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Newly reconstructed arctic surface 
air temperatures for 1979–2021 
with deep learning method
Ziqi Ma1, Jianbin Huang2,3 ✉, Xiangdong Zhang4, Yong Luo5,6,7, Minghu Ding8, Jun Wen1, 
Weixin Jin9, Chen Qiao5 & Yifu Yin5

a precise arctic surface air temperature (Sat) dataset, that is regularly updated, has more complete 
spatial and temporal coverage, and is based on instrumental observations, is critically important 
for timely monitoring and improving understanding of the rapid change in the arctic climate. In this 
study, a new monthly gridded Arctic SAT dataset dated back to 1979 was reconstructed with a deep 
learning method by combining surface air temperatures from multiple data sources. the source data 
include the observations from land station of GHCN (Global Historical Climatology Network), ICOaDS 
(International Comprehensive Ocean-atmosphere Data Set) over the oceans, drifting ice station of 
Russian NP (North Pole), and buoys of IaBP (International arctic Buoy Programme). the last two 
are crucial for improving the representation of the in-situ observed temperatures within the arctic. 
The newly reconstructed dataset includes monthly Arctic SAT beginning in 1979 and daily Arctic SAT 
beginning in 2011. This dataset would represent a new improvement in developing observational 
temperature datasets and can be used for a variety of applications.

Background & Summary
In recent decades, substantial changes have occurred in the Arctic1–8. However, due to the harsh environment, 
there is currently no complete observation network in the Arctic yet. Prior studies9–11 indicated that incomplete 
coverage of observations in the Arctic may lead to a cold bias in the estimation of the recent Arctic warming, and 
even underestimate the rate of the recent global warming. Although satellites can provide full coverage obser-
vation over the Arctic, they only measure lower tropospheric temperature rather than surface air temperature 
(SAT)9,12,13. Moreover, reanalysis datasets, which are widely utilized in climate science research, also provide full 
coverage data over the Arctic. However, the reanalysis datasets are not the actual observations14,15.

Improving the coverage of Arctic observations has been one of the important focuses of polar research. 
Martin and Munoz16 developed a 6-hour gridded Arctic SATs covering the Arctic ocean and coastal area for 
1979–1993 using an optimal interpolation method (OI) based on instrumental observations. The OI analy-
sis was further improved by Rigor et al.17, and the coverage of the constructed Arctic SAT was expanded to 
cover the whole Arctic. However, these Arctic SAT datasets have not been updated to represent the dramatic 
changes that have occurred over the past nearly two decades. Additionally, efforts were also made to increase the 
observational coverage in the polar regions for the global surface temperature9,18–25. A variety of interpolation 
methods have been used to fill the Arctic’s data gaps with observations from nearby mid-latitudes, however, the 
resultant Arctic warming may still be underestimated due to a lack of reasonable application of instrumental 
observations in the Arctic10. The global surface temperature dataset NOAA GlobalTemp-Interim25 has used 
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the monthly buoy measurements from IABP17 (International Arctic Buoy Programme; https://iabp.apl.uw.edu/) 
to enhance the coverage of observations in the Arctic. However, a large amount of high-temporal resolution 
temperature records would be lost in the generation of monthly buoy observations due to buoy movement and 
interruptions of buoy observations.

Deep learning methods have been used in Arctic climate studies, such as sea ice forecasting26–29. Recent 
studies have demonstrated that deep learnings are valuable methods for patching missing data, with partial con-
volution method outperforming other image inpainting technologies18,30–33. Compared to conventional interpo-
lation methods such as kriging and principal component analysis-based infilling, deep learning approaches with 
partial convolution can produce geographically more realistic temperatures18. In this study, we aim to develop 
a high-quality, regularly updated gridded Arctic SATs since 1979 by employing the deep learning with partial 
convolution. This new Arctic SAT data will aid in the comprehension of the Arctic climate state, Arctic climate 
change monitoring, model validation and interaction of Arctic and global climate.

