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A corpus of CO2 electrocatalytic 
reduction process extracted from 
the scientific literature
Ludi Wang   1,4, Yang Gao   2,4, Xueqing Chen   1,3,4, Wenjuan Cui   1,3, Yuanchun Zhou   1,3, 
Xinying Luo2, Shuaishuai Xu2, Yi Du   1,3 ✉ & Bin Wang   2 ✉

The electrocatalytic CO2 reduction process has gained enormous attention for both environmental 
protection and chemicals production. Thereinto, the design of new electrocatalysts with high activity 
and selectivity can draw inspiration from the abundant scientific literature. An annotated and verified 
corpus made from massive literature can assist the development of natural language processing (NLP) 
models, which can offer insight to help guide the understanding of these underlying mechanisms. 
To facilitate data mining in this direction, we present a benchmark corpus of 6,086 records manually 
extracted from 835 electrocatalytic publications, along with an extended corpus with 145,179 records 
in this article. In this corpus, nine types of knowledge such as material, regulation method, product, 
faradaic efficiency, cell setup, electrolyte, synthesis method, current density, and voltage are provided 
by either annotating or extracting. Machine learning algorithms can be applied to the corpus to help 
scientists find new and effective electrocatalysts. Furthermore, researchers familiar with NLP can use 
this corpus to design domain-specific named entity recognition (NER) models.

Background & Summary
Electrocatalysis has garnered much attention in reducing fossil fuel consumption, decreasing greenhouse gas 
emissions, and producing sustainable fuels and chemicals1,2. Critical to realizing these goals is the development 
of improved electrocatalysts with high activity and selectivity for the target product. In general, the property 
of catalysts depends on their compositions, structures, and regulation methods3,4, and thus there is enormous 
synthesis and regulation space for catalyst exploration. Although extensive efforts have been devoted to the 
design and development of novel electrocatalysts5,6, most of the previous exploration is based on heuristics and 
experience and still lacks effective design guidelines. Furthermore, it seems unreasonable to conduct enough 
attempts to cover a majority of the synthesis and regulation space to explore novel catalysts, even with the aid of 
high-throughput synthesis techniques.

The establishment of realm-specific datasets is a crucial step to promote the development of catalysts. A few 
existing catalyst datasets are built from density functional theory (DFT) calculations and mainly encompass 
features related to surface adsorption and electronic structure7,8. Researchers in catalytic science have proposed 
various kinds of descriptors for catalyst screening through a mass of calculations9–11. However, the real surface 
structure of catalysts is not ideal as theoretical calculations assume and is fairly complex, thus lowering the relia-
bility of these datasets for catalyst design. In fact, an enormous amount of knowledge has been hidden in a large 
volume of scientific publications. If the concerned information related to catalysts can be extracted and collected 
into datasets, the efficiency of developing new catalysts can be greatly improved.

Compositions, structures, regulation methods, and properties that can describe specific catalysts generally 
exist in the unstructured and heterogeneous form of scientific literature. Data-driven approaches exhibit great 
potential to deal with these data. These approaches can complement experimental and theoretical studies and 
have been successfully applied in materials discovery12–14, material synthesis approaches15,16, and the inter-
pretation of experimental spectra17. However, manual extraction of these data is nearly impractical and costs 
too much labor18. Natural language processing (NLP) and text-mining approaches have made great progress 
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in the past decades, and various cutting-edge tools have been employed in biology, chemistry, and materials 
science19–22.

In this data descriptor, we present an open-source corpus of electrocatalytic CO2 reduction. This database 
contains two types of corpus: (1) the benchmark corpus, which is a collection of 6,086 records extracted from 
835 publications by catalysis postgraduates; (2) the extended corpus, which includes 145,179 records extracted 
from the full text of the 372 literature by intelligent model. In the benchmark corpus, we extracted nine types of 
knowledge, including material, regulation method, product, faradaic efficiency, cell setup, electrolyte, synthesis 
method, current density, and voltage. The extended corpus contains four types: material, regulation method, 
product, and faradaic efficiency. Moreover, the extended corpus was evaluated and revised by domain experts.  
A schematic of the pipeline devised for this extraction is shown in Fig. 1.

The advantage of the benchmark corpus is that it is a dataset annotated entirely by domain experts, thus the 
reliability and accuracy of its label can be guaranteed to a certain extent. Therefore, this kind of corpus can be 
used as a benchmark to guide the evaluation of NLP systems. The extended corpus, on the other hand, has the 
advantage of an automatic annotation system that can save the labor of manual annotation. Its extensive data 
resource can help experts to derive further information from it and provide guidance for some downstream 
tasks, such as faradaic efficiency prediction models.

