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Baseline high-resolution maps 
of organic carbon content in 
Australian soils
Alexandre M. J-C. Wadoux   1 ✉, Mercedes Román Dobarco1, Brendan Malone   2, 
Budiman Minasny   1, Alex B. McBratney   1 & Ross Searle3

We introduce a new dataset of high-resolution gridded total soil organic carbon content data produced 
at 30 m × 30 m and 90 m × 90 m resolutions across Australia. For each product resolution, the 
dataset consists of six maps of soil organic carbon content along with an estimate of the uncertainty 
represented by the 90% prediction interval. Soil organic carbon maps were produced up to a depth of 
200 cm, for six intervals: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm. The maps 
were obtained through interpolation of 90,025 depth-harmonized organic carbon measurements using 
quantile regression forest and a large set of environmental covariates. Validation with 10-fold cross-
validation showed that all six maps had relatively small errors and that prediction uncertainty was 
adequately estimated. The soil carbon maps provide a new baseline from which change in future carbon 
stocks can be monitored and the influence of climate change, land management, and greenhouse gas 
offset can be assessed.

Background & Summary
In the last two decades, there has been a growing interest in estimating soil organic carbon (SOC) content and 
stocks for management (e.g. carbon sequestration), economic (e.g. greenhouse gas emission trading schemes, 
commercial incentives for Net Zero targets)1 and scientific (e.g. dynamic of carbon cycle) purposes. Soils are 
an essential component of the ecosystem carbon cycle, storing approximately two-thirds of the total terrestrial 
organic carbon pool2. Organic carbon is also a key indicator of the overall soil functioning. It is the main constit-
uent of soil organic matter and is related to most soil functions such as water and nutrient cycling, the produc-
tivity of plants, carbon storage and climate mitigation, among others3.

The total SOC concentration is conventionally measured at a point using laboratory techniques (e.g. the 
Walkley-Black method4 or high-temperature combustion), the values of which can be used in models of soil C 
dynamics models such as RothC5). Organic carbon, however, is a continuum of compounds with different ori-
gins, multiple stages of decomposition and decay and chemical composition6. The processes that control organic 
carbon composition vary spatially and with depth, depending on soil, climate, land use and management prac-
tices and are controlled by a myriad of biotic and abiotic factors7. Several recent lines of work have therefore 
been developed to model the spatial distribution of SOC at regional8, national9 and continental10 scales. The 
mapping of SOC also reflects an increasing demand for spatially explicit organic carbon assessment to be used. 
For example, to prioritize local actions in soil carbon sequestration and to monitor SOC change over time. SOC 
maps are also used as input into Earth System Models and are relevant to calibrate and initiate mechanistic sim-
ulation models of the terrestrial carbon cycle11.

SOC maps are usually made using statistical or non-statistical models that exploit the quantitative relation-
ships between point-measured values of SOC and a set of environmental covariates that control SOC spatial 
distribution11,12. Various methods can be used for this purpose, including geostatistical methods that rely on the 
variogram and kriging and recently more complex algorithmic tools from machine learning13. These models are 
used to predict the SOC at unobserved locations using the fitted relationship obtained at observation points and 
the spatially explicit covariates, such as terrain attributes and remote sensing imagery.
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In Australia, digital maps of SOC have been produced extensively for nearly two decades. The Soil and 
Landscape Grid of Australia (SLGA)14, for example, used a large soil inventory composed of more than 27,000 
sites where SOC is recorded, either measured or inferred with spectroscopic techniques. These SOC maps have 
been extensively used for national carbon accounting and to monitor soil carbon change. However, data col-
lection and processing techniques have progressed rapidly in the last 8 years. It is worthwhile to include these 
recent developments to produce new high-resolution maps of SOC in Australia.

In this paper, we present updated continental-scale maps of SOC. These maps are part of the new version of 
the SLGA and will be the new baseline maps of Australia from which carbon stock can be estimated and changes 
in SOC can be monitored. The resolution at which the maps are produced (90 m × 90 m and 30 m × 30 m) ena-
bles applications from regional assessment to local-scale soil management. The maps are produced for six depth 
intervals, following the specifications of the GlobalSoilMap project15 and we also produced maps of the predic-
tion uncertainty. The maps are based on measured total organic carbon (TOC) content in soils compiled from 
various sources which represent the most comprehensive dataset on SOC currently available in Australia.