Methods
Multi-source observations. This study aims to reconstruct the surface air temperature (SAT) in the Arctic 
using available instrumental observations as much as possible. Here, SAT was reconstructed based on mul-
ti-source daily observations, including SAT at 2 m (SAT at 2 m will be specified in this study, all others represent 
the surface air temperature) from GHCN-d34 (Global Historical Climatology Network-daily) and the Russian NP 
(North Pole) drifting ice stations35, and SAT from the surface marine observations of ICOADS Release 3.0.236 
(International Comprehensive Ocean-Atmosphere Data Set, hereafter ICOADS) and the IABP (International 
Arctic Buoy Programme) buoy observations. In the reconstruction, air temperatures from ICOADS surface 
marine observations and IABP buoy observations were not corrected to 2 m, but were used directly. The above 
observational datasets have already undergone quality assurance reviews34–36, except for IABP buoy observations. 
In this work, only IABP buoy observations were subjected to quality control and correction. Moreover, the Arctic 
is defined as the geographic area north of 60°N, whereas all above-mentioned observations from the Northern 
Hemisphere were utilized for reconstruction. Due to the application of an equal-area grid in the reconstruction, 
only the north of 30°N can be fully covered by the reconstructed SATs (more details seen in ‘Base data for recon-
struction’ & ‘deep learning model and training’). The expansion of the reconstruction area to lower latitudes 
enables the inclusion of more climatic interactions in the reconstruction10.

GHCN-d34 is developed by NOAA (National Oceanic and Atmospheric Administration), collecting near 
real-time updated measurements of SAT, total daily precipitation and snowfall, etc. from more than 80,000 
meteorological land stations in 180 countries and territories worldwide. In 1990, 2010, 2015 and 2020, there 
were approximately 4000, 5000, 6400, and 6100 terrestrial stations, respectively. During these years, there were 
370, 480, 560, and 540 terrestrial stations north of 60°N, respectively.

ICOADS36 began in 1662, and is also developed by NOAA by combining observations from multiple sources, 
such as ships, moored and drifting buoys, coastal stations, and other ocean platforms, etc. ICOADS offers the 
most extensive surface marine meteorological observations inclusive of gridded SATs. Until the twenty-first 
century, these observations were sparsely distributed and primarily limited to ice-free regions.

The NP stations35 recorded multiple meteorological variables, including SAT and surface temperature (ST), 
which were obtained from Arctic and Antarctic Research Institute (AARI). NP observations were conducted 
from 1937 to 1991, interrupted by the collapse of the Soviet Union, and restarted since 2003. Approximately 
1–3 NP stations annually report SATs and STs over sea ice in the Arctic, however, STs were not available during 
summer months (May-September). These NP stations are the manned observing stations and the records are 
regarded as the most accurate instrumental measurements over sea ice in the Arctic.

IABP buoy observations began from 1979, which included meteorological variables such as ST, SAT, and 
surface pressure17. Currently, raw records of buoy’s SAT are available from at least 24 buoys annually since 2011, 
whereas ST records are available from at least 17 buoys annually since 1979. In this study, buoy STs from 1979 
to 2010 were first converted to SAT and then used alongside other observations for the reconstruction. Figure 1 
describes the schematic overview of the Arctic SAT’s reconstruction. The locations of observations north of 60° N  
used in the reconstruction are shown in Fig. 2.

Quality control and correction on buoy observations. Typically, buoy records are available at about 
fifteen minutes interval (https://iabp.apl.uw.edu). We successively converted these buoy temperature measure-
ments into hourly, 3-hour and 6-hour data using an arithmetic mean. In these steps, a preliminary check of 
observations was performed. If the temperature exceeds the range of three standard deviations of all records for 
the same period, the data is discarded as suspicious. Further, the daily observation was produced by averaging the 
four successive six-hour observations in a day if all four are available; otherwise, the daily observation was set to a 
missing value. Then, the aforementioned daily observations underwent a screening again to eliminate erroneous 
observations such as flyers and “flat lined” records and records with obviously unreasonable trajectories.

Daily buoy observations were subjected to quality control and correction using NP data, which are similar to 
Rigor et al.17, in the following three steps: 1) Constrain the daily buoy observations with standard deviations of 
the daily NP observations in the corresponding month. Buoy observations were discarded when σa < 0.25 σNP or 
σa > 4 σNP (σa and σNP respectively represent the standard deviations of daily buoy and NP observations for a cer-
tain month); 2) Remove the outliers. If buoy daily measurements surpass μNP ± 2 σNP (μNP is the monthly mean 
of NP observations), they are eliminated. 3) Make corrections on summertime (June-July-August) daily buoy 
observations. The daily buoy observations were filtered using a 1-week moving average. The mean of the filtered 
buoy observations was replaced by the average of summer NP observations. If the adjusted buoy’s temperature 
exceeds the NP maximum, they were then changed to the NP maximum. Due to the fact that a considerable 
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volume of heat will be needed to melt sea ice, the buoy summer temperature will be close to the melting point, 
necessitating this correction16,17.

