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GazeBaseVR, a large-scale, 
longitudinal, binocular eye-tracking 
dataset collected in virtual reality
Dillon Lohr   ✉, Samantha aziz, Lee Friedman & Oleg V. Komogortsev

We present GazeBaseVR, a large-scale, longitudinal, binocular eye-tracking (Et) dataset collected 
at 250 Hz with an ET-enabled virtual-reality (VR) headset. GazeBaseVR comprises 5,020 binocular 
recordings from a diverse population of 407 college-aged participants. Participants were recorded up 
to six times each over a 26-month period, each time performing a series of five different ET tasks: (1) a 
vergence task, (2) a horizontal smooth pursuit task, (3) a video-viewing task, (4) a self-paced reading 
task, and (5) a random oblique saccade task. Many of these participants have also been recorded for two 
previously published datasets with different ET devices, and 11 participants were recorded before and 
after COVID-19 infection and recovery. GazeBaseVR is suitable for a wide range of research on ET data in 
VR devices, especially eye movement biometrics due to its large population and longitudinal nature. In 
addition to Et data, additional participant details are provided to enable further research on topics such 
as fairness.

Background & Summary
Eye-tracking (ET) sensors are becoming increasingly prevalent in modern virtual- and augmented-reality (VR/AR) 
devices such as the Vive Pro Eye1, HoloLens 22, and Magic Leap 23. The presence of these ET sensors is motivated in 
large part to enable foveated rendering techniques4 which offer a significant reduction in overall power consump-
tion without a noticeable impact on visual quality. Such power savings could lead to higher resolution displays in 
tethered devices or a longer battery life in untethered devices. In addition to foveated rendering, ET also enables a 
multitude of applications including (continuous) user authentication5,6, health monitoring7, novel display technol-
ogies8, usability assessment9, direct gaze interaction10, and more.

Research on these applications is heavily dependent on the availability of large-scale datasets. Eye movement 
biometrics (EMB)11, especially, requires large, longitudinal datasets with hundreds of unique identities and var-
ied eye movement behaviors to train state-of-the-art deep learning models5,12. One of the most suitable datasets 
for EMB is GazeBase13, a dataset of high-quality monocular (left eye only) ET signals recorded at 1000 Hz over 
a 37-month period from a population of 322 college-aged participants. However, at the time of writing, there is 
no similar, large-scale, longitudinal dataset collected with a modern VR/AR device, making it difficult to train 
an EMB model tailored to such devices.

The present work introduces GazeBaseVR, a GazeBase-inspired dataset collected with an ET-enabled VR 
headset. GazeBaseVR contains binocular ET signals recorded at 250 Hz over a 26-month period from a diverse 
population of 407 college-aged participants. A summary of the GazeBaseVR dataset collection is presented in 
Fig. 1. One particularly noteworthy component of GazeBaseVR is a task that elicits vergence eye movements 
which are underrepresented in public ET datasets. We also note that a sampling rate around 250 Hz, which 
GazeBaseVR has, is commonly considered to be necessary to accurately capture saccade characteristics such as 
peak velocity and duration14. A subset of this dataset was described and used in a brief prior study15, but this is 
the first release of the full dataset.

Further, some of the participants from GazeBaseVR were also later recorded for two other public datasets: 
SynchronEyes16 and the HoloLens 2 ET dataset by Aziz and Komogortsev17. This overlap in populations may 
enable research on the generalizability of EMB models across several different ET devices, among other potential 
applications. While many prior studies have also recorded a set of participants with multiple ET devices18–21, 
existing datasets tend to either not be publicly available, not contain enough unique identities for a robust anal-
ysis, or not contain sufficiently varied eye movement behaviors for applications such as EMB.
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When considering population size, task diversity, and temporal scale, GazeBaseVR is–to the best of our 
knowledge–the largest publicly available dataset of ET signals collected with a VR (or AR) device. A comparison 
of GazeBaseVR to a selection of similar, publicly available datasets is given in Table 3. Existing ET datasets are 
predominantly recorded outside of VR/AR devices, making it difficult to perform studies on data from VR/AR 
devices. Aside from GazeBase, existing datasets tend to have a limited longitudinal aspect; but some areas of 
research such as EMB benefit from the ability to study long-term patterns in ET signals. Compared to GazeBase, 
GazeBaseVR offers a greater number of participants (407 vs 322), binocular recordings rather than monocular 
ones, and the addition of vergence and smooth pursuit tasks to elicit novel types of eye movement. Though, 
GazeBase spans a longer period of time than GazeBaseVR (37 months vs 26 months) and contains a greater 
number of recordings per participant.