Methods
Organic carbon data.  Data on total organic carbon (TOC) concentration (%) was extracted with the Soil 
Data Federator developed by CSIRO with support from the Terrestrial Ecosystem Research Network (TERN). 
The Soil Data Federator is a web API that compiles soil data from different institutions and government agencies 
throughout Australia. The SOC data used in this study are publicly available through the Soil Data Federator 
(https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederatorHelp.html) managed by 
CSIRO16. The laboratory methods for total organic carbon included in the study are presented in Table 1. We 
selected TOC data from the period 1970–2020 to get a compromise between the representativity of current TOC 
concentration and spatial coverage. The data was error checked and processed to harmonize units, excluding 
duplicates and potentially wrong data entries (e.g. missing upper or lower horizon depths, extreme TOC val-
ues, unknown sampling date). Additional TOC measurements from the Biome of Australian Soil Environments 
(BASE) contextual data17 were also included in the analyses. TOC concentration for BASE samples was deter-
mined by the Walkley-Black method4 (method 6A1 in Table 1). Upper limits for TOC concentration by biome 
and land cover classes were set according to published literature, and consistent datasets (Australian national Soil 
Carbon Research Program (SCaRP) and BASE), see refs. 17,18 and data exploration to exclude unrealistic TOC 
values (e.g. maximum TOC = 30% in temperate forests, maximum TOC = 14% in temperate rainfed pasture). 
Since TOC concentration in Australian ecosystems has been underestimated by previous SOC maps19, we did not 
set conservative TOC upper limits, knowing that the machine learning model would likely underestimate high 
SOC values.

Data for TOC concentration come from bulk soil samples taken at various depth intervals in the soil profile. 
To standardize the depth intervals, we built a mass-preserving depth function using the equal-area quadratic 
spline. The mathematical description of this function and its application to build continuous depth intervals 
over the soil profile have been extensively described in the literature20,21. The equal-area quadratic spline func-
tion was fitted to the whole collection of pre-processed TOC data, and then values extracted for the 0–5 cm, 
5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm depth intervals, following GlobalSoilMap specifi-
cations15. Boxplots with TOC values by biome and land cover after data cleaning and depth standardization are 
shown in Fig. 1. A total of 90,025 measurements of TOC are used hereafter for mapping.

Environmental covariates.  We collected a set of 57 spatially exhaustive environmental covariates made 
available by the Terrestrial Ecosystems Research Network (TERN), covering Australia and representing prox-
ies for factors influencing SOC formation and spatial distribution: soil properties, climate, organisms/vegeta-
tion, relief and parent material/age. The covariates were reprojected to the WGS84 (EPSG:4326) projection and 
cropped to the same spatial extent. All covariates were resampled using bilinear interpolation or aggregated to 
conform with a spatial resolution with a grid cell of 90 m × 90 m and 30 m × 30 m. The list of covariates along 
with their unit and reference is provided in Table 2. The covariates used in this study are freely available through 
the link https://data.tern.org.au/landscapes/slga/NationalMaps/SoilAndLandscapeGrid/. Instructions for access-
ing the covariate rasters as Cloud Optimised GeoTiffs are provided at https://esoil.io/TERNLandscapes/Public/
Pages/SLGA/GetData-COGSDataStore.html.

Mapping.  The spatial distribution of soil TOC concentration is driven by the combined influence of climate, 
vegetation, relief and parent materials22. We thus modelled TOC concentration as a function of environmental 

Laboratory methods Description Reference

6A1, 6A1_UC Organic C. Walkley and Black wet Oxidation by dichromate-sulfuric acid. TOC approximate due to 
incomplete chemical reaction

4

6B2 Total C. Dumas high-temperature combustion, volumetric CO2 measurement (no soil pretreatment). 
Measures TOC in absence of carbonates/bicarbonates

32

6B2b Total organic C. Dumas high-temperature oxidative combustion, infrared/thermal conductivity 
detection (no soil pretreatment).

32

6B3, 6B3a Total organic C. Dumas high-temperature oxidative combustion furnace, infrared/thermal conductivity 
detection. The results are corrected for the percentage of cabonate/bicarbonate determined separately.