Conversion of Buoy St to Sat. Due to unavailability of SAT records prior to 2011 for IABP buoys, there is 
a potential way by using ST to extend the reconstruction back to 1979. Previous studies16,37–39 on the link between 
temperatures at different altitudes in the Arctic indicated that ST and air temperature over sea ice have a close 
relationship throughout the year, especially during sea ice melt seasons. As a result, it may be possible to obtain 
the SAT by exploiting its relationship with ST based on NP data. During the period of May-August, however, 
ST for NP is unavailable. So, we developed linear regression models for STs and SATs in various temperature 
intervals based on NP data (Table 1). Using buoy ST and the aforementioned regression models, the SAT (corre-
sponding to ST less than 0°C) prior to 2011 can be generated. This newly produced SATs were then subjected to 
the same quality control as the original buoy SATs. In addition, when the buoy ST is greater than or equal to 0°C, 
we approximated the buoy SAT with the buoy ST after removing potentially invalid data. The ST greater than or 
equal to 0°C is regarded as potentially invalid observation and set as missing value, if the SAT inferred from ST 
immediately before and after the ST is a missing value. Then, the new SAT including in May-August underwent 
the same quality control and corrections as the original buoy SAT. Finally, the SATs prior to 2011 are produced 
(hereafter SAT-n).

Fig. 1 Schematic view of the reconstruction of the monthly Arctic SAT from 1979 to 2021 based on daily 
observations. The blue boxes illustrate the reconstruction processes for the Arctic SAT from 1979 to 2010. The 
orange-red boxes indicate the reconstruction processes from 2011 to 2021. The brown boxes depict the share 
parts of the reconstructions presented above. “R” represents the correlation coefficient. "MSE" and “RMSE” 
indicate the mean-squared-error and the root-mean-squared-error with units of °C, respectively.
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The conversion of daily ST to daily SAT may introduce errors into the reconstruction of the Arctic SAT. 
Notably, our purpose is to acquire a set of monthly Arctic SATs for 1979–2021 in this study. Therefore, it is vital 
to assess the reliability of the daily SAT-n (inferred from the ST) used for the reconstruction of monthly Arctic 
SAT. We designed three experiments for reconstructing Arctic SAT with the buoy observations for 2011–2020 
by using the deep learning model (DLM, further details seen in ‘Deep learning model and training’), when both 
SAT and ST were available. In the first experiment (expt1), IABP buoy SAT was included in the reconstruction. 
In the second experiment (expt2), IABP buoy SAT-n (inferred from the ST) was included in the reconstruction, 
while in the third experiment (expt3), IABP buoy observations (both SAT and SAT-n) were excluded from the 
reconstruction. The difference between expt1 and expt2 in the reconstructed Arctic SAT can be used to validate 
the reliability of SAT-n in the reconstruction, whilst the difference between expt1 and expt3 will demonstrate the 
added value of IABP buoy observations in the reconstruction.

As shown in Fig. 3, there is a subtle difference between expt1 and expt2 regarding the annual average Arctic 
SAT. And, slightly higher discrepancies (less than 0.1°C) are seen in sea ice melt seasons, which may be due to 
the direct approximation of the SAT with ST in these seasons. Moreover, these disparities lack discernible linear 
trend. In addition, the added value (expt1-expt3) resulting from the inclusion of IABP buoy observations in 
reconstruction is evident and significantly larger than the deviation resulting from substitution of the SAT with 
SAT-n in the reconstruction. The inclusion of IABP buoy observations results in stronger warming (positive 
anomaly with a maximum of 0.78°C in expt1-expt3) for the annual average Arctic SAT from the mid-2014 to 
the early-2019.