Methods
In the current work, we built a more advanced extraction pipeline (Fig. 1) that combines manual annotations 
and various advanced machine learning and NLP techniques to extract complete data for CO2 electrocata-
lytic reduction process from scientific literature. We first collected literature related to copper-based catalytic 
CO2 reduction procedures following a series of progressively finer-meshed filters. Then according to predefined 
entity labels, we published a manually annotated benchmark corpus and an automatically annotated extended 
corpus. The final resulting dataset can be used for domain data mining and further downstream NLP tasks. Each 
of the steps is described in detail below.

Content acquisition.  The first step in the database generation workflow was using Web of Science to find 
the DOIs of scientific literature that will be used in the following steps. Specifically, over 22,000 metadata of arti-
cles were exported from Web of Science using the keywords “CO2”, “Reduction” and “Electro*” as subject index, 
such as article title, article DOI, article abstract, etc. Web of Science provides filtering and export functions on the 
website. The metadata of literature exported is then filtered step-by-step according to rules defined by experts, 
with each step of the filtering process consisting of a simple regular expression query23.The process of literature 
screening is illustrated in Fig. 2. The title of every article was queried for words starting with “electro”, followed 
by any number of characters or whitespace, which yielded 9,474 articles; The title of every article was queried 
for words “CO2”, “carbon dioxide” or “CO(2)”, which yielded 7125 articles; The title of every article was queried 
for words “Cu” or “copper”, which yielded 1637 articles; The title of every article was queried for words “photo” 
or “visible” and then removed, which yielded 1465 articles. Finally on this basis, combined with further manual 

Fig. 1  Extract pipes and samples. Top panel: Schematic diagram of standard text mining pipeline: (i) Collect 
papers by keyword search; (ii) Expert notes to build a benchmark corpus; (iii) Extract key information of the 
synthesis process and build an extended corpus; (iv) Stored in a database for future data mining. Bottom panel: 
Sample entities extracted from the summary.
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screening by experts, 835 articles were obtained on experimental works related to the electrocatalytic reduction 
of CO2 over copper-based catalysts.

After the filtered step, the related 835 publications were downloaded manually from the web according to 
their DOI. These publications were obtained through agreements with publishers Elsevier, the Royal Society of 
Chemistry, American Chemical Society, Wiley, Acta Physico-Chimica Sinica & University Chemistry Editorial 
Office (Peking University), MDPI, the Electrochemical Society, Springer Nature, Informa, Hindawi Limited, 
Frontiers Media SA, China Science Publishing & Media Ltd., IOP publishing, NACE International, Proceedings 
of the National Academy of Sciences, Shanghai Institute of Ceramics, American Institute of Physics, American 
Scientific Publishers, the Chemical Society of Japan, the Electrochemical Society of Japan, Journal of New 
Materials for Electrochemical Systems, HARD Publishing Company, Taylor & Francis, American Association 
for the Advancement of Science (AAAS), ESG, Sycamore Global Publications, from which we received permis-
sions to download the articles. For each publisher, we manually identified all materials science related journals 
available for download. We acquired papers in PDF format, which include the full text of the article as well as 
its metadata such as article title, public year, authors, etc. After filtered step described above, we imported the 
related articles to AutoDive, our self-developed annotation tool, which allows experts to annotate on PDF for-
mat directly.

Full-text preparation.  The full papers were operated differently according to the way the different corpora 
were constructed. As the annotation tool AutoDive is an online annotation platform, it is only necessary to import 
the literature into the platform in PDF format, organised in their DOI order, so that the experts can annotate enti-
ties directly. The extended corpus contains automatically generated entities based on the full text of the collected 
articles above. We used a PDF parsing tool, PyMuPDF library24, to automate the batch extraction processing of 
these literature data. Because the processed documents contained irrelevant markups, we developed a customized 
function for parsing article markup strings into text paragraphs while keeping the structure of paper and section 
headings.

Entity annotation.  The definition of regulation methods and related properties for the electrocatalytic 
reduction of CO2 is the key challenge in constructing the benchmark corpus. A prerequisite for the manual anno-
tation for the provided corpus was that annotators had to have a background in CO2 electrocatalytic reduction to 
guarantee that the annotations are correct. Thus we invited 5 postgraduates with an average experience of at least 
3 years in experimental catalysis from National Center for Nanoscience and Technology to do the work after the 
annotation tool training.

