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an integrated single-cell 
transcriptomic dataset for  
non-small cell lung cancer
Karolina Hanna Prazanowska  1,2 & Su Bin Lim  1,2 ✉

as single-cell RNa sequencing (scRNa-seq) has emerged as a great tool for studying cellular 
heterogeneity within the past decade, the number of available scRNA-seq datasets also rapidly 
increased. However, reuse of such data is often problematic due to a small cohort size, limited cell 
types, and insufficient information on cell type classification. Here, we present a large integrated 
scRNA-seq dataset containing 224,611 cells from human primary non-small cell lung cancer (NSCLC) 
tumors. Using publicly available resources, we pre-processed and integrated seven independent scRNA-
seq datasets using an anchor-based approach, with five datasets utilized as reference and the remaining 
two, as validation. We created two levels of annotation based on cell type-specific markers conserved 
across the datasets. To demonstrate usability of the integrated dataset, we created annotation 
predictions for the two validation datasets using our integrated reference. Additionally, we conducted 
a trajectory analysis on subsets of T cells and lung cancer cells. This integrated data may serve as a 
resource for studying NSCLC transcriptome at the single cell level.

Introduction
The technology of whole-transcriptome single-cell RNA sequencing (scRNA-seq) was first introduced in 20091. 
Since then, this technique has rapidly emerged as a powerful tool for studying cellular heterogeneity in various 
fields, including Oncology2,3. The number of publicly available scRNA-seq datasets containing samples from 
various tissues and species greatly increased within the past decade, with the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO)4,5 being one of the most popular platforms dedicated to 
deposition of such data. However, small cohort size, inclusion of limited cell types, and insufficient annotation of 
cell populations are common obstacles to efficient reuse of the data, often slowing down the analysis. Therefore, 
several strategies have been developed for integration of the scRNA-seq data and correction of technical differ-
ences between the samples, also termed as batch effect6.

Among these strategies, Harmony7 and Seurat8 are commonly recommended9,10. Seurat identifies pairs of 
cells in a similar biological state across the datasets, termed anchors, and uses them to organize the data into a 
single integrated, corrected expression matrix. In this approach, cell subpopulations shared between different 
datasets are identified using canonical correlation analysis (CCA) and mutual nearest neighbours (MNNs)11,12. 
Seurat also enables data transfer between scRNA-seq datasets. In data transfer, principal component (PC) struc-
ture of a reference dataset is projected onto the query based on transfer anchors, and annotation predictions are 
generated for query cells11. In contrast to Seurat, Harmony integration operates on the PCs values, which rep-
resent a low-dimensional embedding of the original expression matrix and projects cells from different batches 
into a new shared embedding. Rather than using CCA, Harmony clusters cells in a way to obtain a balanced ratio 
of cells from different batches in each cluster, via k-means clustering and cluster centroid correction10,13. In our 
analysis, we decided to perform the integration and batch correction using Seurat.

Lung and bronchus cancer is the leading cause of cancer mortalities worldwide, with non-small cell lung 
cancer (NSCLC) accounting for the majority of new lung cancer cases14,15. Histologically, NSCLC is commonly 
classified as one of the two most common subtypes, including lung adenocarcinoma (LUAD) and squamous 
cell carcinoma (LUSC)16. LUAD has been confirmed to originate mostly from type two alveolar epithelial cells 
of the lung, whereas LUSC can arise either from basal cells of the bronchial epithelium, club cells, or alveolar 
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cells16. Growing evidence suggests a prognostic and predictive value of diverse cell types in NSCLC, including 
fibroblasts, immune, and endothelial cells17–19. A detailed single-cell atlas exploring a variety of cell populations 
would thus provide insight into the tumor microenvironment and help unveil novel markers for improvement 
of NSCLC therapy.

Until now, published integrated lung datasets have been established for healthy tissue or single cell types20,21. 
However, a large-scale integrated data set of NSCLC, comprising data from several studies, and a variety of 
cell populations is still missing, up until very recently, there is a high-resolution single-cell atlas of the tumor 
microenvironment in NSCLC specifically22. Here, we present an integrated single-cell transcriptomic dataset for 
human NSCLC, containing 224,611 cells, with a thorough characterization of present cell types on two levels of 
annotation (Fig. 1). Our integrated transcriptome data may serve as a vast resource for studying gene expression 
patterns between cell types, reconstructing cellular trajectories and identification of potential novel biomarkers 
in NSCLC.

Results
Generation of an integrated reference dataset of NSCLC tumors. For generation of the large-scale 
integrated dataset, we collected seven publicly available scRNA-seq datasets comprising of 185 NSCLC human 
tumor samples in total. Among the seven datasets, five were used to construct an integrated reference and the 
remaining two served as validation. Details on samples included in the analysis are summarized in Tables 1,2. 
Using the R Seurat package (v 4.1.0)8 we followed a standard workflow for quality control and clustering of cells 
(Table 3). Each dataset was processed individually, including only human tumor samples. We identified diverse 
cell populations which were clearly separated on Uniform Manifold Approximation and Projection (UMAP) 
embeddings (Fig. 2).