Methods
Participants. A total of 465 individuals originally participated in the study, but 58 participants were excluded 
for various reasons (e.g., could not be tracked/calibrated, experienced motion sickness, could not finish within 
the allotted time of 1 hour, excessive (over 50%) data loss in one or more recordings). At the time of Round 1, 188 
participants self-identified as male, 216 self-identified as female, and 3 self-identified as neither male nor female. 

Fig. 1 Summary of the GazeBaseVR dataset collection. (a) An illustration of the experimental setup. The 
depicted individuals gave permission to be shown here. (b) The stimulus used for the vergence task. (c) A frame 
from one of the video clips used for the video task. (d) One of the text excerpts used for the reading task. (e) The 
dot stimulus used for the smooth pursuit and random saccade tasks. (f) The text and timer displayed during the 
“blink period” prior to each task. (g) The time periods during which each recording round took place.
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See Table 1 for race/ethnicity statistics and Fig. 2 for the distribution of participants’ ages at enrollment time.  
A total of 3 recording rounds took place over a period of 26 months (see Table 2 for date ranges and population 
sizes), with each round comprising 2 recording sessions separated by approximately 30 minutes. Round 2 began 
alongside a continuation of Round 1 in the beginning of the Spring 2020 semester, but recordings were prema-
turely halted due to health concerns at the start of the global COVID-19 pandemic. Recordings later resumed 
with Round 3, throughout which the laboratory personnel wore face masks at all times and participants wore 
face masks except when actively being recorded to reduce health risks, and extra care was taken to disinfect all 
the equipment after each set of recordings. During Round 3, 11 participants were recorded after recovering from 
a COVID-19 infection, which may have affected their eye movements in some way22; but this is too small of a 
sample size to perform any meaningful analysis on the effects of COVID-19 on ET data.

There are fewer participants in Round 2 than the other rounds because it was prematurely halted due to 
COVID-19, so participants for Round 3 were recruited from the Round 1 population. The participants in 
Rounds 2 and 3 are both subsets of the population from Round 1, but a participant in Round 2 may not be 
present in Round 3 and vice versa. To be precise, 322 participants were present only for Round 1, 75 participants 
were present for Round 1 and one other round (25 for Round 2 and 50 for Round 3), and 10 participants were 
present for all three rounds. It may be worth briefly expanding upon the reason behind this distribution of par-
ticipants across recording rounds. At the onset of data collection, we had originally planned to follow a similar 
scheme as GazeBase wherein subsequent recording rounds would recruit exclusively from the preceding round’s 
participants. However, Round 2 was prematurely halted due to COVID-19, resulting in an unexpectedly small 
population for that round. When recordings later resumed once it was deemed safe to do so, too much time had 
passed for a continuation of Round 2 to be sensible. So for Round 3, rather than limit ourselves to the relatively 
small population of Round 2, we decided to maximize the population of Round 3 by recruiting from the full 
Round 1 population.

Participants were recruited from the undergraduate student population at Texas State University in San 
Marcos, TX, USA. All participants were screened to ensure they had no history of epilepsy or seizures, and they 
all provided informed, written consent to participate in the study and to have their anonymized data shared with 
the broader research community following a protocol approved by the Institutional Review Board at Texas State 
University. The protocol was later modified for Round 3 to abide by Texas State University’s COVID-19 health 
and safety guidelines, and this amended protocol was also approved by the Institutional Review Board at Texas 
State University. Participants were compensated with extra course credit for participation in Round 1, $20 in 
Round 2, and $40 in Round 3. The increase in monetary compensation for participation in Round 3 was done to 
decrease attrition rates and was approved as part of the modifications made to the Round 3 protocol.

