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Improved chromosomal-level 
genome assembly and re-annotation 
of leopard coral grouper
Wentao Han, Shaoxuan Wu, Hui Ding, Mingyi Wang, Mengya Wang, Zhenmin Bao, Bo Wang ✉ 
& Jingjie Hu ✉

Plectropomus leopardus, as known as leopard coral grouper, is a valuable marine fish that has gradually 
been bred artificially. To promote future conservation, molecular breeding, and comparative studies, 
we generated an improved high-quality chromosomal-level genome assembly of leopard coral grouper 
using Nanopore long-reads, Illumina short reads, and the Hi-C sequencing data. The draft genome is 
849.74 Mb with 45 contigs and N50 of 35.59 Mb. Finally, a total of 846.49 Mb corresponding to 99.6% 
of the contig sequences was anchored to 24 pseudo-chromosomes using Hi-C technology. A final set of 
25,965 genes is annotated after manual curation of the predicted gene models, and BUSCO analysis 
yielded a completeness score of 99.5%. This study significantly improves the utility of the grouper 
genome and provided a reference for the study of molecular breeding, genomics and biology in this 
species.

Background & Summary
Groupers (Family Epinephelidae, Subfamily Epinephelinae) are prominent marine fishes, mostly distributed in 
tropical and temperate marine areas, comprising 167 species that belong to 15 genera1. Due to their high protein, 
low fat, tender meat quality, and good taste, groupers are high-quality economic fish species in Asia2,3. Given the 
huge commercial interests at stake, groupers are highly susceptible to human-induced impacts, including over-
fishing, making them considered threatened by the International Union for Conservation of Nature (IUCN)4. 
Therefore, how to scientifically develop and protect their resources has become the top priority5.

The leopard coral grouper (Plectropomus leopardus) has a beautiful skin color and is a valuable marine 
fish that commands a higher price6–8. Wild populations are suffering sharp declines due to overfishing and 
the destruction of spawning aggregations9. In recent years, the increasing market demands have promoted the 
development of artificial breeding in leopard coral grouper10–12. A high-quality reference genome resource has 
become increasingly important to facilitate the genomic breeding program, biological phenomena investigation 
and germplasm conservation13,14. Although the leopard coral grouper genome has been released6,8,15, the com-
pleteness of genome assembly and annotations still need to be further improved. For examples, the reported 
chromosomal-scale assembly of the sequence contigs only anchored 87.7% of the whole genome sequence using 
Hi-C technology6. Additionally, a wide range of gene structure annotation errors existed in the previous ver-
sions15, or the annotation information is not released and accessible to the public8.

In the present study, we generated an improved high-quality chromosome-level genome assembly of leopard 
coral grouper using Nanopore long-reads, Illumina short reads, and the Hi-C sequencing data. Approximately 
849.74 Mb genome was assembled, consisted of 45 contigs with the contig N50 length of 35.59 Mb. A total of 
846.49 Mb (99.6%) of the assembled sequences were anchored to 24 pseudo-chromosomes with low missing 
bases, only about 2, 354 gaps. Based on this improved genome assembly, we have significantly improved upon 
previous gene annotations combining de novo prediction, homology-based searches and transcriptome-assisted 
methods. BUSCO alignment showed that our final assembly contained 4, 469 (97.5%) complete BUSCOs. Taken 
together, this high-quality reference genome provides a valuable basis for the conservation and utilization of 
germplasm resources, and the further genetic breeding program in leopard coral grouper.
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Methods
De novo genome assembly. First, we estimated the genome size and heterozygosity of leopard coral 
grouper using GenomeScope v2.016 by k-mer analysis with clean Illumina short data. Program ontbc (https://
github.com/FlyPythons/ontbc) was used to filter the Nanopore raw reads with parameters “-min_score  
7 -min_length 1000”. Then, the filtered Nanopore reads self-corrected the base errors by the long-read assembler 
NextDenovo v2.3 (https://github.com/Nextomics/NextDenovo). Finally, clean long reads were assembled using 
NextDenovo v2.3 (https://github.com/Nextomics/NextDenovo) with the parameters: read_cutoff = 5k’ and ‘seed_
cutoff = 40k’. We used purge_dups v1.2.517 to remove the haplotypic duplication after mapping the Nanopore 
reads with minimap2 v2.118. The assembly sequence was then polished using NextPolish v1.3.119 with default 
parameters based on Nanopore long reads. To ensure high accuracy of the genome assembly, Illumina paired-
end clean reads were aligned to the assembly using BWA v0.7.1520, and the results were used to conduct another 
round of polishing by Pilon v1.2321 with the parameters:--fix SNPs, indels. The contig-level assembly covered 
849.74 Mb of the genome consisted of 45 contigs with a contig N50 value of 35.59 Mb.