Subsequently, we integrated the five reference datasets using identified integration anchors and performed 
the downstream analysis. The reference dataset comprised of 186,223 cells, distributed among 27 clusters 

Fig. 1 Study design. Seven independent datasets were collected, pre-processed, and clustered using the Seurat 
package. Cell-level metadata on cell type classification and sample clinical information was standardized for all 
datasets. To obtain a large reference dataset, five datasets were integrated in an anchor-based manner. The cells 
of the integrated reference were subjected to a standard workflow for clustering and cell type annotation. The 
integrated reference was used for annotation of the validation dataset and the two datasets were then merged 
into the final dataset. Additionally, pseudotime trajectory analysis of selected clusters was conducted.
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(Supplementary Fig. 1a–e). By examining expression patterns of canonical marker genes (see details in the 
“Methods” section), we performed a two-level classification of clusters, in which 9 and 27 cell types were iden-
tified for level 1 and 2 annotation, respectively (Fig. 3a, Supplementary Fig. 1f, g). The main cell types include 
immune (T, B, plasma, mast, and myeloid cells), epithelial (cancer and ciliated cells), and stromal cells (fibro-
blasts and endothelial cells), all of which were further divided into subtypes in level 2 annotation.

Use of the reference dataset for annotation of query datasets. We integrated the two validation 
datasets via the anchor-based approach to obtain one validation dataset comprised of 39,511 cells. We clustered 
the cells of the validation dataset into 17 clusters, in which we initially classified independently of the refer-
ence dataset using canonical marker genes (Fig. 3b, Supplementary Fig. 2a–f). To assess the validity of the ref-
erence dataset, we conducted a cell type label transfer from the reference onto the validation dataset (Fig. 3c, 
Supplementary Fig. 2g). As a result, we obtained two levels of predicted annotations for the validation dataset. 
Cells of the validation dataset were well distributed in UMAP structure of the reference dataset, and all cell types 
defined in the reference were identified in the validation. We observed a satisfactory match between the original 
and predicted validation annotation in terms of main cell types, supporting the technical quality of our integrated 
data as an annotation reference atlas (Fig. 3d).

Next, we assessed the accuracy of the annotation predictions obtained in the mapping process. The cells of 
the validation dataset showed cell type-specific expression of marker genes (Fig. 3e) and high prediction score 
computed by the Seurat for all major cell types (Fig. 3f, Supplementary Fig. 3), supporting the credibility of the 
predicted annotations. To avoid inclusion of faultily classified validation cells in the final dataset, only the cells 
with high prediction score (>0.5) were merged into the final dataset and were selected as default identities of the 
validation dataset for further analyses.

Cell type classification of the final dataset. We merged the reference and validation datasets into a final 
dataset comprised of 224,611 cells. The UMAP plot in Fig. 4a shows a clear overlap of cells from the validation  
dataset with the reference in a single UMAP embedding, demonstrating a successful incorporation of the  
two datasets. We defined the previously generated two levelled annotation as final cell type classification of the 
final dataset (Fig. 4b,c).

We aimed at thoroughly characterizing the immune infiltrate and expression patterns of immune cells 
that reside in the tumor microenvironment (TME), including diverse subpopulations of T cells and myeloid 
cells (Fig. 4d–f, Supplementary Fig. 4). Subtyping of the T cell cluster revealed that naïve T cells accounted for 
majority of all T cells (45.41%), followed by CD8+ effector memory T cells (Tem), CD4+ regulatory T cells 
(Treg), NK, and proliferating T cells (32.29, 11.76, 7.68, and 2.88%, respectively). We found lipid-associated 
macrophages to be the most abundant subtype of the monocyte/macrophage group (64.70%). The remaining 
subtypes included low-quality macrophages, monocytes, alveolar, and proliferating macrophages (15.56, 12.01, 
4.75, and 2.98%, respectively). Among other immune cells, we found a considerable amount of mature naïve  
B cells (11.24% of all immune cells), plasma cells (5.66%), and neutrophils (4.45%). Moreover, a detectable level 
of mast cells (2.85%) and dendritic cells (conventional/monocyte-derived 2.48%, plasmacytoid 0.59%) was iden-
tified. These results highlight the diversity of the immune cell population in the TME of NSCLC and provide a 
field of action for future studies.

We next identified seven subclusters in the cancer cluster, including alveolar cells, pathological alveolar cells 
and five cancer cell subtypes. We classified the cancer cells into the five cancer subtypes as CDKN2A, SOX2, 
CXCL1, LAMC2, and proliferating cancer based on the top markers that are highly expressed in each clus-
ter. Interestingly, we found substantial differences in proportions of cancer cell subtypes between LUAD and 
LUSC samples (Fig. 4g). In LUAD, the proportion of alveolar (21.05% vs 0.5%), pathological alveolar (30.07% 
vs 0.34%) was much higher comparing to LUSC, in line with the previously reported LUAD developing from 
alveolar cells16. LUAD samples were also characterized by a higher percentage of LAMC2 (4.97% vs 1.79%) and 
CXCL1 cells (16.95% vs 12.5%). As CXCL1 and LAMC2 are associated with recruitment of neutrophils and 
macrophages into tumor tissue23,24, these results demonstrate the significant role of immune cell population in 
LUAD growth. In contrast to LUAD, LUSC samples were more abundant in CDKN2A (14.65% vs 1.05%), pro-
liferating (26.33% vs 1.73%), and SOX2 cancer cells (43.89% vs 24.18%). Tumor suppressor CDKN2A regulates 
the cell cycle and is frequently altered in LUSC25. Similarly, SOX2 controls cell proliferation and is commonly 