Data acquisition overview. ET data are recorded with SensoMotoric Instrument’s (SMI’s) tethered ET VR 
head-mounted display based on the HTC Vive (hereon called the ET-HMD). The ET-HMD tracks both eyes at 
a nominal sampling rate of 250 Hz with a manufacturer-reported typical spatial accuracy of 0.2 degrees of visual 
angle (dva) and–according to correspondence we had with SMI support prior to Apple’s acquisition of SMI–a 
manufacturer-reported spatial precision of “about 0.02” dva. The experiments were designed in Unity 2018.3.11f1 
using the C# programming language.

When deciding which ET-enabled device to use for data collection, we could have chosen either VR or AR 
to target the kinds of devices that would greatly benefit from the inclusion of ET sensors to enable foveated 
rendering. The primary reason we chose to use a VR device over an AR device was due to the availability of the 
ET-HMD and the fact that, at the time that data collection began, it was equipped with the highest quality ET 
sensors available in a VR or AR device. More generally, VR enables more immersive entertainment experiences 
than AR and makes it easier to develop ET tasks without concern for visual distractions in the surrounding 
environment. There may be differences in the level of ET signal quality accessible in AR devices compared to 
VR devices, so our proposed dataset may not be ideal for studies specifically interested in ET signals captured 
with an AR device.

To facilitate a better and more comfortable headset fit, the stock head strap was replaced by the HTC Vive 
Deluxe Audio Strap, but no audio was ever played during the experiments. Additionally, the stock 14 mm foam 
face cushion was replaced with a 6 mm polyurethane leather face cushion to increase the field of view within the 
headset and make it easier to clean.

Race/ethnicity Number of participants

American Indian or Alaska Native 0

Asian 11

Black or African American 41

Hispanic or Latino 148

Native Hawaiian or Other Pacific Islander 1

White 140

Mixed 62

Prefer not to answer 4

Table 1. Self-reported race/ethnicity of the participants at the time of Round 1. Participants who self-identified 
as two or more options are classified as “mixed.”
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The view in the headset is fixed during each task so that, regardless of any head movement, each stimulus 
maintains the correct position relative to the headset. A participant puts on the headset, adjusts its fit for comfort 
and image clarity with assistance from the recording administrator as needed, and rests his/her head on a chin 
rest to minimize head movements. Although the view in the headset is fixed, it is still desirable to minimize head 
movements with a chin rest to reduce headset slippage, to reduce the risk of discomfort caused by the fixed view, 
and to reduce unintended eye movement behavior caused by the vestibulo-ocular reflex.

Data collection was performed by a combination of undergraduate students, graduate students, and 
post-doctoral researchers who were trained and followed a standardized procedure for ensuring proper headset 
fit and maximizing the signal quality of each recording. A gaze cursor was displayed on the monitor (but not 
within the headset) at all times to allow the recording administrator to identify problems such as excessive noise 
or extreme inaccuracy, and each recording administrator was trained to identify and resolve these issues involv-
ing means such as readjusting the headset (which was made easier by the use of the deluxe audio strap), cleaning 
the lenses, or recalibrating. Together with the use of a chin rest to minimize head movements, these measures 
would have mitigated the potential for headset slippage. However, beyond these measures, no special care was 
taken to completely eliminate headset slippage.

Calibration and validation. Participants perform a manufacturer-provided calibration procedure at sched-
uled intervals prior to the vergence, reading, and random saccade tasks, or whenever the headset is removed 
for any reason. The calibration procedure involves following a moving dot in a standard 5-point grid pattern. 
Calibration is performed up to 3 times until a spatial accuracy below 1 dva is achieved, moving on after the third 
attempt regardless of spatial accuracy. Spatial accuracy is assessed after each calibration attempt with a short, 
custom validation procedure consisting of a 13-point grid spanning ±15 dva horizontally and ±10 dva vertically 
at a depth of 1 meter.

In an effort to reduce fatigue, calibration is not performed prior to every task. This is justified by the use of a 
head-mounted display and a chin rest, as significant headset slippage is unlikely and high tracking accuracy can 
be maintained for longer periods than may be expected for non-wearable ET devices.

Task battery overview. An ordered series of 5 eye-tracking tasks are performed during each recording 
session. The tasks are designed to elicit a variety of commonly studied types of eye movement. Some tasks are 
intended to make it easier to isolate a particular type of eye movement (e.g., convergent/divergent movements in 
the vergence task, smooth pursuit movements in the smooth pursuit task, and saccadic/fixation movements in the 
random saccade task), while others are intended to elicit a complex mixture of different types of eye movement 
(e.g., saccadic, smooth pursuit, and fixation movements in the video viewing task). Each task is described in the 
following subsections in the order they occur within each session. The task abbreviations included in the subsec-
tion titles are part of the file naming convention for GazeBaseVR.