33

Table 1.  Datasets used for spatial modelling along with the laboratory method and reference.
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covariates representing biotic and abiotic control of TOC. The measurements of SOC and their corresponding 
values of environmental covariates from Table 2 at the same measurement locations were used to fit the mapping 
model. For the mapping, we used a machine learning algorithm called quantile regression forest.

Quantile regression forest.  Quantile regression forest23 is an ensemble of decision trees. A decision tree is built 
by partitioning the covariate dataset from the calibration dataset. A number of partitions are evaluated and a 
splitting metric, the variance, is used to evaluate the partitions. The partition with the smallest splitting metric is 
selected and undergoes the same procedure until a user-defined parameter, the minimum node size, is reached. 
For a single tree, the prediction is taken as the average prediction of the values at the end of the node of the tree.

The decision tree is extended by the process of bagging (i.e. bootstrap and aggregating)24, which aims to build 
an ensemble of decision trees called a random forest. In a random forest, a large number of decision trees is 
built on bootstrap samples of the original calibration data. For each tree, a random perturbation (i.e. bagging) is 
introduced during partition where only a subset of size mtry from the original number of covariates in the cali-
bration data is used for partition. The final prediction from the random forest is simply the aggregation through 
averaging of all the decision tree predictions. Extending the standard random forest to QRF is straightforward. 
Instead of obtaining a single statistic, that is the mean prediction from the decision trees in the random forest, 
we report all the target values of the leaf node of the decision trees. With QRF, the prediction is thus not a sin-
gle value but a cumulative distribution of the TOC prediction at each location, which can be used to compute 
empirical quantile estimates.

Fitting a QRF model is thus based on three user-defined parameters: the partition subset size mtry, the number 
of trees ntree and the stopping criterion for the tree splitting nodesize. We fitted a QRF model for each depth inter-
val with parameters mtry and nodesize held to their default values. mtry is rounded down to the square root of the 
total number of covariates and nodesize was set to 5. To compromise between computational load and accuracy we 
fixed the number of trees to 250. We tested parameter tuning using a random grid-search procedure for the three 
QRF parameters, using 1000 parameter set combinations and the mean of the square error as criterion obtained 
from a 10-fold cross-validation strategy. We found that parameter tuning was very computationally demanding 
for a negligible improvement in prediction accuracy. Thus, we did not proceed any further with QRF parameter 
tuning. We used the R programming language and the ranger25 package for model fitting and prediction.

Evaluation of the prediction and uncertainty quantification.  Model prediction.  Each depth-specific model 
of TOC was validated based on the results of a K-fold cross-validation. The whole dataset was randomly split 
into K = 10 approximately same-size folds. Each fold was kept apart for the validation and the remaining K−1 
folds were used as a calibration dataset. Models were compared using the mean error (ME), the root mean 
square error (RMSE), the squared Pearson’s r correlation coefficient (r2), and the modelling efficiency coefficient 
(MEC), defined by the following equations:

Mean error:
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Fig. 1  Values of total organic carbon concentration by biome and land cover after data cleaning and depth 
standardization.

https://doi.org/10.1038/s41597-023-02056-8


4Scientific Data |          (2023) 10:181  | https://doi.org/10.1038/s41597-023-02056-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Factor Predictor variable Unit Reference

Soil
Depth-specific soil clay content percent 34

Depth-specific soil sand content percent 34

Climate

Mean annual aridity index (annual precipitation/annual potential evaporation) index 35

Annual potential evaporation mm 35

Minimum monthly potential evaporation mm 35

Maximum monthly potential evaporation mm 35

Prescott Index generated by using Prescott index = 0.445 P/E0.75 index —

Annual precipitation mm 35

Minimum monthly precipitation mm 35

Precipitation seasonality 1- solstice seasonality composite factor ratio ratio 35

Precipitation seasonality 2- equinox seasonality composite factor ratio ratio 35

Maximum monthly precipitation mm 35

Short-wave solar radiation - annual mean (SRAD data) MJ/m2/day 35

Minimum temperature – Annual mean °C 35

Annual temperature range °C 35

Maximum temperature - Annual mean °C 35

Annual atmospheric water deficit (annual precipitation – annual potential evaporation) mm 35

Organisms/vegetation

Long-term average NDVI Q1 unitless

Long-term average NDVI Q2 unitless

Long-term average NDVI Q3 unitless

Long-term average NDVI Q4 unitless

Landsat Fractional cover - Bare Soil -Maximum of the timeseries - 1987–2019 percent 36