GEO accession # Sample # QC-passed cell # Stage Gender NSCLC subtype Use of dataset

GSE131907 11 39,980 I-III F, M LUAD Reference

GSE136246 24 53,190 I-IV F, M LUAD, LUSC Reference

GSE148071 42 51,912 III/IV F, M LUAD, LUSC, 
NSCLC Reference

GSE153935 12 5,025 N.A. N.A. N.A. Reference

Loom files (see 
Data Availability) 15 36,116 N.A. N.A. N.A. Reference

GSE127465 18 37,181 I-IV F, M LUAD, LUSC Validation

GSE119911 63 1,207 N.A. N.A. N.A. Validation

Table 1. Naming and basic information on the datasets used in the study.
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amplified in LUSC, promoting its growth by maintaining stem cell-like phenotype of cancer cells26. Together, 
these three cell subtypes account for over 80% of all cancer cells derived from LUSC samples, indicating the 
highly malignant nature of this tumor subtype.

Sample # Dataset/sample accession # Sample # Dataset/sample accession # Sample # Dataset/sample accession #

GSE131907 12 GSM4658775 15 GSM3387067

1 GSM3827125 KU_loom 16 GSM3387068

2 GSM3827126 1 1 17 GSM3387069

3 GSM3827127 2 2 18 GSM3387071

4 GSM3827128 3 3 19 GSM3387072

5 GSM3827129 4 4 20 GSM3387073

6 GSM3827130 5 5 21 GSM3387074

7 GSM3827131 6 6 22 GSM3387075

8 GSM3827132 7 8 23 GSM3387077

9 GSM3827133 8 9 24 GSM3387078

10 GSM3827134 9 10 25 GSM3387079

11 GSM3827135 10 12 26 GSM3387080

GSE136246 11 13 27 GSM3387081

1 GSM4043237 12 14 28 GSM3387082

2 GSM4043238 13 16 29 GSM3387083

3 GSM4043239 14 17 30 GSM3387084

4 GSM4043240 15 18 31 GSM3387086

5 GSM4043241 GSE127465 32 GSM3387089

6 GSM4043242 1 GSM3635278 33 GSM3387090

7 GSM4043243 2 GSM3635279 34 GSM3387091

8 GSM4043244 3 GSM3635280 35 GSM3387092

9 GSM4043245 4 GSM3635281 36 GSM3387098

10 GSM4043246 5 GSM3635285 37 GSM3387099

11 GSM4043247 6 GSM3635286 38 GSM3387100

12 GSM4043248 7 GSM3635288 39 GSM3387101

13 GSM4043249 8 GSM3635289 40 GSM3387104

14 GSM4043250 9 GSM3635290 41 GSM3387105

15 GSM4043251 10 GSM3635292 42 GSM3387106

16 GSM4043252 11 GSM3635293 43 GSM3387107

17 GSM4043253 12 GSM3635294 44 GSM3387110

18 GSM4043254 13 GSM3635296 45 GSM3387112

19 GSM4043255 14 GSM3635297 46 GSM3387113

20 GSM4043256 15 GSM3635298 47 GSM3387114

21 GSM4043257 16 GSM3635299 48 GSM3387115

22 GSM4043258 17 GSM3635301 49 GSM3387116

23 GSM4043259 18 GSM3635302 50 GSM3387117

24 GSM4043260 GSE119911 51 GSM3387118

GSE148071 1 GSM3387051 52 GSM3387121

1–42 GSM4453576–4453617 2 GSM3387052 53 GSM3387122

GSE153935 3 GSM3387053 54 GSM3387123

1 GSM4658758 4 GSM3387054 55 GSM3387127

2 GSM4658760 5 GSM3387055 56 GSM3387128

3 GSM4658762 6 GSM3387056 57 GSM3387135

4 GSM4658763 7 GSM3387057 58 GSM3387138

5 GSM4658764 8 GSM3387058 59 GSM3387143

6 GSM4658765 9 GSM3387059 60 GSM3387146

7 GSM4658767 10 GSM3387060 61 GSM3387150

8 GSM4658768 11 GSM3387061 62 GSM3387153

9 GSM4658770 12 GSM3387062 63 GSM3387155

10 GSM4658772 13 GSM3387063

11 GSM4658774 14 GSM3387064

Table 2. Accession numbers of the samples from each study used in the reanalysis.
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Assessment of the validity of the final integrated dataset. For quality control of our final dataset, 
we applied commonly used quality metrics such as percentage of counts from mitochondrial genes and number 
of features (Fig. 5a). Cells that have more than 20% of mitochondria-related read counts or unique feature counts 
over 3,000 and less than 200 were filtered out. To visualize the efficiency of the integration process, we generated 
PC and dimensional reduction plots comparing our final dataset and a dataset comprised of the same datasets, 
merged without batch correction. The resulting plots in Fig. 5b show a major disconnection between the merged 
data when colored by dataset in the first two PCs. In contrast, the final data clearly overlays between the source 
datasets, suggesting that the effect of non-biological variances have been corrected. Cells of the batch-uncorrected 
dataset are separated by study of origin, rather than cell type, whereas those of the batch-corrected final dataset 
are distributed more evenly according to study in every cluster (Fig. 5c), suggesting cells are grouped by cell type 
that account for the most variance in the data. The distribution of cells in the UMAP plot visualized in Fig. 5d 
once again shows that cells from each study can be found in each cluster, suggesting that the differences in con-
tribution to formation of the clusters arise from the count of cells in the initial data sets, rather than differences 
in cell type composition. Altogether, these results indicate that the process of integration and data transfer with 
Seurat was completed successfully, minimizing the effect of technical batches on cell clustering. An additional 
value of our dataset is the collected metadata containing clinical information on patients included in the study, 
such as gender, histological subtype, and stage of the tumor (Fig. 5e).