An easy-to-use annotation tool with graphical user interface which allows labeling of text efficiently and 
consistently is crucial and necessary. We found that on-site annotation in PDF format is an effective way after 
consulting domain experts. Thus, we explored alternative ways on how to present the documents to the anno-
tator in a way that is supported by existing annotation tools. Finally we decided to adapt our own annotation 
tool, AutoDive, as the application for the construction of this corpus. AutoDive provides the label interface 
in the form of PDF, which can ensure the layout of the original documents that can keep the original habit of 
reading literature. This tool does not require local installation on the curators side and can be used through a 
web-browser to make the annotation process as easy and fast as possible.

Figure 3 provides a general flowchart of the annotation process. The main three steps of the annotation pro-
cess are annotate, evaluate and revise:

Fig. 2  The process of literature screening.
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Stage 1: Annotate. As mentioned before, we invited 5 annotators who have research background of electro-
catalysis to annotate the entities with AutoDive followed by the guidelines. The documents are randomly and 
evenly assigned to these annotators by a senior expert. Three important things are emphasized in the annotation 
guidelines. The first is what kind of entity is needed to label. The second is the mention boundaries of those 
labels. The third is how to classify those mentions into label categories.

Stage 2: Evaluate. After manual annotation, we used multiple statistical methods to evaluate the quality of 
annotation results, such as distribution statistics, average statistics (for numerical value) and abnormal value 
statistics, etc. The evaluate results were provided to the senior expert for quality verification. The senior expert 
tagged the entity annotation which maybe incorrect.

Stage 3: Revise. The AutoDive tool can export the annotated data in CSV format, which is provided to anno-
tators to revise and correct the mis-identified annotations and add missing entity label manually.

The annotation data underwent three rounds of modification in this project. Finally, we associated the all 
kinds of labeled entity and meta data of paper for further analysis, as well as to refine the annotation data.

Entity extraction.  In this corpus, we present nine types of entity labels, including material, regulation 
method, product, faradaic efficiency, cell setup, electrolyte, synthesis method, current density, and voltage. In 
addition, we provide a more detailed label subclass in some entity labels, such as material, regulation method and 
product. The description of label category is shown in Fig. 4, as well as the subclass of material, regulation method 
and product. For instance, when an annotator located one material that is described as electrocatalyst, he/she 
needs to specify what kind of this material is, such as Cu, Cu/C, CuOx, etc.

Construction of extended corpus.  As the manual annotation process is laborious, a lower quality corpus, 
also known as a silver standard corpus (SSC)25, was constructed using automated techniques. In this paper, we 
generate an extended corpus according to the construction standard of the silver standard corpus (SSC). The main 
types of entities involved in the CO2 electrocatalytic reduction process include materials, products, regulation 
methods and the corresponding Faraday efficiencies. The other physical information including cell setup, cata-
lyst synthesis methods, current density and faradaic efficiency voltage are additional information about the CO2 
electrocatalytic reduction process and have less annotation information, so we did not extract these information 
in the automatically annotated extended dataset. A schematic representation of the procedure is shown in the 
bottom panel in Fig. 1. In the sections below, we provide a brief overview of the methods used for each step of the 
Entity extraction.

Coarse-grained entity recognition.  To identify and extract coarse-grained category entities from the full text of 
the literature, we implemented a bidirectional short-term memory neural network with a conditional random 
field layer on top of it (BiLSTM-CRF)26,27, which is able to recognize the semantic information of a word based 
on both the word itself and its context. SciBERT module28 is a scientific domain-oriented variant of BERT29, 
which remains the original architecture of BERT and pre-trained on scientific corpora. In such a manner, 
domain knowledge would be consolidated into SciBERT and therefore improves its performance on downstream 
tasks. First, each word token was transformed into a digitized SciBERT embedding vector. A bi-directional 
long-short-term memory neural network with a conditional random field top layer (BiLSTM-CRF) was used to 

Fig. 3  Overview of the construction of the benchmark corpus process.
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determine the corresponding entity class labels. The annotated dataset was split into training, validation, and test 
sets with a paper-wise ratio of 8:1:1 to train the aforementioned neural network.

When assuming that the automated tools have an acceptable performance, the combination of multiple sys-
tems can generate labels with an acceptable quality. Considering that some material and product entities are 
usually described in terms of chemical formula and faradaic efficiency entity is often described in the form of 
numerical “value unit”, we proposed a rule-based approach to assist the model in its identification30. Typically, 
the creation of an extended corpus required corpus harmonization to merge multiple predictions. Here we 
consider the simplest case, applying voting schemes25 and various reference boundary coordination strategies 
(for example, accurate, nested, continuous similarity metrics for reference alignments25) for the final decision.