Landsat Fractional cover - Non Photosynthetic Vegetation - Maximum of the timeseries 
- 1987–2019 percent 36

Landsat Fractional cover - Photosynthetic Vegetation - Maximum of the timeseries - 
1987–2019 percent 36

Landsat Fractional cover - Bare Soil - Mean of the timeseries - 1987–2019 percent 36

Landsat Fractional cover - Non Photosynthetic Vegetation - Mean of the timeseries - 
1987–2019 percent 36

Landsat Fractional cover - Photosynthetic Vegetation - Mean of the timeseries - 
1987–2019 percent 36

Landsat Fractional cover - Bare Soil Minimum of the timeseries - 1987–2019 percent 36

Landsat Fractional cover - Non Photosynthetic Vegetation - Minimum of the timeseries 
- 1987–2019 percent 36

Landsat Fractional cover - Photosynthetic Vegetation - Minimum of the timeseries - 
1987–2019 percent 36

Landsat Fractional cover - Bare Soil - Standard deviation of the timeseries - 1987–2019 percent 36

Landsat Fractional cover - Non Photosynthetic Vegetation - Standard deviation of the 
timeseries - 1987–2019 percent 36

Landsat Fractional cover - Bare Soil - Standard deviation of the timeseries -1987–2019 percent 36

Fraction of Photosynthetically Active Radiation (FPAR) - AVHRR - Maximum Value in 
Timeseries percent 37

Fraction of Photosynthetically Active Radiation (FPAR) - AVHRR - Mean Value in 
Timeseries percent 37

Fraction of Photosynthetically Active Radiation (FPAR) - AVHRR - Median Value in 
Timeseries percent 37

Fraction of Photosynthetically Active Radiation (FPAR) - AVHRR - Minimum Value in 
Timeseries percent 37

National Dynamic Land Cover Dataset Mean of the timeseries 2000 - 2008 unitless 38

Landsat 2000–2010 Persistent Green-Vegetation Fraction unitless 39

Relief

Elevation 3 Second - Shuttle Radar Topography Mission metre 40

Multi-resolution Ridgetop Flatness unitless 41

Multiresolution Index of Valley Bottom Flatness (MRVBF) unitless 42

Plan curvature unitless 43

Profile curvature unitless 43

relief roughness unitless 43

Slope percent 44

Topographic wetness index unitless 43

Continued
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where z and z� denote the measured and predicted values of TOC, respectively, and n is the total number of 
measured values. The ME represent the bias, i.e. the systematic over- or under-prediction of the model.

Root mean square error:
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The RMSE represents the magnitude of the error, its optimal value is 0 and is expressed in the unit of TOC 
(i.e. in %).
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where z  is the mean of the measured values and z� is the mean of the predicted values. The r2 describes the linear 
correlation between measured and predicted values and ranges between 0 (no linear correlation) to 1 (perfect 
linear correlation).

Modelling efficiency coefficient:
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The MEC optimal value is 1 but it can be negative if the mean of the measured values is a better predictor 
than the model. Positive MEC values can be interpreted as an amount of variance explained by the model.

We use a solar diagram26 to exploit the relationship between statistical indices and compare the maps. In a 
Cartesian coordinate system, the x-axis represents the ME (Eq. 1), and the y-axis the standard deviation of the 
error (SDE). The distance from the origin to any point in the diagram is expressed in terms of RMSE (Eq. 2), 
which allows to see the individual contribution of ME and SDE to the RMSE. The ME, SDE and RMSE are 
standardized by the standard deviation of the observation. The solar diagram further includes information on 
the correlation (Eq. 3) and MEC (Eq. 4). In a solar diagram, the closer the point to the origin of the diagram, the 
better the map. More information on the statistical representation of the validation statistics is provided in ref. 26.

Uncertainty quantification.  We report the depth-specific lower (q0.05) and upper (q0.95) limits of the 90% pre-
diction interval with two maps. Validation of the uncertainty estimates are obtained through a so-called accuracy 
plot. In an accuracy plot, the proportion of cross-validation observations contained in each q prediction interval 
is calculated. Ideally, the proportion of observations covered by a q interval is approximately equal to the value 
of q. If the proportion of observations in q is greater than q, it suggests that the uncertainty is under-estimated, 
whereas a substantially smaller proportion of observations compared to the nominal value of q suggests an 
under-estimation of the uncertainty. The process is repeated for all q, and the values of q are plotted against the 
actual proportion of values covered by q in a scattergram. Ideally, all values should be close to the 1:1 line, which 
would mean that the uncertainty is adequately estimated. Note that we evaluate uncertainty for all q against 
cross-validation observations, but report the maps of the 90% prediction intervals only.

