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A collection of read depth profiles 
at structural variant breakpoints
Igor Bezdvornykh, Nikolay Cherkasov, alexander Kanapin & Anastasia Samsonova ✉

SWaveform, a newly created open genome-wide resource for read depth signal in the vicinity of 
structural variant (SV) breakpoints, aims to boost development of computational tools and algorithms 
for discovery of genomic rearrangement events from sequencing data. SVs are a dominant force 
shaping genomes and substantially contributing to genetic diversity. Still, there are challenges in 
reliable and efficient genotyping of SVs from whole genome sequencing data, thus delaying translation 
into clinical applications and wasting valuable resources. SWaveform includes a database containing 
~7 M of read depth profiles at SV breakpoints extracted from 911 sequencing samples generated by the 
Human Genome Diversity Project, generalised patterns of the signal at breakpoints, an interface for 
navigation and download, as well as a toolbox for local deployment with user’s data. The dataset can be 
of immense value to bioinformatics and engineering communities as it empowers smooth application of 
intelligent signal processing and machine learning techniques for discovery of genomic rearrangement 
events and thus opens the floodgates for development of innovative algorithms and software.

Background & Summary
Structural variants are genomic alterations that encompass at least 50 nucleotides1. The term refers to a variety of 
events which include deletions, duplications, insertions, inversions, translocations and more complex rearrange-
ments usually associated with mobile genetic elements2. Furthermore, SVs that change the number of copies of 
a DNA sequence are often defined as “copy number variants” (i.e., CNVs). Typically, SVs are single events, how-
ever in certain situations frequently occurring in cancer they may pile up resulting in large, complex, entangled 
combinations of alterations also known as chromosome shattering or chromothripsis3,4. Genome structural vari-
ation is a potent source of genetic diversity and may have a profound effect upon human health, as SVs are impli-
cated in both germline and somatic disease ranging from developmental and neurological disorders to a wide 
spectrum of cancers2,5–9. SVs hold a great potential as molecular biomarkers to guide precision medicine10–13.

Robust and reproducible structural variation discovery still poses significant computational and algorithmic 
challenges14,15. Although, we are getting near to resolving structural variation in personal genomes with accuracy 
required for translational research5,16,17, faultless detection of SVs in many cases (e.g., insertions, CNV gains)18 
remains notoriously difficult. Recent advances in technology, such as, long-read sequencing provide plenty of 
good reasons for cautious optimism on reaching a reasonable accuracy of SV discovery19–23. Nevertheless, the 
high cost and the low throughput of this strategy currently limits its general use. The short-read sequencing rou-
tinely used in a clinical setting and in nation-wide medical genetics initiatives makes the discovery, genotyping 
and characterisation of the variants difficult. SV discovery algorithms designed to process short sequencing 
fragments rely on uniformity and evenness of sequencing coverage profile (i.e., number of reads aligned to a 
genomic region or nucleotide), as well as read depth information for accurate detection of structural variants18. 
However, as sequencing coverage signal is discontinuous, heterogeneous, and irregular, often even erratic exist-
ing SV detection tools still generate highly discordant results24–26.

Over the course of the past decade SV discovery algorithms have generally explored two major strategies for 
variant detection, namely they either exploit read depth variability or base their discovery strategy on analysis 
of discordant alignment features. At present no single computational algorithm can detect SVs of all types and 
sizes in a robust, reliable manner. Moreover, as a rule, an approach which combines calls generated by several 
detection methods is required to achieve satisfactory performance24,27–31.

In this context, approaches exploring properties of depth of coverage (DOC) signal hold a tremendous 
potential, especially as a) relevant methodologies are applicable to data produced with both short- and long-read 
sequencing protocols, and b) it should be sufficient for discovery of the majority of SV classes regardless of their 
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size and breakpoint location, as long as they distort the signal. The design of such tools calls for development 
of open access resources that aggregate and integrate signal coverage profiles in the vicinity of SV breakpoints, 
which so far is not available.