Hi-C analysis and chromosome assembly. To obtain the chromosome-level genome, we further 
anchored all 45 contigs of the draft assembly onto 24 chromosomes using a 3D-DNA pipeline (version 201008)22 
based on the published high-quality HiC reads15. The HiC reads were aligned to the polished genome using 
Juicer v1.5.7 software23 with default parameters. Mis-joins, order and orientation were corrected by the 3D-DNA 
pipeline22 with the following parameters: -r 2. After the first round of 3D-DNA, we manually adjusted the 
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Fig. 1 Statistics on genome assembly and Comparison of four version annotations of the leopard coral grouper, 
Plectropomus leopardus. (a) Hi-C interaction heat map for Plectropomus leopardus. (b) BUSCO evaluation on 
the genome assembly completeness. (c) BUSCO evaluation on the predicted gene models.

P. leopardus

E. fuscoguttatus E. lanceolatus E. moaraThis study Zhou et al. Wang et al. Yang et al.

Sequenced genome size (Mb) 849.74 881.55 913.38 787.06 1,047.01 1,087.42 1,030.48

Contig N50 (Mb) 35.59 0.86 1.41 1.14 13.80 0.12 2.22

Scaffold N50 (Mb) 38.02 34.15 40.04 33.85 44.42 46.23 43.43

Gap size (N’s per 100 kbp) 2.77 1,793.38 79.43 68.31 1.96 3,609.92 2,988.63

Complete BUSCOs (%) 97.5 91.5 94.2 87.2 95.0 94.2 97.2

Fragmented (%) 1.0 3.9 1.7 3.3 2.4 3.1 1.3

Missing (%) 1.5 4.6 4.1 9.5 2.6 2.7 1.5

Duplicate copy (%) 2.3 3.0 2.8 2.6 2.4 2.7 2.4

Table 1. Comparison of genome assembly metrics in groupers.
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assembly with Juicebox23 and rerun the 3D-DNA. The Hi-C scaffolding resulted in 24 chromosome-length scaf-
folds (Fig. 1a).

repeat annotation. De novo and structure-based searches were used to identify repetitive sequences with 
both RepeatModeler v224 (http://www.repeatmasker.org/RepeatModeler/) and RepeatMasker v4.0.925 (http://
www.repeatmasker.org). Candidate LTR-RTs repetitive sequence library was identified using LTR_finder26 with 
parameters ‘-D 15000 -d 1000 -L 7000 -l 100 -p 20 -C -M 0.9’ and LTRharvest v1.5.827 with parameters ‘-minlenltr 
100 -maxlenltr 7000 -mintsd 4 -maxtsd 6 -motif TGCA -motifmis 1 -similar 85 -vic 10 -seed 20 -seqids yes’. 
The identified LTR-RT candidates were filtered with LTR_retriever v2.528 program with default parameters. 
RepeatScout v1.0.529 LTR_retriever v2.528 and RepeatModeler v224 were used to build de novo repeat libraries. 
The combined repeat library was used as the final library to identify repetitive sequences using RepeatMasker 
v4.0.925 with parameters ‘-q -no_is -norna -nolow -div 40’.

