation context/sentence is in. 
Sentence_id provides the ID of the citation context/sentence in the component. Notably, when a citation context 
contains more than one inline citation, the citation context appears as multiple rows in our dataset, but the 
sentence_id of the citation context remains the same. Total_sentences is the number of sentences in the compo-
nent. Intxt_id records the unique identifier of the cited work. Intxt_pmid records the PMID of the cited work (if 
any) retrieved from the XML files (i.e., the XML-tagged PMID). Intxt_pmid_source addresses the source where 
PMIDs were identified: Xml represents that a PMID is only identified from the XML file, while xml,pmc repre-
sents that the PMID is not only from the XML file, but also in the Entrez citation data. Intxt_mark provides the 
citation marker associated with the inline citation. Best_id records the best source link ID (e.g., PMID) for each 

Best_id_diff 
Indicator value Best_id value Definition

Best_id of the citation is 
cross-checked with Patci

SAME Patci-identified ID The Patci-identified ID is the same as the XML-tagged PMID. Yes

NONE — The citation has neither a Patci-identified ID nor an XML-tagged 
PMID. Yes

INSERT Patci-identified ID The citation has a Patci-identified ID but lacks an XML-tagged 
PMID. Yes

SWAP Patci-identified ID The Patci-identified PMID is different from the XML-tagged PMID. Yes

DELETE — The citation has an XML-tagged PMID, but Patci does not identify 
any ID for it. Yes

PMID_XML XML-tagged PMID The citation has an XML-tagged PMID. No

NONE_XML — The citation does not have an XML-tagged PMID. No

Table 2. Definition of the best_id_diff indicator values.

https://doi.org/10.1038/s41597-023-02134-x
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inline citation. Best_source addresses the sources that confirms the best_id. Best_id_diff indicates the comparison 
results between the best_id and the intxt_pmid columns. Progression records text progression of each citation 
context/sentence.

OpCitance has been deposited to the Illinois Data Bank47:
https://doi.org/10.13012/B2IDB-4353270_V2
The dataset contains 24 TSV files. The first 15 files are the articles published in journals with journal titles 

starting from A to O. The 16th and 17th files are the articles published in journals with journal titles starting with 
P. The 18th to 23rd files are the articles published in journals with journal titles starting from Q to W. The last file 
contains the articles published by journals with journal titles starting with X, Y, or Z.

Technical Validation
As addressed in the Data Records section, 99.49% of the references’ inline citations were identified. Although 
only 0.51% of the references were without inline citation, this condition might still affect the future use of the 
dataset. Hence, in the following sections, we addressed the distribution of references without inline citation by 
the following characteristics of citing articles: publication years, publication types, and the sources of the XML 
files. Also, a probabilistic model was used to assess the effect of the above features on the likelihood of an inline 
citation of a reference being identified.

Fig. 3 Distribution of numbers of references and inline citations. For articles published between 1979 and 
1999, the mean number of references, inline citations, and citation contexts were 30.30, 47.04, and 27.80, 
respectively. As for articles published between 2000–2019, the mean number of references, inline citations, and 
citation contexts were 32.47, 48.64, and 27.82, respectively. These numbers were the antilogarithms of the means 
presented in the figure.

Fig. 4 Snapshot of data records in OpCitance.
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Publication year and publication type. Figure 5 showed how the inline citations of references were 
identified in different publication years and publication types. Overall, the percentages of references without 
inline citations dropped as time progressed, implying the tagging of the XML files improved over time. These 
improvements followed distinct patterns that appeared in the four following periods: 1979–1984, 1985–1999, 
2000–2008, and 2009–2019. In the first time period, missing inline citations were frequent (between 7%–20% 
of the references), but this time period contains a small portion of the entire dataset (0.003%, 2,912 references).  
In the second period, the proportions of references without citation contexts dropped gradually from around 5% 
to around 1%. The proportion of references without citation contexts remained around 1% in the third period, 
and dropped from 0.4% to 0.2% in the fourth period. The patterns observed before and after the launching year 
(2000) of PMC implied that although PMC digitalized back issues of journals, some of the citations might not be 
captured and tagged in the digitalization process.