Pseudotime trajectory analysis. T cells are the main target of immunotherapy in NSCLC27,28. According 
to current understanding of CD8+ T cell differentiation, upon activation naïve T cells differentiate into different 
effector and memory T cells. In tumors, chronic T cell stimulation leads to disturbance in their differentiation 

Dataset GSE131907 GSE136246 GSE148071 GSE153935 KU_loom GSE127465 GSE119911

Step 1: QC nFeature_RNA > 200 & < 3000; Percent_mt <20

Step 2: Normalization

Step 3: Identification of variable features

Step 4: Scaling the data

Step 5: PCA dimensional reduction

Step 6: Determine no. of PCs 20 20 20 20 20 20 20

Step 7: Cell clustering

Step 8: UMAP plotting

Step 9: Cell type annotation Annotation provided Annotation provided Own annotation Own annotation Own annotation Annotation provided Own annotation

Table 3. Analysis of the seven scRNA-seq datasets in R Seurat- workflow.

Fig. 2 UMAP plots of the seven datasets after individual clustering analysis.
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toward dysfunction and exhaustion characterized by loss of effector function and expression of inhibitory recep-
tors29. To depict the different states of CD8+ T cells, we conducted a pseudotime trajectory analysis using the 
R Monocle3 package7. Specifically, we extracted T cells from our final dataset and reanalyzed their cell states 
using R ProjecTILs package30. We projected our query cells on the reference map provided by ProjecTILs and 
calculated the number of cells in each state (Fig. 6a,b, Supplementary Fig. 5). In total, 14,810 cells were classified 
as ‘CD8_NaiveLike’, ‘CD8_EarlyActiv’, ‘CD8_EffectorMemory’, ‘CD8_Tpex’, or ‘CD8_Tex’ cells for subsequent 
analyses. The extracted cells were re-clustered using Seurat and subjected to trajectory analysis via Monocle3. 
As T cells differentiate from naïve to effector to memory and exhausted states, we specified the trajectory to start 
from CD8_NaiveLike cells. The UMAP plot in Fig. 6c shows the population of CD8+ T cells colored by pseu-
dotime, suggesting a continuous progression of cells from naïve-like to exhausted state. Ordering the five cell 
states by median pseudotime revealed a transition from naïve-like cells to early activated, followed by effector 
memory, precursor exhausted, and exhausted cells (Fig. 6c, bottom). Importantly, although the median pseu-
dotime of Tpex cluster is higher than that of Tem, it exhibits a wider spectrum of pseudotime values, suggesting 
that initiation of T cell exhaustion may start upon activation. We further verified these results by analysing genes 
which showed significant expression changes in pseudotime. We observed clear differences in expression of naïve 
(CCR7, TTC19), memory (CD69, ID2), cytotoxicity (KLRB1, GZMB), and exhaustion-related genes (LAG3, 
TPI1) in pseudotime, supporting a consistent shift of T cells towards differentiation and exhaustion (Fig. 6f).

Lastly, we performed a joint trajectory analysis of all 46,450 cells of the cancer cluster. Starting from alveolar 
cells, the cells transformed into pathological alveolar cells, CXCL1, LAMC2, CDKN2A, proliferating, and SOX2 
cancer cells as they progressed in pseudotime (Fig. 6d). We identified distinct changes in expression of reactive 
oxygen species (ROS) genes in pseudotime (Fig. 6f). Expression of DUSP1 was the highest at the beginning of 
pseudotime, as opposed to TXNRD1 which was mainly expressed in late pseudotime. It has been suggested that 
high expression of DUSP1 is correlated with better prognosis, whereas TXNRD1, with poor patient prognosis in 

Fig. 3 Transfer of reference cell type labels to cells of the validation dataset. (a) Cell types of the reference 
dataset (level 1). (b) Cell types of the validation dataset (original annotation). (c) Cells of the validation dataset 
projected in a UMAP structure of the reference with predicted annotation (level 1). (d) Cells of the validation 
dataset projected in a UMAP structure of the reference with original annotation. (e) Violin plots of reference 
cell type-specific markers expression in the validation cells (level 1). (f) Validation cell type prediction scores 
(level 1).
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lung cancer31. These results demonstrate progression of cancer cells in the trajectory towards more resistant phe-
notype. Moreover, few genes have been reported to be implicated in p53 signalling (SAT1, PERP, KRT17)32–34 or 
ferroptosis (SAT1, NFE2L2, AKR1C1, AKR1C3)32,35,36. Together, the presented dataset reveals complete cancer 
cell landscape of NSCLC tumor progression, associated with ROS metabolism and p53 activity.