Fine-grained entity classification.  Fine-grained entity categories divide entities in a more granular way. In order 
to identify and classify entities obtained from the previous task, we implemented a classification algorithm com-
bining dictionary and maximum entropy model. The dictionary-based recognizer used a word list established 
on the expert-annotated data31. The maximum entropy model was used to extract features from the data that 
cannot be matched by the dictionary. The features of each entity were obtained from its word embedding vectors, 
context vectors, word cluster clustering information and coarse-grained entity category information through 
a simple mapping function. Sentences were tokenized using ChemDataExtractor’s ChemWordTokenizer20 in 
order to obtain word embedding vectors. The context vector of each word was obtained through mask training 
of the SciBERT model mentioned above.

Our system utilised features derived from Brown clustering32, which is a form of hierarchical clustering 
of words based on the contexts in which words occur. This has been proved to improve the performance of 
part-of-speech tagging and named entity recognition in various domains33–37. Clustering was performed 
on the full text and titles of 2123 material articles published by ACS, RSC and Springer. This collection con-
tained about 20 million words out of about 700,000 sentences, with tokenization from ChemDataExtractor’s 
ChemWordTokenizer. Liang C++ implementation38 was used to perform clustering and generate 1,500 clusters 
containing 372,799 unique words. This clustering information was also used as the classification feature of enti-
ties for model training.

Calibration of the extended corpus.  First we automatically revised the annotation results for the extended cor-
pus to cross check the mention boundaries, trim whitespace characters, and ensure their technical consistence 
with the annotation rules. We then selected a 50% random sample from the entire dataset to be manually proof-
read by the main annotation team of the Golden Corpus. For potentially inconsistent cases where a given chem-
ical name was annotated in automatic labelling as one entity class and in manual annotation as another entity 
class, we relied primarily on the annotations of the main annotator team because these curators had a higher 
degree of experience in this task and they did provide active feedback for the refinement of the annotation. After 
one round of a rather rough proofreading process, this corpus contained only the crude annotations. By doing 
this we intend to encourage follow-up researchers to explore their own downstream NER tasks, such as cross 
comparison, mention alignment and consensus annotations strategies. A total of 145,179 automatic annotations 
were generated for these 8184 paragraphs. On average, the number of entity mentions per abstract was of 17.74, 
almost four times when compared to the benchmark corpus. A possible reason for this was that the automatic 
model identified eligible entities, but the context of the entities mentioned in the text was not relevant to the CO2 
electrocatalytic reduction process. However, it was useful to examine more difficult or easier cases and to detect 
potential annotation errors when examining consensus predictions generated by multiple systems.

Fig. 4  Nine kinds of label categories with three of them show specific subclasses.
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Data Records
The two types of datasets presented in this paper are available at Science Data Bank (ScienceDB), which is a 
public, general-purpose data repository aiming to provide data services for researchers, research projects/teams, 
journals, institutions, universities, etc.

The benchmark corpus is publicly available at https://doi.org/10.57760/sciencedb.0710639. The extended cor-
pus is publicly available at https://doi.org/10.57760/sciencedb.0713940. The two Standard Corpus are provided as 
a file in CSV format, and the details of them are shown in Table 1.

Metadata contained in the dataset for an article include: article DOI, the year of publication, and the title. 
Each record metadata includes: entity extracted from the paper, label of the entity, and the sentence where the 
entity is located. Expanded details for the format of the dataset are given in Table 2.

Technical Validation
Extraction accuracy.  To ensure high accuracy of the dataset, we only included data from the CO2 electro-
catalytic reduction process obtained at the final filtering step of the pipeline. This strategy reduced potential errors 
in the dataset that may have been caused by combination-parsing failure, incomplete extraction, or incomplete 
information provided by the text. We applied the extraction line to 200 randomly selected documents in the 
material field, 150 of which were relevant to electrocatalytic reduction of CO2 processes over copper-based cata-
lysts, giving an extraction rate of approximately 75%. Although these excluded documents are also relevant to the 
topic of our concern, they are primarily concerned with theoretical calculations, mechanism investigations, and 
experimental studies in organic solutions, all of which are beyond our consideration.