The bottom panels in Fig. 5 showed the percentages of references without inline citations in the five most 
common publication types (research article, review article, case report, brief report, and letter). These five pub-
lication types accounted for 94.97% (1,946,687) of the articles in OpCitance. Each of the five categories followed 
a pattern similar to the overall trend, but with some notable exceptions. In review articles, inline citations were 
missing at almost twice the rate of other types of articles in 2004–2008. In brief reports, the rates were nearly five 
times as the other types of articles between 2016 and 2018.

Sources of XML files. Articles are deposited into PMC by participating journals and authors e.g., who are 
required to make their articles publicly accessible due to NIH funding. Participating journals deposit XML files 
following JATS (see Methods). Author manuscripts (e.g., Word, PDF) are processed through the NIH Manuscript 
Submission (NIHMS) system and converted to JATS. Moreover, there were three kinds of participating jour-
nals: full participation, selective deposit, and NIH portfolio. While a journal is in full participation journals, 
they deposit all their articles. Articles from selective deposit journals are mainly due to authors opted to pay 
for open-access. Articles in the NIH portfolio are the articles where authors acknowledge NIH funding. Note 
that the PMC open-access subset consists of PMC articles under Creative Commons (CC) or similar licenses. 

Fig. 5 Distribution of references without inline citations by publication years (upper-left and upper-right) and 
publication types (bottom-left and bottom-right). The shaded area showed the percentage of references without 
inline citations with 95% confidence interval.

https://doi.org/10.1038/s41597-023-02134-x


8Scientific Data |          (2023) 10:243  | https://doi.org/10.1038/s41597-023-02134-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

In other words, the articles in PMC subject to traditional copyrights restrictions are not in the open-access sub-
set, although they are free to access individually as PDF files. Also, some journals delay the release of articles in 
PMC. The delays were mostly within a year, but can be more than one year for some journals (e.g., Journal of the 
Royal Society of Medicine, 36-months delay). To estimate the proportion of the open-access subset in the PMC, 
we searched PMC for articles published between 1979 and May 2019. (The query is “YYYY/01/01”[Publication 
Date]:“YYYY/12/31”[Publication Date] for each year from 1979 to 2018. For year 2019, the query is 
“2019/01/01”[Publication Date]:“2019/05/31”[Publication Date].) Overall, open access articles accounted for 
about 41% of the articles indexed in PMC, and the proportion of open access articles in PMC increased over time 
(Fig. 6). Very few old PMC articles are open access (less than 1% between 1979–1996). From 1997 to 2018, the 
shares of open access articles in PMC increase from 3% to 64%. Note that PMCOA statistics are from the XML 
files downloaded from PMC in May 2019, and the PMC statistics were collected during preparation of the man-
uscript (September 2022). The drop in 2019 is likely to be an artifact due to the delay deposit policies of journals, 
and the time gap between PMC indexing and deposit in the PMC’s FTP bulk download.

To acquire the sources of XML files, we download the PMC journal list (https://www.ncbi.nlm.nih.gov/
pmc/journals/). The journal list covers full participation and NIH portfolio journals. Journal titles not on the 
list are selective deposit journals. PMCIDs of author manuscripts were retrieved from PMC using the query, 
author manuscript[filter]. Journal titles and PMCIDs of the XML files of the PMC open access articles were then 
mapped with the journal list and PMCIDs of author manuscripts for labeling each file’s deposit source. Note that 
this assigns a fixed participation property to each journal, but it is possible for journals to vary over time. For 
example, full participation and NIH portfolio journals could move to selective deposit model at some point. In 
the PMC journal list, PMC marked these journals as “Now Select” and denoted the most recent issues under 
full participation/NIH portfolio. For these journals, articles with publication years greater than the year of the 
corresponding most recent issue were labeled as selective deposit in the mapping process. Table 3 showed the 
percentages of references without inline citations in articles from the deposit sources. Selective deposit journals 
had the highest proportion of references without inline citations, and full participation journals had the lowest 
proportion of references without inline citations.

Since journals deposited the great majority of articles (98.91%), it was likely that the publishers/journals had 
some roles in the tagging quality of the inline citations. To access this, Fig. 7 showed missing inline citations 
in the ten largest journals in the dataset. Note that large journals such as Science, Nature, PNAS, and BMJ were 
not in the ten journals because most of articles published by these journals were not CC-licensed. For instance, 
PNAS had 120,232 articles indexed in PMC (from 1979 to May 31, 2019) but only 1,840 were in our dataset.