Here, for the first time we present a detailed catalogue of various waveforms and patterns observed in the 
sequence coverage signal associated with different types of SVs, as well as a toolkit for coverage data manage-
ment and analytics. SWaveform provides easy access to approximately 7 M DOC signal profiles extracted from 
911 human sequencing samples generated by the Human Genome Diversity Project (HGDP)6,32. A portable 
database architecture and provided API facilitate easy and seamless on-premises deployment encompassing data 
processing routines on all levels i.e., from raw aligned data to visual representation of coverage profiles (shown 
in Fig. 1a). We also propose a new binary format to manage sequence coverage data. Finally, as motif discovery 
has been successfully applied throughout a large range of domains such as medicine, finance, robotics and DNA 
analyses we designed an algorithm for motif extraction from the coverage signal. Taken together, SWaveform 
will be instrumental for in-depth studies of signal properties with an extensive body of dedicated algorithms 
commonly used in the signal processing domain for feature extraction, pattern discovery and anomaly detec-
tion. In addition, a collection of signals and patterns could facilitate the development of strategies for filtration 
of SVs detected by various callers and meta-callers. Also, SWaveform framework could be deployed locally to 

Fig. 1 An overview of SWaveform framework. (a) SWaveform workflow. Data processing steps from raw 
annotated sequencing data to motifs and their detection in DOC profiles. (b) The bootstrapping procedure used 
for motif discovery from DOC profiles. (c) SWaveform database schema.
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enable exploration of any sequencing data in a clinical or research context. Overall, the developed catalogue and 
accompanying toolkit form an indispensable resource that will facilitate development and honing of compu-
tational tools for discovery of specific genomic rearrangement events. It is expected that SWaveform will be of 
immense value to the machine learning and biomedical communities.

Methods
Data management. We used HGDP sequencing data32 which includes 911 whole-genome sequenced 
human samples in CRAM format33 with an average depth of coverage of about 30x. Aligned sequencing data was 
downloaded from the International Genome Sample Resource ftp site (http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/data_collections/HGDP/data/). Structural variation data generated by the consortium contains annotated 
breakpoints for the following types of events: CNV gain and loss, insertions, inversions, deletions and duplica-
tions6, which amounts to ~15М DOC profiles. The corresponding set of structural variants (SV) encompass-
ing 152,841 variants was obtained from the HGDP SV data repository (ftp://ngs.sanger.ac.uk/production/hgdp/
hgdp_structural_variation/).

We developed a software suite to extract DOC profiles in a vicinity of SV breakpoints (Table 1). The default 
size of the region surrounding the breakpoint is imposed by the read length typically used in short-read 
sequencing experiments and comprises ±256 bp. Importantly, the parameter can be adjusted to accommodate 
for long-read sequencing protocols or to mitigate the consequences of imprecise breakpoint detection. SVs 
shorter than the window size, but exceeding 20 bp in length are labelled as “special” (i.e., spSV). Importantly, all 
SVs shorter than 20 bp are omitted. Furthermore, to speed up coverage data processing and optimise storage we 
introduced a simple lossless binary format for recording of coverage values (BCOV). The format was purposely 
developed to ensure fast and efficient programmatic access to the DOC data, which is encoded as follows. For 
each position on a chromosome a numeric value corresponding to the read coverage depth is stored in two bytes, 
saved in a binary file in a sequential order. Thus, the maximal supported coverage value is bounded by 216. If the 
coverage exceeds the limit, the value is capped to the maximum of 65 536 reads. The size of an average BCOV file 
generated for the human genome amounts to about 5.5 Gb.