Each task is preceded by a 3-second-long “blink period” during which participants are instructed to blink as 
needed in an effort to reduce the amount they would need to blink during the task itself. Any eye-tracking data 
recorded during these blink periods is discarded. During this period, the text “BLINK” appears in large, black 
font over a light-gray background. Below the text is a black radial wipe timer that participants can use to gauge 

Fig. 2 Distribution of participants’ ages at enrollment time (i.e., the first session of the first recording round).

Recording 
round

Number of 
participants Start date End date

R1 407 2019-09-12 2020-03-06

R2 35 2020-01-30 2020-03-12

R3 60 2021-10-04 2021-11-19

Table 2. The number of participants and dates of the first and last recordings for each recording round. Dates 
are given in YYYY-MM-DD format. Although Round 2 was collected concurrently with Round 1, the minimum 
separation between a participant being recorded for R1 and R2 was 84 days.
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how much time remains until the task begins. Participants are instructed to try to minimize their blinks during 
each task and, if they need to blink, to try to blink only during periods when the visual target is stationary. See 
Fig. 1f for a visualization of the blink period.

All tasks including the blink period have the same light-gray background color (hex: #A0A0A0, RGB:  
(160, 160, 160)). The background color used in the manufacturer-provided calibration procedure is a slightly 
darker gray (hex: #7F7F7F, RGB: (127, 127, 127)).

Task 1: Vergence task (VRG). This task is modeled after a study on the dynamics of vergence eye movements by 
Tyler et al.23 During the task, a large (30 × 30 dva), square plane textured with random, gray-scale noise is dis-
played in the center of the user’s field of view. At the center of the plane is a small (1 dva diameter), black sphere 
on which participants are instructed to focus throughout the task. The stimulus alternates between depths of 
approximately 0.4433 and 0.3543 meters, eliciting ideal vergence (left minus right) of 8 and 10 dva, respectively, 
assuming an interocular distance of 62 mm. The stimulus scales in size with changes in depth to maintain a con-
stant apparent size so that vergence eye movements are driven by image disparity alone. Periods between depth 
changes are uniformly random between 2 and 3 seconds. The task has a duration between 48 and 72 seconds 
and elicits a total of 12 convergent (toward the nasal bridge) and 12 divergent (away from the nasal bridge) eye 
movements. See Fig. 1b for a visualization of the stimulus for this task.

Task 2: Smooth pursuit task (PUR). During this task, a small, black sphere (0.5 dva diameter at 1 meter 
depth) glides smoothly between the left and right edges of the viewing region (±15 dva) to elicit horizontal 
smooth pursuit eye movements. The stimulus begins at the center of the screen and, after a delay of 1.5 seconds, 
smoothly moves to the left edge of the viewing region at a constant speed of 5 dva/s. After a random delay 
between 1 and 1.5 seconds, it smoothly moves from the left edge to the right edge, pauses for another random 
delay when it reaches the right edge, and then smoothly moves back to the left edge. We refer to this complete 
left-to-right-to-left movement as a “trap,” since when plotting the horizontal position of the stimulus versus time 
its shape resembles a trapezoid. The stimulus performs as many complete traps as necessary to satisfy at least 
30 seconds of movement, not including the random pauses at the left and right edges nor the time it takes to move 
to and from the center of the screen. It then returns to the center of the viewing region, pauses for 1.5 seconds,  
and repeats the full movement pattern at a higher speed.

A total of 3 different speeds are employed during this task in a fixed order: 5 dva/s, 10 dva/s, and 20 dva/s. At 
5 dva/s, the stimulus performs 3 traps totaling 36 seconds of movement, plus an additional 6 seconds moving to 
and from the center of the screen. At 10 dva/s, the stimulus performs 5 traps totaling 30 seconds of movement, 
plus an additional 3 seconds moving to and from the center of the screen. At 20 dva/s, the stimulus performs 
10 traps totaling 30 seconds of movement, plus an additional 1.5 seconds moving to and from the center of the 
screen. Together with the pauses at the edges and center, the task has a total duration between 151.5 and 171 sec-
onds. See Fig. 1e for a visualization of the stimulus for this task.