The results implied that large journals might have better tagging quality. After 2010, the missing rates 
were below 0.5% and were lower than the full dataset with a few exceptions. In 2012 and 2014, the missing 
rates of Oncotarget were slightly higher than the full dataset. As for Nucleic Acids Research, two peaks were 
observed in 2012 and 2013, with the missing rates almost four times as the full dataset’s missing rate. Also, for 
six journals (PLOS ONE, Scientific Reports, Acta Crystallographica Section E: Structure Reports Online, Nature 

Fig. 6 Number of articles in the PMC and the PMCOA subset by publication years. The blue line and the 
orange line show the number of articles in the PMC and in the PMCOA, respectively. The red line shows  
the percentages of PMC articles that are in the PMCOA subset.

Deposit Source # Articles # References
# References without 
inline citations (%)

Full participation 1,830,722 76,275,089 325,347 (0.43)

Selective deposit 138,356 6,763,865 87,587 (1.29)

NIH portfolio 58,357 2,395,980 17,018 (0.71)

Author Manuscript 22,436 1,038,412 7,519 (0.72)

Total 2,049,871 86,473,346 437,471 (0.51)

Table 3. Percentages of references without inline citations in different deposit sources.
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Communication, International Journal of Molecular Sciences, and BioMed Research International) having miss-
ing rates lower than the full dataset across all publication years; five out of six (except for BioMed Research 
International) were born as electronic journals.

Figure 8 shows the relation between journal publication counts and the missing rates. In general, large 
journals have lower missing rates, but there are some exceptions. Chemistry (Wiley-VCH), ChemistryOpen, 
Angewandte Chemie (International ed. in English), and Zookeys had high missing rates. To explore the possible 
reason for the high missing rates, we randomly sampled and manually inspected ten articles from each journal. 
For the first three journals, the missing was mostly because the reference list was not structured as JATS’ recom-
mendation. According to JATS, when multiple works are placed into a reference (e.g., references 1a, 1b, and 1c in 
reference 1), each work (i.e., 1a, 1b,and 1c) should be tagged by either <element-citation> or <mixed-citation> 
tag and nested under a <ref> tag. However, in these three journals, our manual inspections found that the XML 
files treated nested works as separate references. In other words, reference 1, 1a, 1b, and 1c were tagged by four 
different <ref> tags where reference 1 was empty. This situation would be problematic when a citation context 
pointed to reference 1 for citing 1a, 1b,and 1c together. In cases like this, since the nested works were not tagged 
under a <ref> tag, our algorithm could not capture these works due to lacking the nesting structure and cap-
tured an empty reference instead. For the journal, Zookeys, we found that the <xref> tags of some references 
were missing (i.e., the citation markers were plain strings without <xref> tags), and a few references did not 
appear in the full text.

Fig. 7 Percentages of references without inline citations in ten journals with highest publication counts.

Fig. 8 Relationship between journal size (in PMCOA subset) and missing inline citations. The bars show the 
95% confidence intervals. The regression line is based on data that excludes outlier journals as labeled in red.
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A probabilistic model of context identifiability. Overall, 0.5% of references lack inline citations, while 
99.5% of references point to one or more inline citations. However, this identifiability rate varies systematically 
with certain aspects of articles. For example, the most recent year (2019) has the identifiability at 98.8%. In order 
to understand some of these influences, we built a logistic regression model of identifiability. The model measures 
the influence of certain aspects on the probability of inline citation identification, as follows:

=
+ β β β β− − − …−Pr identified inline citation( _ _ )

e
1

1 x x nxn0 1 1 2 2
 

where x1, x2, …, xn are the explanatory features. The features include aspects of the citing article, including publi-
cation year, publication type, deposit source, and publication venue. More specifically, publication year features 
include four different phases observed in Fig. 5. The publication venue features include journal size (publication 
count in PMCOA subset), whether or not it was born as a digital journal, as well as indicators for seven specific 
journals (two particularly large ones, and five with unusual missing rates as shown in Fig. 8).