The genomic data from CRAM files was processed with mosdepth tool34 to extract a numeric value reflecting 
sequencing read coverage depth for each genome position and converted it to BCOV. The mosdepth program is 
run with the default set of parameters to exclude reads characterised with a combination of bitwise FLAGs 1796. 
In essence, this results in a removal of the following read categories: segment unmapped, secondary alignment, 
not passing QC, PCR or optical duplicate. Next, the breakpoint coordinates of copy number variants, and of the 
following SVs, namely deletions, insertions, inversions, duplications were obtained from the corresponding VCF 
files. We further filtered VCF records to include only those variants distinguished with a PASS flag (i.e., Manta 
FT flag). Finally, the extracted profiles, breakpoint loci and sequencing samples metadata (7, 314, 329 entries in 
total) were stored in a relational database (SQLite) to facilitate data search, retrieval and visualization (see Data 
Records section and Fig. 1a,c).

Motif discovery. A profound variability of waveforms associated with different classes of SVs has long 
impeded the reliability and reproducibility of the discovery algorithms. We, therefore, sought to identify repeated 
patterns found within DOC profiles (i.e., motifs) and characterise conserved structures in the signal.

Briefly, the procedure for motif discovery encompasses the following steps (Fig. 1b). First, the optimal num-
ber of representative clusters containing somewhat similar DOC signals in terms of shape of associated wave-
forms within the annotated SV classes is estimated. This step is run only once for every combination of SV type/
breakpoint (i.e., left or right, if applicable). In the second step, the estimated number is used to cluster DOC 
profiles intrinsic to each of the aforementioned combinations. Next, to identify and rank motifs within each 
cluster we use K-nearest neighbour approach. Due to the large volume of data the latter step is run repeatedly 
on bootstrap samples from the original data. Finally, the motif groups emerging from each of the bootstraps are 
iteratively merged to pinpoint the most predominant one for each of the clusters. The details of every step of the 
procedure are outlined in the paragraphs below.

Although structural variation has been in the spotlight of genomic research in the last decade, the multifor-
mity and diversity of signal profiles attributed to specific types of SVs have never been properly characterised. 
Furthermore, as structural variation data produced by the HGDP is not curated, it is highly likely that an a priori 
unknown number of false calls is present in the data set. To identify predominant waveforms characteristic to 
annotated SVs in the HGDP data the coverage profiles attributed to specific classes of SVs were compressed, 
normalised and clustered with dynamic time warping (dtw) distance35,36 as discussed in the Technical Validation 
section. The numerical experiments involving silhouette index and bootstrap resampling (80 runs, without 

Breakpoint type/SV class CNV gain CNV loss DEL DUP INS INV

Left (L) 467, 686 652, 892 1, 211, 445 31, 042 0 35, 469

Right (R) 467, 716 643, 231 1, 211, 413 31, 042 0 35, 469

Break Point (BP) 0 0 0 0 1, 087, 106 0

spSV 0 0 1, 263, 414 46, 305 0 2, 187

Total 935, 402 1, 296, 123 3, 686, 272 108, 389 1, 087, 106 73, 125

Table 1. Total number of DOC profiles in SWaveform database. The imbalance of the number of breakpoints 
(left and right) for several SV types (i.e., deletion) is caused by zero coverage values at the beginning/end of a 
variant.
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replacement) used to estimate the optimal number of clusters associated with each SV type have demonstrated 
that the data partitioning into more than two subsets is not justified (see Supplemental Figs. 1,2). In the case 
that the most representative cluster (i.e., containing more than 66% of DOC profiles) can be identified, the motif 
discovery is restricted to it. Alternatively, the motif discovery is performed in both clusters. The latter scenario 
is likely to encompass those instances where the performance of the SV discovery algorithms is questionable 
and, consequently, the detected breakpoints are ambiguous. This particularly applies to CNV gains as discussed 
below.