Task 3: Video viewing task (VID). During this task, a video (1280 × 720 resolution, 30 frames per second) is 
displayed on a large, rectangular plane (36 × 21 dva at 1 meter depth) in the center of the user’s field of view over 
a light-gray background. Participants are instructed to view the video as they normally would. The video is a clip 
from the 3D animated short film, Big Buck Bunny24, with different clips being used for each session and the same 
two clips being used for all recording rounds. The first session uses the clip between timestamps 01:50–02:28  
(38 seconds duration) and the second session uses the clip between timestamps 05:45–06:23 (38 seconds dura-
tion). Each clip involves periods where one or more objects of interest are moving or stationary, eliciting a 
variety of eye movement behaviors. See Fig. 1c for a visualization of the stimulus for this task. The clips used for 
both sessions are provided with the supplementary code on figshare25. While it is perhaps more common in VR 
to view 360° video, we opted to display the video on a plane to more closely match the video presentation format 
of GazeBase.

Dataset Rate (Hz) Eyes* Tracker type N No. sessions Session gap Task diversity

GazeBaseVR (ours) 250 L/R/C VR headset 407 2–6 30 min.–2 yr. Vergence; smooth pursuit; video; 
reading; 2D saccades

GazeBase13 1000 L Tower mount 322 2–18 30 min.–3 yr. Video; reading; 1D saccades; 2D 
saccades; fixation; interactive game

JuDo100033 1000 L/R Tripod mount 150 4 1 wk.–4 wk. 2D saccades

DGaze34 100 C VR headset 43 2 Same day Dynamic 360° scenes

SynchronEyes16 500/1000 Varies Wearable and 
tower mount 20 2 Same day Video; reading; 1D saccades; 2D 

saccades; fixation

Aziz and 
Komogortsev17 30 L/R AR headset 33 1 — 2D saccades

Table 3. Comparison of GazeBaseVR to a selection of similar, publicly available datasets collected both in and 
out of VR/AR. “N” represents the total number of unique participants. “No. sessions” represents how many 
times a participant completes a full set of tasks. “Session gap” represents the approximate temporal separation 
between any two recording sessions. *L = left eye, R = right eye, C = cyclopean eye.
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Task 4: Reading task (TEX). During this task, an excerpt (roughly 820 characters) of an article from National 
Geographic is displayed within a 51.2 × 37.6 dva viewing region at a depth of 0.6 meters in the center of the 
user’s field of view. The chosen text contains easily digestible, non-fiction prose. A fixed-width font is used such 
that each character has a width close to 1 dva (varying with eccentricity). The font is black and is displayed over 
a light-gray background.

Participants hold an HTC Vive controller during the task and are instructed to press the rear trigger button 
to indicate that they have finish reading the text. Afterward, a multiple-choice reading comprehension question 
is displayed in the headset and participants must select one of the four answer choices using the controller to 
complete the task. Participants are informed beforehand that there will be a reading comprehension question. 
The question is not intended to be difficult, and the correctness of the selected answer is irrelevant; the purpose 
of this question is to encourage participants to read the text closely and not merely skim through it. The selected 
answer choice and any eye-tracking data recorded while answering the question are discarded.

The duration of the task depends on how quickly a participant reads through the text, ranging from 22.2 to 
141.4 seconds (median 51.6, IQR 17.9). A total of 4 unique text excerpts were used throughout data collection: 
one for session 1 of Round 1, one for session 2 of Round 1, one for session 1 of Rounds 2 and 3, and one for  
session 2 of Rounds 2 and 3. See Fig. 1d for a visualization of the stimulus for this task.

Task 5: Random saccade task (RAN). During this task, a small, black sphere (0.5 dva diameter at 1 meter depth) 
begins at the center of the user’s field of view and jumps to uniformly random positions on the screen within 
±15 dva horizontally and ±10 dva vertically. There is a uniformly random delay between 1 and 1.5 seconds and 
a minimum distance of 3 dva separating consecutive jumps. Participants are instructed to focus on and follow 
the sphere with their eyes throughout the task. A total of 79 stimulus movements (80 fixation periods) occur 
throughout the task, resulting in a duration between 80 and 120 seconds. See Fig. 1e for a visualization of the 
stimulus for this task.