The coefficients in Table 4 show how each feature influences the probability of identifying inline citation of a 
reference. Overall, the identifiability increases over time, but different patterns are shown in the four time peri-
ods. Compared with the last period (2009–2019), the probability increases faster in the first period (1979–1984) 
and slower in the second period (1985–1999) and the third period (2000–2008). The probability of identifying 
inline citations in research articles is higher than the other publication types (case reports, review articles, etc.). 
Relative to full participation journals, the probability is higher in selective deposit journals and author man-
uscripts. However, this is also relative to journal size and the specific journals. For example, PLOS ONE and 
Scientific Report are full participation and the two largest journals in our dataset. The identifiability increases 
with the journal size and is higher in born digital journals. Note that journal size here refers to the number of 
articles in the PMCOA subset. Some big journals such as PNAS only have a small portion of articles that are 
open access; hence, the true sizes of these journals are not reflected in our model.

Citations associated with PMIDs. As addressed in the Methods section, the Entrez citation data 
contained citations from 4,243,594 PMC articles to articles in PubMed. Within the 4,243,594 PMC articles, 
1,818,893 articles were in the PMC open access subset. By comparing the PMIDs retrieved from the XML files 

Feature Coef. SE

Intercept 1.281*** 0.024

Publication year (PY)

 PY-1979a 0.064*** 0.001

 1979–1984 −1.897*** 0.107

 1985–1999 −0.451*** 0.077

 2000–2008 0.695*** 0.066

 (PY-1979) × (1979–1984) 0.110*** 0.033

 (PY-1979) × (1985–1999) −0.023*** 0.004

 (PY-1979) × (2000–2008) −0.046*** 0.002

Publication type (v.s. Research article)

 Review article −0.134*** 0.004

 Case report −0.215*** 0.011

 Brief report −0.572*** 0.010

 Letter −0.388*** 0.022

 Other −0.931*** 0.007

Deposit source (v.s. Full participation)

 Selective deposit 0.376*** 0.006

 NIH portfolio −0.090*** 0.008

 Author manuscript 0.050*** 0.012

Publication venue

 log2(Journal size) 0.171*** 0.001

 Born as digital journal 0.436*** 0.004

 PLOS ONE −0.223*** 0.011

 Scientific Report 0.619*** 0.022

 Angewandte Chemie International Edition −5.017*** 0.011

 Chemistry (Wiley-VCH) −4.955*** 0.013

 ChemistryOpen −4.778*** 0.013

 Zookeys −3.834*** 0.008

 Acta Crystallographica Section E: Crystallographic Communications 15.065 179.429

Table 4. Logistic regression results. *** = p < 0.001. aPublication year of citing article minus 1979, which is the 
earliest publication year in the dataset.
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(i.e., the XML-tagged PMIDs) and the PMIDs listed in the Entrez citation data, we found that 70.96% (1,290,693 
out of 1,818,893) of the articles had at least one discrepancy between the PMIDs of citations. The discrepancies 
indicated that PMIDs listed in the Entrez citation data were absent in the XML files or vice versa. Based on the 
discrepancies, we discovered 6.59% (5,148,521 out of 78,085,042) of the citations in the 1,818,893 articles that 
should have PMIDs but were not tagged in the XML files. Notably, this did not indicate that the citation contexts 
of these citations were not identified, but showed that the PMIDs of these citation contexts were missing in the 
XML files.

The discrepancies between the XML files and the Entrez citation data motivated us to further investigate the 
PMIDs. The source link IDs (e.g., PMIDs, ADS IDs, and DBLP IDs) for 98.25% (135,340,795 out of the total 
137,748,787) of the inline citations were identified using Patci and cross-checked with the XML-tagged PMIDs. 
The Patci-identified IDs and the XML-tagged PMIDs agreed on 91.13% (123,337,645 out of 135,340,795) of 
the inline citations (SAME: 101,885,318 (75.28%) inline citations; NONE: 21,452,327 (15.85%) inline cita-
tions). The disagreement was mostly caused by citations with Patci-identified IDs but without XML-tagged 
PMIDs (INSERT: 11,595,741 (8.57%) inline citations). Only 0.3% of the citations had disagreement between 
the Patci-identified IDs and the XML-tagged PMIDs (SWAP: 317,513 (0.23%) inline citations; DELETE: 89,896 
(0.07%) inline citations). These results suggest that XML files may have high precision but low recall on tagging 
the PMIDs associated with the citations. Note that not all Patci-identified IDs are PMIDs. Of the 11,913,254 
inserted or swapped IDs, 9,261,870 are PMIDs and 2,651,384 are non-PMIDs (e.g., ADS IDs and DBLP IDs). 
In other words, Patci supplemented or corrected PMIDs for 6.84% of inline citations (9,261,870 out of the 
135,340,795 inline citations).