To demonstrate the practicality of our annotated corpus, we explored two machine learning methods for 
extracting actions and entities: a maximum entropy model and several neural network tagging models. We used 
standard precision, recall and F1 indicators to evaluate and compare performance. In the maximum entropy 
model41, we used two types of features based on the current word and context words within a window of size 2:  
the part-of-speech feature generated by GENIA part-of-speech Tagger42, which is specially adjusted for biomed-
ical texts, and the Lexical features, including unigrams, bigrams as well as their lemmas and synonyms from 
WordNet43. Neural network annotators included the most advanced bidirectional LSTM with conditional ran-
dom field (CRF) layer27,44,45, bidirectional recurrent neural network Bi-GRU46 and BERT model with conditional 
random field (CRF). Table 3 shows the experimental comparison results. We found that the BERT-BiLSTM-CRF 
model consistently outperformed other methods, achieving an overall F1 score of 81.95 at identifying four 
coarse-grained category entities.

In order to demonstrate the utility of the multi-task entity extraction, we conducted ablation experiments on 
the maximum entropy classification model to verify that the new features introduced are effective in improving 
the results47,48. Table 4 shows the precision, recall and F1 score of the maximum entropy classification model 
using various features. Parts of speech features alone are the most effective in capturing entity words. This is 
largely due to entity words appearing as verbs or nouns in the majority of the sentences. Cluster features are less 
effective in classifying method entities, because they usually have long spans and do not share similar semantic 

Corpus Type

Benchmark Corpus Extended CorpusEntity Type

Material 769 36651

Regulation method 769 66806

Product (including the second and third product) 1008 27045

Faradaic efficiency (including the Faradaic efficiency of second and third product) 903 14677

Cell setup 402 —

Electrolyte 447 —

Synthesis method 843 —

Current density 296 —

Voltage 649 —

Total 6,086 145,179

Table 1.  Summary of the two corpus.

Data Description Data Key Label Data Type

DOI of the original paper doi string

Public year of the original paper public_year int

Title of the original paper title string

Entity extracted from the paper entity string

Label of the entity entity_label string

Sentence where the entity is located context string

Table 2.  Metadata of the corpus.
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features. Our empirical results on using common machine learning algorithms such as maximum entropy model 
and neural network models show plenty of room for improvement when compared with the estimated domain 
experts’ performance, and suggest that our corpus could serve as a benchmark for evaluating material specific 
natural language processing research. We leave further investigation for future work, and hope the release of our 
dataset can help draw more attention to NLP research on instructional languages.

Entity(freq. in test set) MaxEnt BiLSTM-CRF BiGRU-CRF BERT-CRF BERT-BiLSTM-CRF

MATERIAL(92) 43.37 49.56 50.40 57.58 57.96

METHOD(97) 37.97 46.35 47.88 56.45 57.41

PRODUCT(94) 68.25 81.88 82.16 89.97 90.86

FARADAIC EFFICIENCY(62) 83.68 87.56 87.98 92.12 92.68

Macro-avg F1 49.23 64.44 65.58 69.47 70.12

Micro-avg F1 68.03 78.03 80.69 81.56 81.95

Table 3.  Compare the F1 scores of entity recognition in various models.

Classification Model Entity Type

Features METHOD MATERIAL PRODUCT

Words 67.71 72.56 85.76

+Context(Machine-learning model) 68.93 74.52 87.49

+Entity Type(Coarse-grained) 69.81 75.73 88.16

+Brown clusters 69.84 77.04 89.07

Table 4.  Precision, Recall and F1 (micro-average) of the maximum entropy model for fine-grained entity 
classification, as each feature is added.
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Fig. 5  (a) Stacked frequencies of Cu-based electrocatalysts for CO2 reduction in the last 12 years. (b) Frequencies of 
different electrolytes used in CO2 electroreduction.
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Fig. 6  The statistical distribution of the count of current densities measured by different cell setups. Inset: The 
percentage of different cell setups applied in CO2 electroreduction.

Fig. 7  (a) Heatmap depicting the number of publications of Cu-based electrocatalysts with different regulation 
methods. (b) Heatmap depicting the number of publications of Cu-based electrocatalysts with various products. 
(c) Violin plots of Faradaic efficiency as a function of product. (d) Box plots of the potential of CO2 reduction 
as a function of product. The points alongside the boxes present the distribution of experimental results in the 
dataset.
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Dataset mining.  In order to illustrate the current status and future trends of Cu-based electrocatalysts in the 
field of CO2 electroreduction, the nine types of entities in this dataset were visualized and analyzed.

