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High-resolution livestock seasonal 
distribution data on the  
Qinghai-Tibet Plateau in 2020
Ning Zhan1,2,3,4, Weihang Liu   1,2,3,4, Tao Ye   1,2,3,4 ✉, Hongda Li5, Shuo Chen1,2,3,4,6  
& Heng Ma1,2,3,4

Incorporating seasonality into livestock spatial distribution is of great significance for studying the 
complex system interaction between climate, vegetation, water, and herder activities, associated with 
livestock. The Qinghai-Tibet Plateau (QTP) has the world’s most elevated pastoral area and is a hot 
spot for global environmental change. This study provides the spatial distribution of cattle, sheep, and 
livestock grazing on the warm-season and cold-season pastures at a 15 arc-second spatial resolution on 
the QTP. Warm/cold-season pastures were delineated by identifying the key elements that affect the 
seasonal distribution of grazing and combining the random forest classification model, and the average 
area under the receiver operating characteristic curve of the model is 0.98. Spatial disaggregation 
weights were derived using the prediction from a random forest model that linked county-level census 
livestock numbers to topography, climate, vegetation, and socioeconomic predictors. The coefficients 
of determination of external cross-scale validations between dasymetric mapping results and township 
census data range from 0.52 to 0.70. The data could provide important information for further modeling 
of human-environment interaction under climate change for this region.

Background & Summary
The Qinghai-Tibetan Plateau (QTP) is the most elevated pastoral area in the world1, and one of China’s most 
important pastoral areas. It has enriched grassland resources with a total area of 1.5 million km2, accounting for 
50.43% of the total grassland area in China2. Livestock grazing has important socio-ecological significance for the 
QTP and its surrounding areas. The main types of grazing livestock on the QTP are Yak and Tibetan sheep3, which 
are the primary sources of energy, protein, and fat for local populations4, supporting the survival and livelihoods 
of approximately 2 million pastoralists and 3 million agro-pastoralists5 Climate change in this region is associ-
ated with a warming and wetting trend6. When coupled with human activity such as fencing or overgrazing7,  
grazing livestock has put substantial stress on the grassland ecosystem and even altered the phenology of the 
vegetation8,9, thereby threatening the ecosystem stability10,11. Vegetation change, together with the warming 
trend, would consequently alter the atmosphere-hydrosphere-biosphere-lithosphere interaction12 and severely 
threaten the function of the “Asia water tower”13,14. Therefore, livestock grazing, as the primary means of human 
influence on vegetation, is key to capturing the dynamics of the human-environment interaction15–19. A detailed 
distribution of livestock data would be among the most fundamental information platforms in studying the 
socioeconomic, resource-environmental, livestock health, and risk assessment in the QTP, and for stakeholders 
to manage grassland and assign pasture for herders20.

Presently, most regions of QTP are using a two-season transhumance stocking system21. Pastures have been 
allocated to individual households, and livestock are grazed within the contracted and fenced household pasture 
parcels. Herders graze their stock on mountain slopes in the warm-season and the valleys for the cold-season21, 
but the distance of seasonal livestock migration has been limited22, mostly within township administrative 
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boundaries. Such a livestock system has been the result of a set of government policies since the 1980s. Since 
1985, the Chinese government has gradually implemented and established the Household Contract Responsibility 
System in pastoral areas23, and proposed a strategy for herders to develop from nomadic to a sedentary and 
semi-sedentary rotation system. Each herder household was allocated a certain area of natural pastures accord-
ing to household size. Since the 1990s, seasonal pasture contracting was implemented in pastoral areas to further 
improve the responsibility system23. As pasture degradation threatened the livelihoods of residents and wildlife 
habitats on this plateau, the government has launched a series of ecological restoration projects and economic 
compensatory payment policies since 2004, and many fences have been constructed on degraded pastures to 
prevent new degradation24. This has further altered the distribution of grassland used as pastures.