Data Records
Prediction results.  The depth-specific maps of TOC are distributed through the CSIRO Data Access 
Portal. Each product contains a map of TOC and its upper and lower prediction intervals. The products are 
available for grid size cells of 30 m × 30 m27 and 90 m × 90 m28 and for the size depth intervals: 0–5 cm, 5–15 cm, 
15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm. The unit of TOC is in percent mass (%). The projection system 

Factor Predictor variable Unit Reference

Parent material/age

Total Magnetic Intensity (TMI) Gravity Grid of Australia unitless 45

Radiometric grid of Australia (Radmap) v4 2019 - Filtered dose unitless 46

Radiometric grid of Australia (Radmap) v4 2019 - Potassium percent 46

Radiometric grid of Australia (Radmap) v4 2019 - Thorium ppm 46

Radiometric grid of Australia (Radmap) v4 2019 - Uranium ppm 46

Radiometric grid of Australia (Radmap) v4 2019 - Thorium Potassium ratio ratio 46

Radiometric grid of Australia (Radmap) v4 2019 - Uranium Thorium ratio ratio 46

Radiometric grid of Australia (Radmap) v4 2019 - Uranium Potassium ratio ratio 46

Radiometric grid of Australia (Radmap) v4 2019 - Uranium Thorium ratio ratio 46

Weathering index unitless 47

Table 2.  List of environmental covariates with unit and associated reference when applicable. All covariates are in 
geographic coordinates with 3 arc second grid cell (about 90 m) or 1 arc second grid cell (about 30 m) resolution 
with coordinate system WGS84 (EPSG:4326) and extent: 112.99958°E - 153.99958°E; 10.0004°S - 44.00042°S.
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is WGS84 (EPSG:4326) and maps have extent: 112.54449°E - 153.38239°E; 9.59539°S - 43.38329°S for the 30 m 
and 112.99958°E - 153.99958°E; 10.0004°S - 44.00042°S for the 90 m. There are 36 maps in total: 6 depths, each 
with two maps of lower and upper intervals, for two spatial resolutions. An example of prediction along with 
the lower and upper intervals (0.05 and 0.95 percentiles) is shown in Fig. 6 for the 0–5 cm depth interval and the 
90 m × 90 m spatial resolution. The maps of TOC prediction for all depth intervals and the two spatial resolutions 
are shown in Fig. 4. For the 90 m × 90 m resolution maps only, they can be used and accessed directly as Cloud 
Optimised GeoTIFF files through the TERN Data Store28.

Technical Validation
Prediction accuracy.  The validation statistics for the QRF model prediction, two spatial resolutions and the 
six depth intervals are shown in Table 3 and visualized in Fig. 2. All maps have a negligible bias (the ME is close 
to 0 in all cases). The RMSE decreased with depth, which is expected because it is reported in the units of SOC 
(i.e. %) and the SOC content decreases with depth (see also Fig. 1). The solar diagram in Fig. 2 confirms that the 
RMSE is mostly composed of the SDE because all points are close to the a value of ME = 0. The r2 and MEC sug-
gest that the models are accurate, but that prediction accuracy decreases dramatically for deeper depth intervals. 
This is an expected result reported in previous studies14. There is no substantial difference in terms of ME, r2 and 
MEC between the two spatial resolutions, and a slight improvement in RMSE between the prediction made with 
covariates at 30 m and that using 90 m resolution covariates.