The differences in the spatial warming trends over the Arctic were also examined for July and January 
between expt1and expt2, expt1 and expt3, respectively. During 2011–2020, the differences between expt1 and 
expt2 (Fig. 4b) are considerably smaller than the Arctic warming trends (Fig. 4a) in January. The differences 
(expt1-expt2) are less than 0.12°C/10a (Fig. 4b) and much smaller than the deviations of expt3 from expt1 
(Fig. 4c), which indicate the added value from the inclusion of buoy observations in the reconstruction. It is 
obvious in Fig. 4c that the largest difference is more than 4°C/10a over the central Arctic Ocean, the Laptev 
Sea and the East Siberian Sea. In addition, a similar conclusion was also obtained for July. The deviations of 
expt2 from expt1 (Fig. 4e) are much smaller than the reconstructed SAT trends with inclusion of the IABP SAT 
(Fig. 4d). They are also significantly smaller than the deviations of expt3 from expt1 (Fig. 4f), especially over the 

Fig. 2 The instrumental observations in the Arctic during 1979-2021. North Pole observations (dark black 
curves over the ocean) covering 1979-1991 and 2003-2012, IABP buoy observations (grey dots over the ocean), 
GHCN-d land station observations (black dots on land) covering 1979-2021 and marine observations of 
ICOADS (dark grey dots over the ocean) covering 1979-2021.

Interval −10 °C~0 °C −20 °C~−10 °C −30 °C~−20 °C <−30 °C

a 0.98 0.99 0.91 0.93

b −0.66 −0.43 −1.97 −1.46

R2 0.91 0.88 0.89 0.93

Table 1. Linear regression relationship between ST and SAT at various ST intervals based on NP data. Here, 
y = a*x + b, y and x represent SAT and ST, respectively. The ‘a’ is the regression coefficient and ‘b’ is y-intercept.
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region from the northern Alaska northward to 80°N. These results demonstrate that the buoy ST, after quality 
control and correction, can be used for the reconstruction of Arctic SAT in the absence of buoy SAT.

Base data for reconstruction. The locations of buoy, drifting ice station and ship observations move 
over time. To reconstruct the Arctic SAT, it is necessary to combine all observations using the same geograph-
ical grid as a base data. Due to the geographical distortion of the lat-lon grid in the polar region, an equal-area 
grid (Equal-Area Scalable Earth Grid (EASE-Grid 2.040), hereafter EASE) was used to provide uniform spatial 

Fig. 3 Deviations of monthly average Arctic SAT reconstructed in expt2 and expt3 from expt1, respectively, 
during 2011-2020. In expt1, buoy SATs were used in the reconstruction; in expt2, buoy SAT-n (SAT inferred 
from ST) were used in the reconstruction; and in expt3, no buoy observations were used in the reconstruction. 
The black and red lines, respectively, indicate the expt1-expt2 and expt1-expt3, respectively. The average Arctic 
SAT is calculated over north of 60°N.

Fig. 4 Linear trends of the monthly reconstructed Arctic SAT during 2011–2020. (a,d) expt1, (b,e) expt1-expt2, 
(c,f) expt1-expt3. (a–c) represent the SAT’s linear trends in January, and (d–f) denote the SAT’s linear trends 
in July. Expt1, expt2 and expt3 are the same as in Fig. 3. The white dots represent the statistical significance at 
p < 0.05 by using t-test. Note that the contour interval here is designed to be unequal, taking into account the 
maximum difference between expt1 and expt2.
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representation for all observations. Similar to prior studies16,17, we employed an EASE grid with a cell size of 
100 km × 100 km (a total of 32,400 grids with 180 rows and 180 columns). From 2011, there are on average 18 
buoy observations on EASE grids every day. In contrast, there are only 3–4 monthly buoy observations (monthly 
average requiring at least 15 daily observations in one month for the given EASE grid cell). It is clear that more 
buoy observational information will be retained if the reconstruction is based on daily rather than monthly buoy 
observations.

After all four source daily observations (quality-controlled SATs from GHCN-d, ICOADS, NP, IABP) were 
put into the EASE grid cells, the gridded observations were then normalized (to accelerate the convergence 
speed of model training) as base data using Eq. (1), where X* indicates the temperature after normalization and 
X represents the original data before normalization. a, b and t denote the row and column numbers and the time 
of the equal-area grid, respectively. The μ and σ represent the mean and standard deviation of the ERA5 SAT 
(2 m) over 1979–2020, respectively. As examples, the EASE gridded observations of base data on March 12 and 
July 20, 2015 were shown in Fig. 6a,d and the observation data gap is obviously seen, although all instrumental 
observations were integrated into the base data.