The motif discovery poses a significant computational challenge, as the total number of DOC profiles in the 
HGDP dataset amounts to ~7 M and the extracted profile length is 512 bp. We were, therefore, impelled to carry 
out the motif search in the dataset chunks associated with each type of SV, genotype and a corresponding break-
point (i.e., left or right). The bootstrapping encompasses 360 subsets comprising 960 signal profiles for every 
SV/breakpoint/genotype combination. Thus, for every data subset compressed DOC profiles were clustered with 
K-Means algorithm (dtw distance) into two clusters (as justified in the above paragraph) to reveal predominant 
waveforms present in the data (see Fig. 1b). Due to combined imperfections of both read alignment and SV 
discovery algorithms the DOC profiles in the vicinity of a breakpoint are highly variable in shape and form, 
meaning that the signal can be either stretched or shifted. To account for variability, we apply SAX (Symbolic 
Aggregate approXimation) transformation37 to the signal using an alphabet of 24 symbols. Next, the overlapping 
sliding window-based segmentation (32 data points) was applied to the SAX-transformed signal. Finally, to dis-
cover the most significant motifs from the profiles, the resulting segments are fed into the modified KNN_Search 
algorithm38 which partitions them into similarity groups. Importantly, the KNN_Search algorithm was modified 

Fig. 2 Signal profiles and motifs identified for specific combinations of SV classes/breakpoint types in the case 
of homozygous events. Each column in a table contains (from left to right): compressed, normalised DOC 
profile, where red line shows signal mean and grey shading corresponds to standard deviation; the predominant 
motif identified for a given SV/breakpoint type (see also Fig. 5); the SAX-transformed DOC profiles (thin grey 
lines) with the respective motifs (orange) projected onto them; percentage of profiles pertaining to a cluster. 
Cluster I and Cluster II are groups generated with K-Means method. Cluster II data is not shown if it covers less 
than 1/3 of DOC profiles.
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to facilitate efficient motif discovery (as discussed below in the Technical Validation section). The KNN_Search 
method yields a ranked list of similarity groups, characteristic for a given cluster. Тhe ranking reflects the group’s 
prominence. Finally, the motifs generated as a result of the bootstrapping are iteratively merged (using SAX 
distance-based thresholding) and averaged to reveal the most predominant one for each cluster (Figs. 2,3). To 
get a full understanding of the computational approach adopted, please refer to the source code in the Code 
Availability section.

The pattern in itself is an ample source of information on aberrations in the signal, that could arguably be 
used to draw valuable conclusions on the performance of the existing algorithms for SV discovery and on the 
waveforms characteristic to various types of SVs.

In particular, from our findings it follows that regardless of the genotype, the breakpoints correspond-
ing to copy number gains are much harder to localise with precision, as the patterns associated with their SV 
breakpoints are blurred and exhibit gradual increase in signal intensity as compared to clear step-wise pattern 
observed in the case of duplications. Strangely, in structural variants annotated as CNV gains, irrespective of the 
beginning or end of the interval (i.e., left or right breakpoint) and genotype, two motifs with opposite trends in 
the coverage signal are observed (see Figs. 2,3). Moreover, each of these patterns is supported by relatively simi-
lar proportions of DOC profiles. Considering these observations, we may hypothesise that segmentation-based 
approach to boundary determination and possibly varying signal amplitude at the variant start (or end) locus 
confound CNV discovery software and result in ambiguous boundary attribute (e.g., left or right) of a variant.

Fig. 3 Signal profiles and motifs identified for specific combinations of SV classes/breakpoint types in the case 
of heterozygous events. Each column in a table contains (from left to right): compressed, normalised DOC 
profile, where red line shows signal mean and grey shading corresponds to standard deviation; the predominant 
motif identified for a given SV/breakpoint type (see also Fig. 5); the SAX-transformed DOC profiles (thin grey 
lines) with the respective motifs (orange) projected onto them; percentage of profiles pertaining to a cluster. 
Cluster I and Cluster II are groups generated with K-Means method. Cluster II data is not shown if it covers less 
than 1/3 of DOC profiles.
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Besides that, the motif discovery did not produce any convincing result in the event of insertion, which 
may indicate that the distortion on the DOC signal in the vicinity of the breakpoint do not go beyond super-
ficial alterations (Figs. 2,3). Interestingly, we have detected two motifs coupled to breakpoints related to both 
hetero- and homozygous inversions. In fact, these clusters describe signal behaviour at the inversion boundaries 
(Supplemental Fig. 4), although admittedly the motif is less pronounced for the left boundary of the homozy-
gous inversion. The latter is likely to be a consequence of a relatively small size of the data, as the number of 
homozygous inversion profiles included into analyses amounts to 11065 entries. Leaving aside the genotype 
data triples the number of profiles and allows for generation of a distinct SAX model (see Supplemental Fig. 4).