Validation of the uncertainty.  The validation of the predicted prediction intervals is shown in Fig. 3. Note 
that while Fig. 2 shows all prediction intervals, we only report the maps of the 90% prediction interval, that is, the 

ME RMSE r2 MEC

30 m 90 m 30 m 90 m 30 m 90 m 30 m 90 m

0–5 m 0.03 0.03 1.25 1.39 0.53 0.53 0.53 0.53

5–15 cm 0.03 0.03 1.07 1.11 0.50 0.54 0.50 0.53

15–30 cm 0.02 0.02 0.90 0.93 0.41 0.44 0.41 0.44

30–60 cm 0.02 0.02 0.74 0.75 0.22 0.22 0.22 0.22

60–100 cm 0.02 0.02 0.50 0.56 0.12 0.13 0.11 0.12

100–200 cm 0.02 0.01 0.38 0.41 0.18 0.18 0.18 0.17

Table 3.  Depth-specific validation statistics for the maps. The statistics are obtained by 10-fold cross-validation. 
Note that 30 m and 90 m refers to the map made at 30 m × 30 m and 90 m × 90 m resolutions, respectively.

Fig. 2  Summary diagram (solar diagram) of the validation statistics. The statistics are obtained by 10-fold 
cross-validation. The x-axis represent the mean error (ME), the y-axis is the standard deviation of the error 
(SDE) which are both standardized by the standard deviation of the observations (denoted by *). Any point 
in the diagram has a distance to the origin equal to the RMSE. Color scale indicate the Pearson’s r correlation 
coefficient and the modelling efficiency (MEC). Note that 30 m and 90 m refers to the map made at 30 m × 30 m 
and 90 m × 90 m resolutions, respectively.
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maps of the 0.05th and the 0.95 percentiles (see Figs. 4 and 5). Overall, the uncertainty was adequately estimated 
because most points are close to the line of equality. The uncertainty of SOC for the 0–5 cm depth intervals is 
slightly overestimated. For example, for the 50% interval, nearly 55% of the observations from the validation 
dataset fall within this interval.

Comparison with existing maps.  We compared the topsoil (0–5 cm) TOC prediction maps at 30 m × 30 m 
(Fig. 6a) with existing maps available for Australia, the previous version of the SLGA v1 (Fig. 6b29) global map of 
SoilGrids 2.0 (Fig. 6c30). Note that in Fig. 6 the SLGA v1 map is at 90 m × 90 m whereas the SoilGrids map is at 
250 m × 250 m spatial resolution. Three small areas in the West, East and North of Australia are shown. Overall, 
the prediction results for the three maps have similar patterns and ranges of values for the three small areas. 
However, the new map reveals much more detailed information than previous maps. The map of SoilGrids has 
smooth variation while the map of SLGV v1 captures further variation, but missed the detailed variation caused 
by fields and river beds.

Usage Notes
With its high spatial resolution and national coverage, this dataset should be useful for a range of stakehold-
ers, including policymakers, scientists and land users alike. Potential uses include setting up a benchmark for 
Australia to estimate the change in soil organic carbon resulting from a change in land use, land cover, soil man-
agement practices and greenhouse gas offset activities. They can be also used for researchers to obtain insights 

Fig. 4  Map of prediction of TOC for the 0–5 cm depth interval and 90 m × 90 m spatial resolution (center) 
along with the lower (left) and upper (right) intervals (0.05 and 0.95 percentiles).
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Fig. 3  Accuracy plots showing the probability interval and the proportion falling within this interval, for the six 
depth intervals and two spatial resolutions.
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into the large-scale and local-scale drivers of soil organic carbon in relation to biophysical factors and the envi-
ronment. National-scale maps of soil organic carbon also constitute an input to guide the design of national soil 
monitoring networks and soil organic carbon accounting projects. The uncertainty of the maps reported in this 

Fig. 5  Maps of total organic carbon prediction for the size depth intervals and two spatial resolution  
(i.e. 90 m × 90 m and 30 m × 30 m).

Fig. 6  Topsoil (0–5 cm) (a) TOC prediction maps at 30 m × 30 m spatial resolution compared with (b) the 
previous version of the Soil and Landscape Grid of Australia and (c) the global map of SoilGrids 2.030 for three 
small areas in the West, East and North of Australia.
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study can be used to guide sampling to refine the existing maps in areas of large uncertainty. At the international 
level, we envision that this map will help policymakers to report on the national soil carbon budgeting and might 
help assist with strategies to mitigate climate change through carbon storage in soils.

Code availability
Specific functions for data pre-processing and spline fitting are freely available in the R package ithir31. Codes 
associated to the model fitting, cross-validation and mapping are freely available from https://github.com/
AusSoilsDSM/SLGA/tree/main/Production/DSM/SoilOrganicCarbon. All analyses were performed in in the R 
programming language (version 4.1.0).
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