First, we presented the overall development course of Cu-based electrocatalysts for CO2 reduction in the last 
12 years (Fig. 5a). The number of publications on Cu-based electrocatalysts has gradually grown from several 
articles in 2011 to about 200 articles in 2021. The catalysts that researchers are most interested in focus on Cu, 
Cu-M, and CuOx, and various composite catalysts such as Cu/C, Cu(Ox)-MOx, and M + CuOx are given increas-
ing attention nowadays. Apart from catalysts, the test condition of CO2 electroreduction should also be consid-
ered due to its important role in performance. In terms of electrolytes, the KHCO3 electrolyte is most commonly 
used in CO2 electroreduction, with KOH, and NaHCO3 following (Fig. 5b). Furthermore, the type of cell setup is 
another important test condition. As shown in Fig. 6, the statistical distribution of the count of current densities 
measured by different cell setups is presented. The current density of the H-type cell is largely concentrated in 
the values less than 20 mA cm−2, while that of the flow cell exhibits an average value of close to 200 mA cm−2, 
revealing the dependence of performance on cell setup.

In addition to catalysts and test conditions, we also analyzed the regulation method and performance of 
catalysts. Figure 7a shows a heatmap depicting the number of publications of Cu-based electrocatalysts with 
different regulation methods. The structure control approach exhibits widespread use to modify the surface 
morphology, structure, and crystal phase of catalysts. Other approaches deliver a high degree of correlation with 
the type of catalysts. For example, only the binary Cu-M systems contain the alloy form of catalysts, surface/
interface modification is mainly applied in Cu surfaces, and the atomic level dispersion of Cu atoms mostly takes 
place in Cu molecular complexes, Cu/C, and Cu-MOF. Figure 7b shows a heatmap presenting the relationships 
between materials and products for CO2 reduction. It can be seen that Cu and CuOx show a clear tendency to 
produce C2H4 and the Cu-M catalysts tend to produce C1 products such as CO and HCOOH. The blank area 
of this heatmap also presents some potential research directions for researchers. As shown in Fig. 7c, we drew 
violin plots of Faradaic efficiency as a function of product to illustrate the associations between products and 
corresponding Faradaic efficiencies in the scientific literature. The Faradaic efficiency of C1 products is statisti-
cally higher than C2+ products. Specifically, most of the articles reporting CO and HCOOH as the main prod-
ucts realize a Faradaic efficiency of more than 80%, while the articles related to C2H4 and C2H5OH only report 
a Faradaic efficiency of about 40%. These results demote the difficulty of C-C coupling to product C2+ products. 
Furthermore, we also analyzed the correlations between the potential of CO2 reduction and product (Fig. 7d).  
C1 products are commonly produced at a lower overpotential than C2+ products. This result experimentally 

Fig. 8  Alluvial plot showing the relationships between catalysts and synthesis methods.
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implies that a higher reaction energy barrier is needed to generate C2+ products. An interesting finding needed 
to pay attention is that CH3COOH shows the lowest overpotential, and this result needs further study.

Finally, we presented the relationships between catalysts and synthesis methods based on the data from the 
benchmark corpus. We first labeled the synthesis methods of Cu-based electrocatalysts from the full text of arti-
cles and then divided them into eight categories including balling milling, wet chemical method, electrochemical 
method, solvothermal method, thermal treatment, sol-gel method, mechanical mixing, physical vapor deposi-
tion, and molecular/polymer coating. As shown in Fig. 8, the wet chemical method, electrochemical method, 
solvothermal method, and thermal treatment are the most commonly used approaches to prepare Cu-based 
electrocatalysts. Some relationships between catalysts and synthesis methods can also be found in Fig. 8. For 
instance, the electrochemical method is the most popular approach to preparing Cu and Cu-M catalysts, Cu/C 
is mainly prepared by thermal treatment, and physical vapor deposition is mainly used to obtain biphase Cu-M 
catalysts. These results can provide an intuitional guideline for the preparation of Cu-based electrocatalysts.

Code availability
The scripts utilized to parse articles and extract entities are home-written codes which are publicly available at 
the github repository https://github.com/kg4sci/electrocatalytic_db. The underlying machine-learning libraries 
used in this project are all open-source: ChemDataExtractor (chemdataextractor.org)20, gensim (radimrehurek.
com)49, PyMuPDF(https://github.com/pymupdf/PyMuPDFPyMuPDF), Pytorch (www.pytorch.org) and scikit-
learn (scikit-learn.org)50.
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