An exploratory analysis of motifs generated with spSVs demonstrate that typically the method is capable of 
capturing the signal around the breakpoint. As expected, the varying length of the variant downstream of the 
breakpoint clearly impacts the ability for recapitulation of the signal shape.

On the whole, in the case of both homozygous and heterozygous variants the best motifs are detected for the 
following classes of events: duplications, deletions, CNV loss and, possibly, inversions. It is quite within reason to 
suggest, that this result is a consequence of at least two factors, namely, the precision in discovery of breakpoints 
associated with the respective variants, as well as the distinct manifestation of the related waveforms.

The resulting motifs in SAX format, stored in the SWaveform database may have an important utility for a) 
development of novel improved approaches for breakpoint detection, and b) for visualisation of repeated pat-
terns in the DOC signal.

Data records
Data presented in this work can be accessed directly at Zenodo repository39–41 as an archive in ZIP format, 
which includes SQLite dump, DOC signal profiles in BCOV format and the accompanying metadata in various 
formats. The database schema is presented in Fig. 1c and on the SWaveform website at swaveform.compbio.ru/
description.

Technical Validation
In this study various approaches were applied to validate reliability, integrity and quality of the raw and trans-
formed data, as well as data processing.

The HGDP provides high quality data processed in accordance with SOPs as described in Almarri et al.6. 
The DOC values were extracted from the CRAM files and converted into lossless BCOV format. The breakpoint 
coordinates of the structural variants characterised by the aforementioned consortium were extracted from the 
provided VCF files and filtered to allow variants annotated with the PASS flag. The DOC profiles in the 512 bp 
neighbourhood centred on the filtered breakpoint were then extracted for samples with homo-/heterozygous 
genotype of the variant.

Signal compression and clustering. In each bootstrap run the database was subsetted to select a 100 
random signal profiles associated with a specific type of SV. To speed up the clustering procedure, signal profiles 
were compressed using average pooling in windows of 8 base pairs long. The compressed profiles were further 
normalised (i.e., scaled to zero mean and unit variance within a sequenced sample) and clustered with K-Means 
algorithm (as implemented in tslearn package42) using two different randomly selected seeds (e.g., cluster sets C0 
and C1). Concurrently, the same group of signal profiles was compressed and clustered using the same seed as in 

Fig. 4 An overview of the modified KNN_Search algorithm. (a) Iteration order through the SAX-transformed 
DOC profiles in 1D space. (b) Clustering of DOC profiles (Ri) in SAX space. Si and Ci represent SAX distances 
between ith DOC profile and sine and cosine reference points, correspondingly. (c) Outline of the modified 
KNN_Search algorithm.
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C0 resulting in a cluster set C2. A percentage of profiles that retained their cluster association regardless of seed 
between cluster sets C0 and C1, as well as between C0 and C2 was computed.

Clustering procedures using both compressed and uncompressed signal profiles were repeated 80 times 
to generate distributions showing clustering consistency. The resulting distributions of profiles that retained 
their cluster association expressed as percentage from the overall number of profiles were compared using 
Kolmogorov-Smirnov one-sided two-sample test, as shown in Supplemental Fig. 3. Our numerical experiments 
clearly demonstrate that signal compression produces much less effect on cluster consistency as opposed to the 
seed selection, indicating that signal compression impact on clustering results is minor.