μ
σ

=
−∗X a b t

X a b t a b
a b

( , , )
( , , ) ( , )

( , ) (1)

training, validation and testing data for DLM. Different training datasets for DLMs may induce dis-
parities in the reconstruction of temperatures over polar areas. Prior studies examined reanalysis datasets, such 
as MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)41, JRA-55 (Japanese 
55-year Reanalysis)42, ERA-Interim (ECMWF Re-Analysis-Interim ERA-I)43, ERA5 (ECMWF Reanalysis v5)44, 
ASRv2 (Arctic System Reanalysis, Version 2)45, etc., in reproducing SAT over the Arctic46–52, and indicated that 
ERA5 and ERA-I are in better agreement with the observed Arctic temperature variations. Wang et al.52 further 
indicated that SATs from ERA5 are closer to the Arctic observations when SAT above −25°C, while below −25°C 
SATs from ERA-I are closer to the observations. So, SATs (2 m) from ERA5 and ERA-I were adopted for DLM 
training in this study.

Both ERA-I and ERA5 were developed by ECMWF (European Centre for Medium-Range Weather 
Forecasts) as global reanalyses with a spatial resolution of around 80 km and 31 km, respectively. ERA-I is the 
third generation of reanalysis accessible from January 1979 to August 2019, which has already been superseded 
by ERA5. ERA5 is continuously updated and already extended back to 195053. For DLM training and testing, a 
total of 14,610 daily SAT data from 1979 to 2018 and 15,341 daily SAT samples from 1979 to 2020 were adopted 
from ERA-I and ERA-5, respectively.

The reanalysis SATs (2 m) from 1979 were divided into a training set of 1979–2005 for model training (19,724 
daily samples), a validation set of 2006–2012 for adjusting the model hyperparameters (5,114 daily samples), and 
a testing set since 2013 for testing model generalisation performance (5,113 daily samples). The binary masks 
were derived from the base data. During 1979–2020, there was a total of 15,341 binary masks. The 0 indicates the 
absence of observations in the binary mask, while 1 indicates the presence of observations.

Deep learning model and training. This study utilized DLM to fill the instrumental observation gaps 
in the Arctic. In place of conventional convolutional layers, a UNet-like architecture with partial convolutional 
layers54 was utilized here (Fig. 5 and Table 2). Missing values in the base data are marked with a binary mask 
that changes with each convolution process. During this procedure, the missing values will be constructed iter-
atively. As shown in Fig. 5, the model encoding phase is able to extract temperature information across a broad 

Fig. 5 Schematic diagram of structure for the DLM. The left end is the input to the model, while the right end 
is the output. The numbers on the ‘box’ show the image’s size and number of channels. Blue arrows depict the 
passage of data through partial convolutional layers to the next layer. The green arrows denote that the data is 
transferred to the subsequent layer via nearest neighbour up-sampling, gradually restoring the current data to 
its original size.
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spatial range, allowing the reconstruction to take into account not only nearby but also distant observations.  
The right side of the diagram illustrates the decoding process. The skip links will establish a connection between 
the two temperature fields and the two binary masks, transferring the original information to the decoding step 
and supplying more details for the reconstruction of the missing area.

The DLM was trained with daily SATs from the reanalysis datasets ERA5 and ERA-I. At first, the reanalysis 
SATs were put into the same EASE grids as those in base data. The SATs were then normalized based on the 
monthly mean and monthly standard deviation of ERA5 SATs over 1979–2020. The reconstructions were per-
formed on EASE grids containing 127 rows and 127 columns. The EASE gridded reanalysis SATs were masked 
with the binary mask before being input into the DLM to reconstruct the corresponding reanalysis SATs. To 

Fig. 6 Testing the trained DLM by reconstructing the Arctic SAT on March 12 and July 20, 2015 using the testing 
dataset. (a,d) SATs from ERA5 and ERA-Interim (ERA-I) at the observational locations (as input for DLM);  
(b,e) the reconstructed SATs with the trained DLM respectively based on ERA5 and ERA-I, respectively.  
(c,f) SATs from ERA5 and ERA-I; (a–c) based on ERA5 on March 12, 2015. (d,e) based on ERA-I on July 20, 2015.

Module Name Filter Size Channels Stride Padding Nonlinearity

PConv1 7 × 7 18 2 3 ReLU

PConv2 5 × 5 36 2 2 ReLU

PConv3 5 × 5 72 2 2 ReLU

UpSample1 — 72 — — —

Concat1 — 72 + 36 — — —

PConv4 3 × 3 36 1 1 LeakyReLU

UpSample2 — 36 — — —

Concat2 — 36 + 18 — — —

PConv5 3 × 3 18 1 1 LeakyReLU

UpSample3 — 18 — — —

Concat3 — 18 + 3 — — —

PConv6 3 × 3 3 1 1 LeakyReLU

Table 2. Details of network architecture. PConv denotes a partial convolutional layer54. PConv1–3 are in 
encoder stage, whereas PConv4–6 are in decoder stage. The skip links are shown via Concat. UpSample is 
achieved by nearest neighbour interpolation.
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increase the generic capability, the DLM was trained with the reanalysis SATs by randomly selecting the afore-
mentioned binary masks.