Fig. 4 Cell types of the final dataset. (a) Distribution of cells derived from the reference and validation datasets 
in the final dataset. (b) Two levels of cluster annotation. (c) Violin plots of cell type-specific gene markers  
used for level 1 and 2 annotations. (d) Number of cells from immune cell population and their proportion.  
(e) Number of cells from population of T and NK cells and their proportion. (f) Number of cells from population 
of monocytes and macrophages and their proportion. (g) Proportion of cells from cancer cell population in 
LUAD and LUSC samples.
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Discussion
In this study, we generated a large-scale scRNA-seq dataset of human primary NSCLC tumors containing both 
LUAD and LUSC samples, from early to advanced stages, of both genders. While each dataset used to gener-
ate the presented data contains a limited number of tumor cells, our integrated dataset may provide a more 
comprehensive cell landscape of NSCLC specifically. We thoroughly annotated the presented scRNA-seq data 
to facilitate the re-use of our data for novel cell type discovery and extensive characterization of diverse cell 
subpopulations, including immune cells residing in tumor microenvironment. In addition, inclusion of patients 
from different studies with standardized cell-level metadata may enable the study of NSCLC transcriptome on 
a wider spectrum of samples than the analysis of single study or dataset having limited number of QC-passed 
cells.

Since in this analysis we reused data from published studies, we observed substantial batch effects arising 
from the technical differences in library preparation and data processing. According to several benchmarking 
studies evaluating performance of available batch effect correction methods, Harmony and Seurat are described 
as tools suitable for scRNA-seq analysis. As Harmony utilizes PCA subspace as input for further transforma-
tions, it is often noted to be faster and require less memory. However, it limits its usability in gene-based analyses 
in which expression matrix is the input, such as pseudotime or identification of differentially expressed genes9,10. 
Integration with Seurat usually requires more memory and a longer runtime. Nevertheless, it can precisely 
merge batches while producing a corrected gene expression matrix, useful for downstream analysis9,10. Seurat 
also enables data transfer between scRNA-seq datasets. In data transfer, PCA structure of a reference data-
set is projected onto the query based on transfer anchors, and annotation predictions are generated for query 
cells. This workflow does not require CCA, which substantially reduces the runtime11. Taken together, although 
Harmony may be faster in the process of integration itself, we employed functions of the Seurat, which allows a 
wider range of downstream analyses, to integrate the datasets and correct for batch effects. In addition, we used 
the same pre-processing and clustering workflow on each dataset prior to integration, to minimize potential dif-
ferences between them. We used PCA and UMAP to visualize batch effect correction, which showed good batch 
mixing results in our final dataset in comparison to a dataset obtained using basic merging function.

Fig. 5 Quality of the final dataset. (a) Violin plots showing QC metrics of cells included in the final dataset, 
including percentage of counts from mitochondrial genes (Percent_mt) and number of genes (nFeature_RNA), 
split by study. (b) Removal of the batch effect presented by PCA and dimensional reduction plots (c) for the final 
dataset, in a comparison to a merged dataset without batch correction. (d) Distribution of cells from the seven 
analyzed datasets in the clusters of the final dataset. (e) UMAP plots of the final dataset cells grouped by clinical 
metadata, including gender, subtype, stage, and patient.
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Through extensive analysis of marker genes’ expression, we classified the 224,611 cells into nine main cell 
types, which were further divided into twenty-seven subtypes primarily consisting of immune cell populations. 
Apart from cell types commonly described in NSCLC microenvironment, we identified a subtype of low-quality 
macrophages characterized by elevated expression of mitochondrial genes and genes encoding for ribosomal 
proteins, suggesting damage or stress of the cells. We found that the most abundant subtype of macrophages 
show a lipid-related signature, with expression of PLA2G7, ABCA1, FOLR2, APOE, CTSB/D, and C1QA/B/C, 
which is associated with phagocytosis and immunosuppression37. Sub-clustering of T cells further revealed the 
presence of naïve, helper and cytotoxic cells, as well as NK and proliferating T cells. Comparing cell type abun-
dances between our dataset and the recently published NSCLC atlas (Salcher et al.)22, we observed several differ-
ences in fractions of cell types. Interestingly, neutrophils, which are short-lived cells, often underrepresented in 
scRNA-seq studies, in our dataset account for 3.25% of all cell populations, while in the Salcher et al. dataset22, 
only 1.5%. In addition, fractions of epithelial cells and B cells are higher in our dataset (20.99% vs ~15% and 
8.64% vs ~5.5%, respectively). In contrast, abundance of macrophages/monocytes is lower in our dataset than in 
the Salcher et al. dataset (18.18% vs 28,5%). Nevertheless, we identified several subtypes of myeloid cells showing 
distinct signatures, as noted above.

We conducted an additional functional state analysis of the T cells using ProjecTILs30 and subjected a sub-
set of CD8+ cells to pseudotime trajectory analysis via Monocle37. The mouse-derived reference map provide 
by ProjecTILs may attribute to a large number of our query cells that were filtered out during QC process. 
Species-specific differences in gene expression may have contributed to failure in detecting the query cells as 
“pure” T cells. However, we believe that the remaining QC-passed 14,810 cells which were successfully assigned 
to reference functional states were sufficient to perform a trajectory analysis. Our analyses revealed a dynamic 
functional spectrum of CD8+ T cells from naïve to exhausted state in NSCLC, showing effective data reuse.