Gene prediction and annotation. To comprehensively annotate genes, protein-coding genes prediction 
was undertaken using the BRAKER v2.1.530 annotation pipeline which integrated different evidence, including  
de novo prediction, homology-based searches and transcriptome-assisted methods. First, for de novo gene 

P. leopardus

E. fuscoguttatus E. lanceolatus E. moaraThis study Zhou et al. Wang et al. Yang et al.

Number of protein-coding genes 25,965 25,763 24,700 22,317 23,813 24,067 23,588

Average gene length (bp) 15,512 15,894 16,882 20,758 22,277 21,997 21,583

Average exon length (bp) 174 171 183 276 175 174 174

Average exon number per gene 9.2 8.4 8.7 11.2 10.5 10.3 10.4

Average intron length (bp) 1,840 1,688 1,879 1,890 2,148 2,146 2,094

Percentage of repeat sequence (%) 37.35 33.91 38.02 36.18 41.28 40.17 38.85

LTR (%) 1.69 1.35 2.68 2.12 5.18 3.68 3.45

LINE (%) 3.21 2.87 3.45 3.24 4.84 4.67 4.16

SINE (%) 0.40 0.39 2.17 0.42 0.48 0.50 0.51

DNA transposons (%) 13.58 11.35 12.80 12.79 16.60 16.82 15.87

Table 2. Comparison of the genome-wide statistics for annotations of groupers.

ncRNA type Copy
Proportion in 
Genome (%)

miRNA 746 0.075

tRNA 1,224 0.011

rRNA

18 S 152 0.023

28 S 117 0.033

5.8 S 22 0.001

5 S 148 0.002

Subtotal 439 0.059

sRNA

CD-box 135 0.002

HACA-box 80 0.001

Splicing 380 0.006

Subtotal 596 0.009

Table 3. The statistics of functional annotation in the leopard coral grouper.

Type
Number of overall 
predicted genes

Percentage of overall 
predicted genes (%)

Total 25,965 —

SwissProt 21,331 82.2

KEGG 15,813 61.0

NR 23,027 88.7

GO 15,965 61.5

Pfam 20,201 77.8

Annotated 25,927 99.9

Unannotated 38 0.1

Table 4. The statistics of functional annotation in the leopard coral grouper.
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prediction, we downloaded published RNA-seq (SRP20194331 and SRP32903132) and then mapped to the soft 
masked genome using Hi-SAT2 v. 2.1.033. Then, all mapping results were used to build transcript models using 
BRAKER v2.1.530 and StringTie v2.1.634. BRAKER v2.1.530 was run with Semi-HMM-based Nucleic Acid Parser 
(SNAP, v2013.11.29)35 and Augustus v3.3.336 which pre-trained using released gene models of P. leopardus6,15. 
Second, protein-coding sequences of from P. leopardus6,15, E. fuscoguttatus37, E. lanceolatus38, and E. moara39 were 
aligned to the genome assembly using TBLASTN and GeneWise v2.2.040. Third, Trinity v2.1.141 was used to generate 
the transcripts. The transcriptome data were further assembled using the PASA pipeline v2.5.242 with BLAT v3543  
and GMAP (version 20150921)44 as the aligner. Finally, all evidences were merged to form a consensus gene set 
using EVidenceModeler v1.1.145. Finally, we identified a total of 25,965 protein-coding genes (Table 2). The non-
coding RNA genes including rRNAs, tRNAs, snRNAs and miRNAs were screened using INFERNAL v 1.1.246 and 
tRNAscan-SE v1.447. Four types of noncoding RNAs, including 746 miRNAs, 1,224 tRNAs, 439 rRNAs and 596 
sRNAs, were identified from the P. leopardus genome (Table 3).
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Fig. 2 Global genome landscape of the leopard coral grouper, Plectropomus leopardus. From outer to inner 
circles: Density of genes with 500 kbp windows, ranging from 0 to 70; GC content with 500 kbp windows, 
ranging from 0.30 to 45; depth of coverage of Nanopore reads with 100 kbp windows, ranging from 20 to 
150; depth of coverage of Illumina short reads with 100 kbp windows, ranging from 10 to 35; distribution of 
heterozygous SNPs with 500 kbp windows, ranging from 0 to 3,420; distribution of homozygous SNPs with 
500 kbp windows, ranging from 0 to 3,420.
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In order to explore the function of predicted protein-coding genes in leopard coral grouper, InterPro30, 
Pfam32, PANTHER 14.1, Superfamily 1.75, Gene3D 4.2.0, SMART 7.1 and TrEMBL32 databases were respec-
tively used to predict protein function based on the conserved protein domains by InterProScan v5.3648.  
We performed functional annotation by aligning the protein sequences to NCBI nr databases and SwissProt 
using BLASTP. The result showed more than 99.9% (25,927) of protein-coding genes were annotated (Table 4).