Data Records
GazeBaseVR is available for download on figshare26 under a Creative Commons Attribution 4.0 International 
(CC-BY 4.0) license. In addition to the ET data, a file named participant_details.xlsx is included 
with many self-reported details for each participant, including but not limited to age, gender, race/ethnicity, eye 
dominance, sleepiness on the Stanford Sleepiness Scale27, drug and alcohol use, and physical and mental health. 
All recordings and the additional participant details file have been anonymized in accordance with the informed 
consent provided by all participants.

The ET API provided by SMI produces 3-dimensional unit vectors representing the gaze direction of each 
eye and timestamps with nanosecond precision. The API uses the same (left-handed) coordinate system as Unity 
such that positive X points right, positive Y points up, and positive Z points into the screen (i.e., the eyes look 
toward positive Z). A direction vector v = [x, y, z] is converted to the horizontal (θH) and vertical (θV) compo-
nents of the rotation of the eye globe in terms of dva using the equations

θ
π

= +x y z180 atan2( , ) (1)H
2 2

θ
π

= y z180 atan2( , ) , (2)V

where atan2 is the four-quadrant inverse tangent. These equations are analogous to the formulas for converting 
from Cartesian coordinates to spherical coordinates, taking into account the coordinate system used in the ET 
API provided by SMI. At each time step, a direction vector is provided for the left eye, right eye, and cyclopean 
eye (called the “camera raycast” in the ET API). Each eye’s direction vector may separately be reported as NaN 
in cases where the gaze could not be estimated including, but not necessarily limited to, during blinks. For tasks 
with a dot stimulus, the same equations are used to convert the position of the stimulus in world coordinates to 
dva relative to the cyclopean eye. The timestamps are scaled from nanoseconds to milliseconds and transformed 
to always start from 0. These units of measure–timestamps reported as milliseconds since the beginning of the 
recording and gaze positions reported as dva–are similar to those used in GazeBase. In addition, GazeBaseVR 
also includes the 3D position in meters (relative to the camera origin) of each eye ball as reported by the ET API.

There may be some latency involved with querying the position of the GameObject associated with the 
stimulus from within the ET API’s callback function. There may also be some latency between the eye image 
being captured by the ET sensors and the resulting gaze data being made available via the callback function. But 
we do not have detailed information regarding these latencies.

Data files are provided in CSV format inside a subdirectory named “data” following a naming convention 
similar to that of GazeBase: S_rxxx_Sy_z_www.csv. Table 4 describes the components of the file naming 
convention, and Table 5 describes the contents of each CSV file. The distributions of recording duration grouped 
by task are presented in Fig. 3.

technical Validation
In terms of ET signal quality, the ET-HMD was one of the best ET-enabled VR headsets when it was released, 
boasting an impressive 250 Hz sampling rate and a manufacturer-reported typical spatial accuracy of just 0.2 dva.  
Competition at the time included devices such as the Vive Pro Eye1 with a sampling rate of 120 Hz and a 
manufacturer-reported spatial accuracy of 0.5–1.1 dva, the FOVE 028 with a sampling rate of 120 Hz and a 

https://doi.org/10.1038/s41597-023-02075-5


7Scientific Data |          (2023) 10:177  | https://doi.org/10.1038/s41597-023-02075-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

manufacturer-reported spatial accuracy of less than 1 dva, and the Varjo VR-129 with a sampling rate of 100 Hz 
and a manufacturer-reported spatial accuracy of less than 1 dva.

Unlike other ET devices such as the EyeLink 1000 which provide spatial accuracy measurements during a 
manufacturer-provided validation procedure, we are not aware of a built-in method to quantitatively meas-
ure the spatial accuracy and spatial precision of the ET-HMD, at least when using the ET API within Unity. 
Therefore, signal quality must be measured in a user-specified manner. A highly accurate measure of signal qual-
ity would require careful classification of every stable fixation in every recording, which is a deceptively difficult 
task and beyond the scope of this work. We therefore choose to measure the spatial accuracy and spatial pre-
cision of the dataset in the following manner, based on the broadly applicable methodology from Lohr et al.30.