Of the 2,407,992 (1.75%) inline citations that were not cross-checked with Patci, 1,319,962 (0.96%) had 
XML-tagged PMIDs. Although only 1.91% (25,179 out of 1,319,962) of these PMIDs were verified with the 
Entrez citation data, the vast majority of these PMIDs are likely to be correct due to the low SWAP and DELETE 
rates in the full dataset.

Evaluation on the identified IMRaD categories. Of the 131,807,433 inline citations that appeared in 
the main text, 31.06% (40,934,169), 10.36% (13,659,862), 10.89% (14,348,948), and 26.87% (35,419,067) were in 
the I, M, R, and D sections, respectively. There were 20.82% of the inline citations (27,445,387 of 131,807,433) 
that had no IMRaD categories identified. Note that a large portion of citations in the NoIMRaD category are 
likely to belong to one of the IMRaD categories because of the lower precision in the NoIMRaD labelling  
(see details below). Figure 9 presents the percentages of inline citations in each IMRaD section by text progression. 
Although the IMRaD sections were identified through a rudimentary approach, the distribution of inline citations 
was aligned with previous studies30,48. Inline citations concentrated at the beginning and the end of scientific arti-
cles, and the text progression of IMRaD mainly followed the order of introduction/background, method, result, 
and conclusion/discussion. In particular, inline citations in the introduction/background mainly appeared in the 
first 20 centiles, while most of the inline citations identified in conclusion/discussion appeared after the 60th centile. 
Inline citations identified in method sections showed two lumps, which were around 20th-30th centiles and 80th-90th 
centiles. Manual inspection of the submission guidelines of ten journals with high publication counts in the second 
lump shows that seven journals suggest or require authors to put the method section at the end of the articles.  

Fig. 9 Inline citations in IMRaD sections by text progression. Inline citations concentrated at the beginning 
and the end of scientific articles. In specific, 28.84% of the inline citations were found in the first 20 centiles 
and under the introduction/background sections, while 22.22% of the inline citations were found in the last 40 
centiles and under the conclusion/discussion sections.
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Two journals suggest putting the method section before the conclusion section, but having the conclusion section 
is not mandatory. One journal has no requirements for the section order.

To gain a deeper understanding of our XML parser’s performance in identifying IMRaD categories, we sampled 
100 articles from 100 distinct journals. The IMRaD categories associated with the sentences in the main text of the 
100 sampled articles were manually annotated. Precision, recall, and F1 score were computed by comparing the 
human annotations to the IMRaD categories identified by the XML parser. These indicators were calculated at two 
different levels: section and sentence. In other words, the performance of the parser was assessed section by section 
and sentence by sentence. The section-level evaluation was conducted because the IMRaD labels assigned to the 
sentences were dependent on the section information extracted from the XML files (please see the Method section 
for details); therefore, if a section was misclassified, all the sentences within it would be misclassified as well.

Table 5 presents the evaluation results. Overall, our parser identified IMRaD categories with high precision 
but lower recall. The identified M, R, and D categories were all correct (precision = 1). The precision of the 
I category was 99.7% at the sentence level. This was due to four articles with sections titled “Pre-publication 
history”. The word “history” in the section titles led to their misidentification as I sections. The macro average 
recall (93.2%) and the NoIMRaD precision (48.8%) point to potential improvements: 51.19% of the sentences 
(1,293 of 2,526) in the NoIMRaD category belonged to one of the I, M, R, or D categories. Manual inspection 
found that the incorrect identification of NoIMRaD was due to two reasons: (1) the section titles and the XML 
section information lacked keywords for identifying the IMRaD categories, and (2) ten papers had introduction 
sections without titles (e.g., PMCID: 4263260). The difference between the sentence level and the section level 
performances is primarily because the true NoIMRaD sections tend to be shorter than the IMRaD sections.