In this study, MSE (Mean squared error) was used as the loss function, which is calculated for SATs across 
the entire Arctic region between the DLM’s output and the corresponding SATs from the reanalysis. The DLM 
was trained with 6,000 iterations by applying a batch size of 50. Every 100 iterations, the trained DLM with 
updated parameters was utilized to reconstruct the Arctic SATs in the training and validation sets, respectively.  
Then, their MSEs were also calculated. The DLM’s training was not completed until the MSE in the training set 
no longer declines or continues to decline but it begins to grow in the validation set.

Datasets Recon ERA-5 ERA-Interim

Observation r RMSE r RMSE r RMSE

Land-1 (id RSM00020891, 2011-01~2018-12) 0.996 1.55 0.994 1.79 0.994 1.88

Land-2 (id CA002100402, 2011-01~2018-12) 0.981 3.91 0.986 3.90 0.983 3.68

Land-3 (id USR0000ASNI, 2011-01~2018-12) 0.962 2.66 0.946 3.44 0.935 3.50

Land-4 (id USW00027401, 2011-01~2018-12) 0.985 2.10 0.985 2.43 0.986 2.10

Land-5 (id RSM00023975, 2011-01~2018-12) 0.995 1.58 0.997 1.35 0.996 1.49

Land-6 (id NOE00134886, 2011-01~2018-12) 0.973 1.68 0.969 1.73 0.990 0.894

NP-32 (2003-06~2004-03) 0.994 2.51 0.985 5.80 0.989 3.52

NP-33 (2004-09~2005-08) 0.986 2.46 0.977 5.03 0.979 4.15

NP-34 (2005-09~2006-05) 0.986 2.39 0.963 3.83 0.959 3.93

Table 3. Comparison of the reconstructed, ERA-5 and ERA-Interim (ERA-I) Arctic SAT with observations 
from six terrestrial and three drifting ice stations. “r” represents the correlation coefficient. “RMSE” indicates 
the root-mean-squared-error with units of °C.

Fig. 7 Linear trends of Arctic SATs in March over 1979-2021 for (a) the reconstructed Arctic SATs, (b) ERA5, 
(c) NASA GISTEMP v4, (d) Berkeley Earth. The statistical significance at p < 0.05 is shown with the green cross.
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testing of the trained DLM. The ERA5 and ERA-I SATs after 2012 were used as testing set to test the 
trained DLM by reconstructing Arctic SAT over 2013–2018. Here, the reconstructed Arctic SATs of two days as 
examples were shown in Fig. 6. The SATs of reanalysis datasets at observational grids that were input to the DLM 
were demonstrated in Fig. 6a,d. From the observational grids, it is clear that land station observations are mainly 
located in North America and Europe, with a few coastline observations in Greenland. Buoy observations are 
concentrated in the western Arctic and a few in the Barents-Kara seas. It is obvious from Fig. 6b,c and Fig. 6e,f 
that the reconstructed SATs are highly consistent with the reanalysis data, respectively, with spatial correlation 
coefficients of 0.997 and 0.993. In addition, the reconstructed daily Arctic SATs correlate with that of ERA5 and 
ERA-I with same temporal field correlation coefficient of 0.997 during the period of 2013–2018. These correlation 
coefficients are statistically significant. The above test results indicate that the DLM trained with ERA5 and ERA-I 
is able to reproduce the SATs over the Arctic well based on the limited observations.