Finally, we identified seven cancer subclusters and analyzed possible dynamics between them in pseudotime. 
The seven subclusters included alveolar cells, pathological alveolar cells expressing both normal respiratory cell 
markers (SFTPB, AGR3) and genes related to cancer progression (SPINK1, MET), as well as five cancer subsets. 
We observed considerable differences in abundance of cells from each of the seven subtypes between LUAD 
and LUSC samples, implicating stem cell-like phenotype of LUSC cells and immune infiltration promotion by 
LUAD. Pseudotime trajectory analysis revealed a dynamic path in which normal epithelial cells went under 
a transformation to cancer cells. This process was accompanied by changes in expression of genes related to 

Fig. 6 Pseudotime trajectory analysis. (a) Distribution of query T cells on ProjecTILs reference map. (b) Percentage 
and number of T cells from each functional state. (c) UMAP plot of CD8+ T cell subset colored by pseudotime (top) 
and boxplot showing median pseudotime of each cell type (bottom). (d) UMAP plot of cancer cell subset colored 
by pseudotime (top) and boxplot showing median pseudotime of each cell type (bottom). (e) Chosen genes of the 
CD8+ T cell subset showing changing expression in pseudotime. (f) Chosen genes of the cancer cell subset showing 
changing expression in pseudotime.
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p53 signaling and ROS metabolism, showing further differences in progression of the two tumor subtypes. 
Interestingly, several genes (PERP, KRT17, AKR1C1) have been recently reported as potential NSCLC biomark-
ers36,38. As we previously noted, LUAD and LUSC showed distinct differences in cancer cell subtype content.  
The cell types more abundant in LUSC (SOX2, CDKN2A, proliferating cancer) were placed later in pseudotime 
than the LUAD-specific cell types (alveolar, pathological alveolar, CXCL1 cancer). Altogether, these results sug-
gest that LUSC cells show more aggressive and resistant characteristics. In conclusion, these results demonstrate 
the usefulness and technical validity of our integrated scRNA-seq dataset. Reuse of this large-scale dataset may 
contribute to further understanding of NSCLC.

Methods
Data collection and pre-processing. Seven publicly available scRNA-seq datasets were collected, 
comprising of 185 NSCLC human primary tumor samples in total. Datasets GSE13190728,39, GSE13624640,41, 
GSE14807142,43, GSE15393544,45, and KU_loom (https://gbiomed.kuleuven.be/scRNAseq-NSCLC)46,47 were used 
to create a large reference dataset, whereas datasets GSE12746527,48 and GSE11991149,50 served as validation. 
Details on samples included in the analysis are summarized in Tables 1, 2. Using Seurat package (v 4.1.0)8 in  
R (v 4.1.1), a standard workflow for data pre-processing and the clustering of cells was followed. Briefly, the seven 
scRNA-seq datasets were analyzed individually, including quality control (QC), normalization, feature selec-
tion, data scaling, dimensional reduction by principal component analysis (PCA), clustering, Uniform Manifold 
Approximation and Projection (UMAP) reduction, and visualization of clusters. From each dataset, human 
tumor samples were extracted and loaded into respective Seurat objects. QC of the gene-cell matrix consisted 
of filtering the cells such that cell with counts from mitochondrial genes below 20 percent and number of fea-
tures more than 200 and less than 3000 were included. Detailed information on quality control and subsequent 
steps of the single data sets analysis are described in Table 3. Gene expression normalization was applied to each 
dataset using LogNormalize method. The number of principal components (PCs) to include in further analysis 
was determined based on JackStraw plots and Elbow plots generated for each dataset. Cell clustering was con-
ducted using FindNeighbors and FindClusters functions, and non-linear dimensional reduction was managed 
by RunUMAP function. For datasets GSE13190728,39, KU_loom (https://gbiomed.kuleuven.be/scRNAseq-NS-
CLC)46,47, and GSE12746527,48, metadata on cell type annotation of the single cells was provided by the authors. 
Clusters from the remaining datasets were assigned to specific cell types considering positive (avglog2FC > 0) 
cell type-specific markers found via FindAllMarkers function. For visualization, UMAP plots showing obtained 
annotated clusters were generated (Fig. 2).

Integration of reference datasets. To establish a single reference dataset, five datasets (GSE13190728,39, 
GSE13624640,41, GSE14807142,43, GSE15393544,45, and KU_loom (https://gbiomed.kuleuven.be/
scRNAseq-NSCLC)46,47) were integrated and analyzed using functions of the Seurat package, following the 
workflow proposed by Satija Lab11,12 (https://satijalab.org/seurat/articles/integration-introduction.html).  
A list consisting of five pre-processed datasets previously specified as reference was created and features repeat-
edly shared within the objects were identified using Seurat’s SelectIntegrationFeatures function. Subsequently, 
FindIntegrationAnchors function enabled selection of a set of 219,432 cell pairs in a similar biological state 
(anchors), which were then utilized in the integration process via IntegrateData function. Once the integration 
process was executed successfully, the integrated assay was specified as default for downstream analysis.