Alignment between OpCitance and S2ORC. To our best knowledge, S2ORC is the largest full-text 
dataset with inline citations annotated. OpCitance annotates inline citations at the sentence level with identi-
fiers embedded in the text, while S2ORC provides character start and end of each inline citation in a paragraph 
(Fig. 10). To compare the coverage of inline citations in S2ORC and our dataset, we started with the S2ORC 
articles having PMIDs or PMCIDs. The S2ORC data was retrieved from https://github.com/allenai/s2orc. 
There were 5,415,731 S2ORC articles with PMIDs/PMCIDs and inline citations. However, significant portion  
(1,122,520 S2ORC articles) were duplicates. For example, S2ORC paper IDs: 215194089 and 9337105 had the 
same PMID: 25983392 listed in S2ORC. OpCitance has 2,049,871 articles, of which 1,401,788 (68.38%) match 
one-to-one with S2ORC, while 487,602 (23.79%) are duplicated in S2ORC, and 160,481 (7.83%) are missing in 
S2ORC. In other words, although the coverage of OpCitance is smaller, the two datasets are complementary since 
OpCitance contains articles not in S2ORC. Furthermore, articles in OpCitance have been deduplicated.

Of the 1,889,390 articles in both datasets, OpCitance has inline citations for 99.54% of the references 
(79,631,699 out of 79,998,620 references), while S2ORC has inline citations for 89.35% of the references 
(83,075,224 out of 92,973,529 unduplicated references). In other words, the percentage of references with inline 
citations annotated is 10 percent lower in S2ORC. Furthermore, the PMIDs associated with the inline citations 
are 81.83% (104,012,041 out of 127,111,995 inline citations) versus 71.92% (93,750,386 out of 130,362,008 undu-
plicated inline citations) in OpCitance and in S2ORC, respectively. The lower rate of inline citation coverage in 
S2ORC could influence subject-focused studies (e.g., studies on one article, a few articles, or an author’s articles) 
since some of the citation contexts mentioning the subject could be missing. The lower rate of PMIDs associated 
with inline citations could influence studies on the PubMed articles since some of the citation contexts could not 
be found due to the absence of PMIDs. The lower coverage rate of inline citations in S2ORC also reflects the fact 
that identifying inline citations in PDF files is more challenging than in the XML files.

To further understand the alignment between the two datasets, we randomly sampled 100 citation con-
texts from 100 different articles in OpCitance. These 100 citing articles were mapped to 145 S2ORC articles.  
(55 articles were mapped to one S2ORC article each; 45 were mapped to two S2ORC articles each). Each citation 
contexts had one or more inline citations, resulting in 300 inline citations in total (i.e., three inline citations per 
citation context on average). Out of the 300 inline citations, 75 (25%) were not in S2ORC, and five were only 
found in one of the duplicated articles. The absence of inline citations was due to the following reasons: (1)  

Evaluation Level IMRaD Precision Recall F1

Section

I 0.957 0.854 0.903

M 1.000 0.820 0.901

R 1.000 0.915 0.956

D 1.000 0.993 0.996

NoIMRaD 0.638 0.949 0.763

Macro average 0.919 0.906 0.904

Sentence

I 0.997 0.903 0.948

M 1.000 0.875 0.933

R 1.000 0.892 0.943

D 1.000 0.996 0.998

NoIMRaD 0.488 0.995 0.655

Macro average 0.897 0.932 0.895

Table 5. Precision, recall, and F1 of the evaluation results.
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The mapped S2ORC article had empty or incomplete full text (e.g., absence of part of body text). (2) The citation 
contexts were not recognized in the S2ORC articles. In these cases, the S2ORC articles had the text but failed 
to identify inline citations in the sentences. As for PMIDs associated with inline citations, out of the 225 inline 
citations, 144 citations had PMIDs in OpCitance. However, 21 of these PMIDs were not in S2ORC. One inline 
citation had different PMIDs in the two datasets (PMID: 28222903 in our dataset; PMID: 28340344 in S2ORC). 
A manual inspection found that the PMID in our dataset was correct. The PMID listed in S2ORC was the erra-
tum of the actual article. This error might be caused by S2ORC linking bibliographies to articles by similarity 
score computed between their titles34.