Data Records
The dataset is available at Figshare55. As a result of this work, monthly Arctic SAT anomalies relative to 1981–2010  
are provided for 1979–2021. The daily Arctic SATs are also presented for 2011–2021. Moreover, the reconstructed 
SATs north of 30°N are stored in NetCDF format files with 1°x1° latitude-longitude grids, each of which is defined 
in three dimensions (time, latitude, and longitude). The files ‘Arctic SAT ano 1 × 1 1979–2021 monthly v1.nc’  
and ‘Arctic SAT ano 1 × 1 2011–2021 daily v1.nc’ contain the monthly Arctic SAT anomalies for  
1979–2021 and the daily Arctic SATs for 2011–2021, respectively. In these files, “SAT” represents the recon-
structed SAT anomalies/SATs, “lat” represents the latitude, and “lon” represents the longitude. Moreover, these 
datasets can be continuously and consistently updated using the given procedures. Notably, the Arctic SAT 
reconstruction in this study is based on the SAT over the ocean, land, and sea ice.

technical Validation
Validation of the reconstructed arctic Sat. Six terrestrial and three marine station observations were ran-
domly chosen to verify the reconstruction. The terrestrial station observations come from GHCN-d and the marine 
station observations are from NP drifting ice station data. These station observations were excluded from DLM 
training and reconstruction. The reconstructed SAT, SAT from ERA5 and ERA-I were respectively interpolated to 

Fig. 8 The same as Fig. 7, but for Arctic SAT in September.
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the observational stations over land and the tracks of NP drifting ice stations. Correlation and RMSE (root mean 
squared error) were adopted to evaluate their relationships with land and marine observations (Table 3).

Daily observations of six land stations cover 8 years from 2011–2018. The correlation coefficients of the recon-
structed SAT with Land-1~Land-6 station observations are 0.996, 0.981, 0.962, 0.985, 0.995 and 0.973, respectively, 
which are comparable with those from the atmospheric reanalysis datasets (Table 3). All of these correlations were 
statistically significant. The RMSEs of the reconstructed SAT are at least comparable with those from one of reanalysis 
datasets. In general, the reconstruction results over land are comparable with those from the reanalysis datasets, and 
both are close to the observations. This may be due to the assimilation of terrestrial observations in reanalysis datasets.

The three drifting station observations cover the most of the period of 2003–2006 (Table 3), which were also 
used to evaluate the reconstruction over the Arctic Ocean. As shown in Table 3, the reconstructed SAT is closer 
to the marine observations than the reanalysis datasets, with higher correlation coefficients and lower RMSE. 
Much improvement of the reconstructed SAT relative to the reanalysis datasets may be due to the absorption of 
buoy observations over the Arctic Ocean in the reconstruction, while the reanalysis datasets lack the assimila-
tion of these observations. It is worth noting that (1) this comparison period is before 2011, when buoy’s SAT-n 
(inferred from buoy’s ST) over the Arctic Ocean is used in the reconstruction; (2) the six terrestrial and three 
marine station observations were excluded together in the above experiment. Therefore, it can be concluded that 
our work can reasonably reconstruct the Arctic SATs since 1979.

In addition, we also investigated the differences in warming trends over 1979–2021 between the recon-
structed Arctic SATs and those from ERA544, NASA GISTEMP v419 and Berkeley Earth21 in March (Fig. 7) 
and September (Fig. 8), the maximum and minimum sea ice extent months in the Arctic, respectively. These 
four data sets consistently demonstrate that March Arctic SATs are warming most significantly over the Arctic 
Ocean and along the Eurasian coastline (Fig. 7). Nonetheless, the reconstructed SATs indicate a much stronger 
warming in the Arctic (0.728 ± 0.028°C/10a) relative to ERA5 (0.553 ± 0.025°C/10a), NASA GISTEMP v4 
(0.617 ± 0.025°C/10a) and Berkeley Earth (0.632 ± 0.026°C/10a), particularly in the area extending from the 
central ocean to the East Siberian Sea as well as the coastal region of the northern Alaska, and over Greenland.  
In September, the Arctic temperature warming trends in the reconstruction (0.55 ± 0.013°C/10a) are weaker than 
the Berkeley Earth (0.571 ± 0.013°C/10a) and ERA5 (0.571 ± 0.012°C/10a), particularly in the region from the 
Kara Sea eastward to the Beaufort Sea, but stronger than the GISTEMP (0.463 ± 0.012°C/10a) (Fig. 8). In addi-
tion, among the four data sets, the reconstructed SATs for Greenland indicate the strongest warming. All trends 
above-mentioned were calculated for the area north of 60°N. In general, a warmer Arctic Ocean and Greenland 
have been reconstructed after additional absorption of observations on sea ice in the Arctic (Figs. 7, 8).

Code availability
The code used in this study can be found at https://doi.org/10.6084/m9.figshare.21940490.v1. This code may be 
updated over time56.
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