Data Records
The assembled genome has been deposited at GenBank under the accession GCA_026936395.149. Moreover, the 
whole genome sequence data reported in this paper have been deposited in the Genome Warehouse in National 
Genomics Data Center50,51, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center 
for Bioinformation, under accession number GWHBPCI00000000 that is publicly accessible at https://ngdc.
cncb.ac.cn/gwh/Assembly/29542/show52. In addition, the genome annotation files had been submitted at the 
figshare53. The Nanopore long reads, Illumina genomic sequencing data and Hi-C data were downloaded 
from CNGBdb51,54 under the accession CNP000085955. Transcriptomic sequences can be retrieved under the 
following accession numbers: SRP20194331 and SRP32903132.

technical Validation
To evaluate the quality of genome assembly, first, we assessed genome continuity with QUAST v5.0.256. Contig 
N50 (the length such that half of all sequence is in contigs of this size) has achieved a significant improvement 
to 35.59 Mb, which is much higher than other versions6,8,15 or closely related species (Epinephelus fuscoguttatus,  
Epinephelus lanceolatus, Epinephelus moara) assembled with long-read sequencing from 0.12 to 13.8 Mb. 
Meanwhile, in the latest version, there are very few gaps in the genome (2.77 per 100 kbp), which is remarkably 
less than the previous from 68.31 per 100 kbp to 1793.38 per 100 kbp6,8,15 (Table 1; Fig. 2). Second, Illumina 
paired-end clean reads and Nanopore long reads were mapped to the final reference genome assembly by using 
BWA v0.7.1520 and Minimap2 v2.118, respectively. The mapping rate of Illumina and Nanopore reads reached 
99.18% and 99.95%. We only detected 6, 900 (0.0008%) conflicting sites in the final assembly, indicating that this 
is a high level of the complete genome (Fig. 2; Table 5). Finally, we evaluated the completeness of our genome 
assembly using Benchmarking Universal Single-Copy Orthologs (BUSCO, v3.0)57 with the actinopterygii_odb9 
database. The actinopterygii_odb9 database contained 4,584 conserved core genes while our assembled genome 
contained 4,469 (97.5%) of the expected actinopterygii genes (including 4,393 (95.2%) single and 106 (2.3%) 
duplicated ones). Obviously, our data had complete gene coverage, and 48 (1.0%) were identified as fragmented, 
respectively, while 67 (1.5%) were missing in our assembled genome (Fig. 1b). Furthermore, we also used 
BUSCO to evaluate the completeness of gene annotations57, and only 22 (0.5%) genes were missing in the final 
annotation version (Fig. 1c) Table 5.

Code availability
The data analyses were performed according to the manuals by the developers of corresponding bioinformatics 
tools and all software, and codes used in this work are publicly available, with corresponding versions indicated 
in Methods.
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