Text alignment was also examined. The 225 inline citations found in S2ORC corresponded to 74 unique 
sentences. The text in the two datasets was nearly the same (e.g., minor variations caused by punctuations; see 
Table 6). However, two sentences were significantly different in the two datasets. The discrepancies were caused 
by distorted text, either truncated or inserted.

Challenges and limitations. This study aims to construct a large-scale citation context dataset that can 
benefit future studies on the motivation, importance, and sentiment of citations. Although the JATS tag set pro-
vided standard XML vocabularies for parsing the structure of the PMC open access articles, identifying citation 
contexts from full-text articles is still challenging. Publishers have different ways of using JATS tags for tagging 
citations. For example, the JAST guideline mentions that a <ref> tag represents an item in a reference list, and 
each of the cited work under the item should be separately tagged by <element-citation> or <mixed-citation> 
tags. When a cited work is mentioned in the full-text, the “rid” attribute of the <xref> tag points to the “id” attrib-
ute of a <ref> tag in typical cases. However, in the cases with multiple cited work nested under a <ref> tag, the 
“rid” attribute could point to the “id” of the <ref> and the “id” of the <element-citation> or <mixed-citation> 
interchangeably. Another challenge is identifying the implicitly mentioned citations. As described in the method 
section, the implicitly mentioned citations were inferred from the citation markers containing a hyphen (e.g., 
[3–6]). However, publishers expressed “hyphen” differently. The “hyphen” could be a hyphen, an en dash (Unicode 
character U + 2013), a minus sign (Unicode character U + 2212), or two hyphens/en dashes/minus signs.

Using XML tags has limitations. We manually inspected the references without citation context and found 
the following reasons. First, some citation markers in the full-text articles were plain strings (i.e., these citation 
markers did not associate with any <xref> tag). In these cases, our XML parser could not pick up the citation con-
texts. Second, there were cases where the citation marker in the full-text article pointed to a nested reference, but 
the <xref> tag only pointed to one cited work in the nested reference. Third, some references were not mentioned 
by the authors in the full-text. However, these conditions were rare. Of all the 86,473,346 references in OpCitance, 
only 0.51% (437,471) of the references’ citation contexts could not be identified by our XML parser. It is also 
worth noting that the first two limitations may be improved by developing a text-mining model that can identify 
citations in sentences and link them back to their references. The annotated citations (i.e., the citation contexts)  

Fig. 10 Example of two inline citations in S2ORC and OpCitance.
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and their references provided in OpCitance can be used as training data for developing the model. We plan to 
work on this in our future studies. Another limitation was found in identifying PMIDs of citation by XML tags. 
In this study, the <pub-id> tag with pmid attribute value (//pub-id[@pub-id-type = ‘pmid’]) was used for finding 
the PMIDs of citations in the XML files. Like the citation markers, we discovered that some PMIDs could be 
found in the citation strings but were not tagged.

Compared to S2ORC, which used machine-learning libraries (Science Parse and GROBID) to parse PDF 
versions of articles and identify inline citations, our effort focused on developing an XML parser that can handle 
the nuances of the use of JATS tags by different publishers and identify citation contexts as completely as possi-
ble. Our work contributes to parsing scientific papers and identifying inline citations by making the dataset and 
the XML parser publicly available. The dataset provides 137,748,787 inline citations and their citation contexts, 
covering 99.49% (86,035,875) of the total 86,473,346 references. The release of the parser enables users to create 
their own datasets for JATS-standard XML versions of articles. Although the parser is limited to XML docu-
ments conforming to JATS and cannot be applied to PDF versions of articles, the parser still has the potential 
to be used for extracting inline citations and their citation contexts from articles deposited into PMC and pub-
lished by journals that adopt JATS such as PLOS ONE (https://plos.org/text-and-data-mining/) in the future. 
The pipeline deals with issues specific to the JATS-standard XML documents and has the capacity to handle 
the different ways inline citations may be tagged by the publishers. The add-on with Patci has enhanced the 
completeness of source ID links between the citing and cited articles. As mentioned in the Technical Validation 
section, 8.8% of inline citations’ source link IDs have been supplemented or corrected by Patci (i.e., the inserted 
IDs and the swapped IDs). Furthermore, in contrast to S2ORC providing inline citations at the paragraph 
level, OpCitance provides inline citations at the sentence level. Different annotation levels between S2ORC and 
OpCitance provide users flexibility to select the dataset that best suits their needs.