First, we minimize saccade latency in the gaze position signal. This is accomplished by temporally shifting the 
gaze position signal backward one time step at a time (up to a limit of 200 time steps or approximately 800 ms) 
and measuring the mean Euclidean distance between the shifted gaze position signal and the unshifted stimulus 
position signal. The temporal shift resulting in the lowest mean Euclidean distance is applied to the gaze position 
signal, effectively minimizing saccade latency. Second, we partition the signal into different “fixation periods,” 
using the time steps when the stimulus changes position to separate adjacent fixation periods. Third, we ignore 
the first 100 time steps (approximately 400 ms) of each resulting fixation period, because this is generally a 
period of instability as the eye finishes saccadic movement and settles into stable fixation at the stimulus’ current 
position. Finally, we employ the next 125 time steps (approximately 500 ms) of each fixation period for signal 
quality evaluation. We utilize the cyclopean gaze signal from the Session 1 RAN task, and we consider only the 
first 20 fixation periods of each recording to reduce the influence of fatigue effects on our measurements.

To measure spatial accuracy, for each fixation period, we compute the Euclidean distance between each gaze 
position sample and the stimulus position during that fixation period. We compute the mean of these distances 
within each fixation period and then the mean across fixation periods within a recording.

To measure spatial precision, for each fixation period, we compute the Euclidean distance between each con-
secutive gaze position sample. We compute the root mean square (RMS) of these inter-sample distances within 
each fixation period and then the mean across fixation periods within a recording. RMS is computed using the 
equation

∑=
=N

xRMS 1 ,
(3)i

N

i
1

2

Filename component Description Possible values

r Recording round 1–3

xxx Participant identifier 001–465

y Recording session 1–2

z Task number 1–5

www Task code VRG, PUR, VID, TEX, RAN

Table 4. Description of file naming convention: S_rxxx_Sy_z_www.

Column header Unit of measure Description

n ms timestamp of the recorded gaze sample since the beginning of the recording

x dva θH for the cyclopean eye

y dva θV for the cyclopean eye

lx dva θH for the left eye

ly dva θV for the left eye

rx dva θH for the right eye

ry dva θV for the right eye

xT* dva θH for the stimulus, relative to the cyclopean eye

yT* dva θV for the stimulus, relative to the cyclopean eye

zT m depth of the stimulus

clx m X position of the center of the left eye ball, relative to the camera origin

cly m Y position of the center of the left eye ball, relative to the camera origin

clz m Z position of the center of the left eye ball, relative to the camera origin

crx m X position of the center of the right eye ball, relative to the camera origin

cry m Y position of the center of the right eye ball, relative to the camera origin

crz m Z position of the center of the right eye ball, relative to the camera origin

Table 5. Description of data format. Note that dva is reported in degrees rather than radians, with decimal 
values indicating fractions of an angle rather than minutes/seconds of arc. *Only provided for tasks with a dot 
stimulus (VRG, PUR, and RAN). NaN for all other tasks.
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where xi is the i-th inter-sample distance. This method of measuring spatial precision is one of the two most 
common methods, the other being to compute the standard deviation of gaze position samples31.

The resulting signal quality measurements are likely pessimistic estimates of the true signal quality, con-
sidering that saccadic movements and artifacts (e.g., due to blinks) may be present in the samples used for the 
computations. Based on these rough measurements, all 3 rounds have a median spatial accuracy of around 
0.9–1.0 dva and a median spatial precision of around 0.03–0.04 dva. Although this is significantly worse than the 
manufacturer-reported spatial accuracy of 0.2 dva, it is well known that manufacturer-reported signal quality 
measurements are often not achievable in practice32 .

Code availability
During data collection, raw CSV files were generated from the data stream accessed with SMI’s provided ET API 
within Unity. These raw CSV files were later converted to the format described in Table 5 using custom Python 
code. The code used to convert the raw files to the final format, along with the code used to generate Figs. 1g–4 
and the data for Tables 1, 2, is available on figshare25. This code was developed using Python 3.7.11 with the 
following main packages: numpy 1.21.6, pandas 1.3.5, openpyxl 3.0.9, and matplotlib 3.2.2. This repository also 
contains other supplementary material including a manual for the ET-HMD, a pamphlet with manufacturer-
provided technical specifications for the ET-HMD, and the video clips used for the VID task.

Received: 14 October 2022; Accepted: 15 March 2023;
Published: xx xx xxxx
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