Reference dataset analysis. The integrated dataset comprised of 186223 cells. Standard steps leading to 
clustering of the cells were conducted, including identification of highly variable features, scaling of the data, 
PCA, UMAP (no. of dims = 30), and finding neighbours (Supplementary Fig. 1). Identification of clusters was 
performed at resolutions 0.02 and 0.5 respectively, to obtain two versions of dimension reduction plots contain-
ing different number of clusters (level1 and level2). The clusters were classified using two types of gene markers: 
positive biomarkers detected using FindAllMarkers function, and markers conserved across the datasets detected 
via FindConservedMarkers function (grouping.var = Study, DefaultAssay = RNA). The cell type identities were 
firstly assigned to clusters based on the conserved markers, while the general biomarkers were a secondary source 
of information for both levels of annotation. Since identification of conserved markers is based on differential 
expression testing, the RNA assay was used in this analysis instead of the integrated assay, to include more poten-
tial markers. Features conserved among the data sets were identified using study of origin as the grouping var-
iable. Cell type specificity of the markers was further confirmed using several recent publications28,37,51–78. As a 
result, 9 and 27 cell types were found for level 1 and 2 of annotation, respectively (Supplementary Fig. 1, Table 4).

Validation dataset analysis. Datasets GSE12746527,48 and GSE11991149,50 acquired from NCBI GEO 
were processed individually with the previously described workflow for clustering analysis (Table 3). For dataset 
GSE12746527,48 identified clusters were annotated based on metadata provided by the authors, whereas clusters 
of dataset GSE11991149,50 were annotated manually based on canonical markers (Fig. 2). Due to a small number 
of QC-passed cells from dataset GSE11991149,50 (1359 cells), Seurat anchor-based integration of cells from the 
two validation datasets was conducted to form a single validation dataset (see “Integration of reference datasets”).  
The integrated validation dataset included 39511 cells and was subjected to clustering analysis (no. of dims = 30). 
At resolution 0.5, 17 clusters were obtained and initially classified according to expression of conserved gene 
markers (see “Reference dataset analysis”, Supplementary Fig. 2a–f).

Cell type label transfer from reference to validation dataset. Following Seurat anchor-based 
methodology for data transfer11 (https://satijalab.org/seurat/articles/multimodal-reference-mapping.html), 
cell type classifications of the integrated dataset were transferred onto the validation dataset. Cells of our refer-
ence dataset were utilized as reference and validation dataset, as query. Transfer anchors were identified using 
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FindTransferAnchors function, with LogNormalize as normalization method, PCA as reduction, and number of 
dimensions 30. The anchorset was applied in the label transfer using MapQuery function, leading to creation of 
two levels of predicted annotations (Fig. 3, Supplementary Fig. 2g). To assess efficiency of the new query anno-
tations, prediction scores were generated for each of the query cells. Cells with high prediction score (predicted.
celltype.score >0.5) were included in further analysis. The integrated and validation datasets were merged into a 
final dataset comprising 224611 cells and visualized in UMAP embedding of the reference. Additionally, feature 
plots showing strength of the cell type predictions were generated (Fig. 3f, Supplementary Fig. 3). The two levelled 
annotation was used as final classification of cells of the final dataset. Expression of marker genes and proportions 
of cell types were investigated (Fig. 4, Supplementary Fig. 4).

Visualization of batch effect correction and final dataset quality. Violin plots showing QC metrics 
applied during pre-processing of the seven datasets were generated, including percentage of mitochondrial reads 
and number of genes detected in each cell (Fig. 5a). To assess the efficiency of the integration process, several 
visualization methods were used to compare our final dataset with a simply merged dataset without batch effect 
correction. A list of the seven pre-processed datasets was created and all respective Seurat objects were merged 
using Merge_Seurat_List function. The merged dataset was subjected to clustering analysis in a way correspond-
ing to clustering of the reference and validation datasets (identification of highly variable features, scaling of data, 
PCA, UMAP (30 dims), finding neighbours, identification of clusters at resolution 0.5). PCA and dimensional 
reduction plots were visualized for both the final and merged datasets (Fig. 5b,c). UMAP plot of the cells of the 
final dataset split by study of origin was made to observe the placement of cells from each dataset (Fig. 5d). In 
addition, plots of the final UMAP structure colored by collected metadata were generated, including gender, his-
tological subtype, stage of the tumor, and patient id (Fig. 5e).

Pseudotime trajectory analysis. CD8+ T cells. Cells of the T cell cluster according to level 1 of anno-
tation were extracted from the final dataset into a new Seurat object. Cell states of the T cells were re-evaluated 
using ProjecTILs R package (v 3.0)30. Reference atlas of tumor-infiltrating T lymphocytes was loaded from 
ProjecTILs Git repository. Our query T cells were filtered and projected on the reference map (Fig. 6a). Cell states 
predictions were generated according to gene expression signatures pre-determined by the package for specific  
T cell subtypes (Fig. 6b, Supplementary Fig. 5). Cells predicted as belonging to CD8+ T cell functional clusters 
were selected for further analysis, including CD8_NaiveLike, CD8_EarlyActiv, CD8_EffectorMemory, CD8_Tpex, 
and CD8_Tex. The newly obtained subset of cells was pre-processed using Seurat functions (FindVariableFeatures, 
ScaleData, RunPCA, FindNeighbors (dims = 1:20), FindClusters (resolution = 0.5), RunUMAP) and visualized 