Usage Notes
Generating features from the dataset. Since Garfield49 published fifteen possible citation motives, abun-
dant efforts have been put in developing features for modelling citation motives using citation contexts. For example, 
Valenzuela et al.44 and Zhu et al.14 used 12 and 38 features to model the importance of cited references to the citing 
articles, respectively. Teufel et al.8 developed a set of features focusing on semantical similarity and used these features 
to model citation functions. In the meta-analysis conducted by Kunnath et al.25, features used in studies on citation 
function and importance were categorized as noncontextual features (e.g., positional-based and frequency-based 
features) and contextual features (e.g., syntactic and semantic features). Here, we use Kunnath et al.‘s25 categories 
and give examples of codes for generating positional-based and frequency-based features, as well as instructions for 
generating contextual features. The codes were written in Python3, using pandas library for data processing.

Positional-based and frequency-based features. Many of the features related to frequency and location can be 
obtained from OpCitance dataset through grouping or filtering data. For instance, the number of mentions 
(i.e., the citation counts in the entire paper) can be acquired from grouping the data by the pmcid and intxt_id 
columns:

Number_of_mentions = df.groupby(['pmcid','intxt_id'])[['intxt_id']].
count()

For the articles following IMRaD structure, the number of mentions in each IMRaD section14,44 can be 
acquired from grouping the data by the pmcid, IMRaD and intxt_id columns:

Number_of_mentions_by_IMRaD = df.groupby(['pmcid','IMRaD','intxt_id'])
[['intxt_id']].count()

Similarly, the number of different IMRaD sections in which citation contexts of a reference were identified 
can be obtained from:

Number_of_mentioning_IMRaD_sections = df.groupby(['intxt_id'])
[['IMRaD']].nunique()

Citations in tables and figure captions44 can be obtained from:

Citation_context_in_figure_or_table = 1 – df['location'].
isin(['abstract','body','back'])

As for features related to text progression of citation contexts14, these features can be calculated through the 
progression column. This column provides the centiles of citing sentences within the main text of articles.

Contextual features. Contextual features can be obtained from processing the citation contexts through natural 
language processing toolkits such as NTLK or Stanford NLP. For instance, the function verbs used in Teufel et al.8  
can be identified from conducting part-of-speech (POS) tagging on the citation contexts. For calculating 
text-similarity features14,44 such as the text-similarity between each citation context and the abstract of the citing 
article, the abstract of each citing article can be retrieved by selecting the rows with the “abstract” label in the 
location column.

https://doi.org/10.1038/s41597-023-02134-x
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Other possible applications. With the semantically enriched citations, OpCitance opens up a wide vari-
ety of applications. In addition to studying citation motives, functions, and importance, OpCitance can be used 
for identifying trends in research fields, visualizing scientific landscapes, and analyzing the domain of journals.  
Many studies on these topics relied on citation links and/or text in article titles and abstracts. For example, Chen 
and Song50 proposed a method for visualizing a scientific field and identifying topic advancement in the field 
using citation expansion (i.e., tracing forward or backward citations of given seed articles). Wang et al.51 applied 
NLP techniques to titles and abstracts to identify emerging topics in nano-publications. Glanzel et al.52 classified 
the fields of articles published in multidisciplinary and general journals by mapping journal information indicated 
in the references to their subject domains. Zhang et al.53 utilized citations between journals to cluster scientific 
papers into seven domains. The UCSD map of science54 constructed visualizations for scientific fields by cluster-
ing journal-to-journal citations and keywords. Waltman and van Eck55 proposed a system for identifying research 
areas based on citations between articles. In their study, article titles and abstracts were used to label the identified 
research areas55. Compared to titles and keywords, citation contexts contain information that is more directly 
related to the citations. Therefore, analyses that combine citations and citation contexts may yield further insights  
into detecting and visualizing research trends and domains.

Code availability
The code of our XML parser is provided in the Supplementary_File_1.zip on our data repository: https://doi.org/ 
10.13012/B2IDB-4353270_V2.
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Table 6. Examples of differences in text alignment.
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