Modified KNN_Search algorithm. The KNN_Search method published by Zaher Al Aghbari38 adopts heu-
ristics approach to guide motif search and to identify stable patterns in the signal. KNN_Search rests upon the 

Fig. 5 DOC profile examples corresponding to left and right breakpoints of two inversions annotated by the 
HGDP consortium and the associated SAX representation of predominant motifs. (a) The DOC profiles for two 
inversions. The HGDP sample id, the type of a structural variant, the genotype and the breakpoint type (i.e., 
left or right) are indicated above each DOC profile. The x -axis represents the depth of coverage of every single 
nucleotide position in respect to the reference sequence and the y-axis is the genomic position. Vertical red 
line shows breakpoint coordinate as reported by the HGDP. Mean coverage for the whole sample is displayed 
in horizontal solid blue line. Dashed green lines correspond to the SAX-transformed DOC profiles. (b) SAX 
representation of a motif associated with the 5′ breakpoint. (c) SAX representation of a motif associated with the 
3′ breakpoint. Thin red lines show SAX representation of signal profiles generated as a result of KNN_Search, 
bootstrapping and merging i.e., those corresponding to the most predominant similarity group. The thick red 
line shows the predominant motif.
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linearization concept i.e., it is reasoned that when two subsequences are close in the (multidimensional) 
SAX-space, these elements are also close in 1D space they are projected into. The linearization is achieved through 
selection of a reference node and subsequently ordering all other data points in accordance with their distances 
from it. The neighbourhood expansion is controlled through a threshold imposed on a distance between the ref-
erence point and a prospective group member. This allows for an efficient neighbour grouping in 1D space and 
reduces the search space for the time-consuming SAX distance calculations. To further improve computational 
efficiency of the method and scale down the SAX search space we introduced a second reference node and, con-
sequently, an additional 1D space (see Fig. 4). Furthermore, instead of a randomly chosen reference node we opt 
to select two fixed distinct reference points, namely SAX-transformed sine and cosine functions on an interval of 






π0,
2

. The SAX distance within the prospective neighbourhood is computed, if and only if, two nodes are close in 
each of the one-dimensional spaces. Thus, the optimization is achieved through narrowing down the search space 
in which SAX distance estimation is performed.

Usage Notes
SWaveform resource can be accessed through graphical user interface (GUI) on swaveform.compbio.ru. The 
interface provides the ability to visualise profiles, search by genomic coordinates, and filter by ethnic group pro-
vided by the HGDP, SV class, genotype and breakpoint type. The interface also provides chromosome browser 
capability. The user part of the interface (front-end) is implemented using React.js and D3.js tools, while the 
server part (back-end) is written in Python with the flask framework. Examples of signal profile visualisation 
both for individual samples and for averaged profiles corresponding to one or another type of structural vari-
ation are shown in Fig. 5. In addition, the application programming interface (API) to the database was devel-
oped, allowing direct access to the data from the user’s programs by means of Python or PHP.

The predominant motifs associated with a given combination of SV type/breakpoint are provided as a SAX 
transformation, which enables scanning of DOC profiles encoded in BCOV format for possible anomalies and 
aberrations. This solution is implemented in C and Python and is available as a part of the software suite accom-
panying the resource.

To showcase the resource in action we provide two Snakemake workflows (please see Code availability sec-
tion for details). The first one encompasses all steps required for resource deployment from user’s data. The 
workflow generates all the files necessary to set up a local database of DOC profiles and extracts coverage signals 
in the vicinity of breakpoints to build a set of predominant motifs associated with a given combination of SV 
type/breakpoint. The second workflow is a prototype to demonstrate a practical implementation of a simple 
pattern search in the data to facilitate anomaly detection in the DOC signal. Both workflows use moderate-sized 
datasets available on Zenodo40,41.

The database population workflow is shown in Fig. 1a.

Code availability
A software suite accompanying the resource is available on https://github.com/latur/SWaveform. The repository 
contains scripts for a) database and GUI deployment on the SQLite platform and b) a toolkit for DOC profile and 
SV data processing and management. The toolkit contains scripts for generation of DOC profiles corresponding 
to breakpoint loci from alignment files (SAM, BAM or CRAM format) and annotated VCF files, as well as DOC 
profile conversion into BCOV format. In addition, we provide tools for profile clustering, motif discovery and a 
script for subsequent motif detection in DOC profiles.
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