Level2 annotation – additional markers

Proliferating T/NK TOP2A, MKI67, NUSAP1

NK KLRF1, KLRD1, KLRB1, GNLY, NKG7

Naïve T PTPRC

CD8+ Tem GZMA, GZMM, CD8

CD4+ Treg CTLA4, CD4

Mature naïve B CD22, CD53, CD79A

Plasma IGHA2, IGHM, TNFRSF17

pDCs IRF7, IRF8

cDC2/moDCs CLEC10A

Mast KIT, CPA3, CD63

Monocytes CD14, CSF3R

Low quality Mϕ LYZ, FTL, high number of MT- and RPL/S genes

Lipid-associated Mϕ MS4A7, IL1B, IL4I1, FOLR2, APOE, C1QA/B/C, CTSB/D

Alveolar Mϕ MCEMP1, PPARG, MRC1

Proliferating Mϕ CDCA8, MKI67, CENPF, CD14, TOP2A

Neutrophils FCGR3B, CSF3R, S100A12, S100A8

CDKN2A Cancer CDK4, PUM3, NTS, EPCAM

SOX2 Cancer KRT17, S100A2, SFN, PTHLH, PERP

CXCL1 Cancer SPRR3, AGR2, CEACAM6

LAMC2 Cancer FGB, FGA, FGG, PAEP, TESC

Proliferating Cancer MKI67, TOP2A, CENPF, CDC20

Pathological Alveolar SFTPB, WFDC2, AGR2, AGR3, MUC1

Alveolar SFTPC, AQP4, SCGB3A1

Ciliated FOXJ1, CDHR3

CAF SPARC, FAP, PDGFRB

SMC ACTA2, CALD1, TAGLN

Endothelial FLT1, PECAM1

Table 4. Additional marker genes used for cell type classification of clusters (level 2).
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using the annotations predicted by ProjecTILs. Pre-processed Seurat object was converted to an object of cell 
dataset class using as.cell_data_set function and data size factors were calculated using estimate_size_factors for 
trajectory analysis in Monocle37 (v 1.0.0). Cell and gene-level metadata, counts and cluster information, as well 
as previously obtained UMAP embedding were retrieved from the Seurat object to the cell dataset object. All cells 
were assigned to a single partition and the trajectory graph was learned using learn_graph function. To place 
the cells in pseudotime, cells which belong to CD8_NaiveLike cluster were assigned as “roots” of the trajectory. 
Obtained cell pseudotime information was stored in the T cell Seurat object’s metadata for visualization purposes 
(Fig. 6c). Differential expression analysis was performed to identify genes of which expression changes in pseudo-
time (Fig. 6e). The top genes were found by arranging the results by q_value and status (status == “OK”).

Cancer cells. Cells belonging to clusters “Alveolar”, “CDKN2A Cancer”, “CXCL1 Cancer”, “LAMC2 Cancer”, 
“Pathological Alveolar”, “Proliferating Cancer”, and “SOX2 Cancer” in level 2 of annotation were extracted from 
the final dataset into a new Seurat object. The Seurat object containing cancer cells was converted to an object 
of cell dataset class. Size factors for each cell were estimated using estimate_size_factors function. Necessary 
metadata etc. was retrieved from the Seurat object as described above for the T cell analysis. The trajectory graph 
was learned using learn_graph function and cells belonging to the Alveolar cluster were assigned as “roots” of 
the trajectory for pseudotime analysis. Obtained cell level pseudotime information was stored in the cancer cell 
Seurat object’s metadata (Fig. 6d). Accordingly, differential expression analysis was performed to identify genes 
with changing expression in pseudotime, and the top genes were found by arranging the results by q_value and 
status (status == “OK”) (Fig. 6f).

Data availability
Among input data processed in the reanalysis, six datasets were acquired from NCBI GEO (GSE13190728,39 (2020), 
GSE13624640,41 (2021), GSE14807142,43 (2021), GSE15393544,45 (2020), GSE12746527,48 (2019), GSE11991149,50 
(2022)). Dataset referred to as KU_loom was downloaded from resources of the Ku Leuven Laboratory for 
Functional Epigenetics as “all cells” loom file (https://gbiomed.kuleuven.be/scRNAseq-NSCLC (2018)46,47). Set 
of samples used in this study is summarized Table 2. Seurat object of our final scRNA-seq dataset with UMAP 
embeddings can be found at figshare (https://doi.org/10.6084/m9.figshare.c.6222221.v3)79. Associated data, 
including matrix of raw and normalized counts, and metadata (two levels of cell type annotation, validation 
dataset prediction scores, QC metrics, patient id, gender, study of origin, tumor subtype and stage) are available 
under the same figshare project as “RNA_rawcounts_matrix”, “Integrated_normalized_counts”, and “Metadata” 
files, respectively.

Code availability
The main computational tools used in this study are R language based. Seurat8 was used for data pre-processing, 
integration, and label transfer between reference and validation datasets. ProjecTILs30 was used for interpretation 
of T cell states, and Monocle37 was used for pseudotime trajectory analysis. The R codes used for pre-processing 
of the used datasets, reference and validation datasets analysis, and pseudotime trajectory analysis can be found 
at figshare as “NSCLC_data_reanalysis_codes” file (https://doi.org/10.6084/m9.figshare.c.6222221.v3)79.
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