Early studies on the mapping of livestock distribution were conducted at small spatial scales using direct 
livestock detection techniques based on moderate and high-resolution satellite imagery, either automatically 
or semi-automatically25,26. The Food and Agriculture Organization of the United Nations (FAO) proposed an 
approach to estimate livestock numbers within large spatial extents. Initially, stratified multiple regressions were 
used for linking observed livestock densities to predictors to develop the gridded livestock of the world database, 
GLW 2007 and GLW2 (in 2014), respectively27. Multiple linear regressions have also been used to identify the 
relationship between livestock numbers and predictors in modeling the spatial distribution of European live-
stock with a spatial resolution of 1 km28. With advances in machine learning, random forest algorithms were 
used to map a global 10-km livestock distribution more accurately than the previous dataset generated by multi-
variate regression methods29. In spite of the progress in modeling techniques, few studies have derived seasonal 
livestock distribution. Seasonal movement or transhumance is typical for nomadic or semi-sedentary livestock 
systems in many livestock systems around the world, to fully use environmental resources according to the sea-
sonality of climatic conditions and grassland productivity5,30,31. Failing to consider seasonality in livestock dis-
tribution could bring large uncertainty in livestock system centered environmental impact or feedback analysis.

Presently, a couple of livestock distribution datasets could be useful for studies over the QTP. For instance, 
the GLW2 and GLW3 could be used, but suffered from coarse spatial resolution and modeling accuracy due 
to the lack of finer-scale local data. With support of the local data, Ye et al. (2019) generated a 10-km gridded 
carrying capacity map that approximates actual livestock distribution according to the Forage-livestock Balance 
Management Approach32. Li et al. (2021) produced a gridded livestock projection for western China with a 1 km 
spatial resolution by using machine learning algorithm33. However, these datasets don’t limit potential grazing 
land, nor consider seasonal livestock movement, and thus cannot reflect livestock distribution on actual seasonal 
pastures34.

Therefore, this study aims to map a high spatial resolution livestock seasonal distribution by incorporat-
ing multi-source data with machine learning, and explicitly introducing seasonal dynamics into the modeling 
framework. We provide a division of cold-season and warm-season pastures on the QTP, and livestock, cattle, 
and sheep number distribution data on each of the seasonal pastures, in dasymetric representation at a spatial 
resolution of 500 m.

Methods
Framework.  In this study, a random forest classification model for predicting seasonal pastures was incor-
porated into the general framework of GLW3 in disaggregating livestock data, random forest modeling with the 
dasymetric (DA) mapping method. There are five steps to predict the seasonal distribution of livestock (Fig. 1): 
(1) Preparation of data and variables, (2) preparation of a pasture mask suitable for livestock grazing, (3) ran-
dom forest classification modeling for predicting seasonal pastures, (4) random forest modeling for predicting 
livestock density distribution, and (5) dasymetric mapping for disaggregating livestock number within county 
boundaries.

Preparation of data and variables.  Data used in this study included data of livestock and pasture, grass-
land and vegetation, topography and climate, and other socioeconomic data. The list of data used in the pasture 
mask and the final models of the seasonal livestock distribution was shown in Table 1, and the full list of data 
involved in the whole modeling process was provided in Table S1.

Livestock and pasture data.  County-level livestock census data were collected from statistical yearbooks of the 
study area, including six-provincial administrative regions: the Tibet Autonomous Region, Qinghai Province, 
Gansu Province, the Xinjiang Autonomous Region, Sichuan Province, and Yunnan Province (https://kns.cnki.
net/kns8?dbcode=CYFD). These yearbooks provided the 2020 year-end number of cattle and sheep, except 
for Sichuan and Qinghai (year-end data of 2019). As the interannual variation of total livestock numbers was 
quite modest (coefficient of variation: 0.017) during 2015–2020 in the QTP, the difference was negligible for our 
modeling purposes. In total, livestock number data were available for 214 counties, among which data from 164 
pastoral and agro-pastoral counties were used in the modeling efforts. The remaining 50 counties were identified 
as agricultural counties, mostly located along the eastern borders of the QTP. In these counties, livestock are 
mostly kept on livestock farms as opposed to open-air grazing, and their distribution could hardly be modeled 
with the DA approach.

Livestock data at a lower administrative level, the township level, was acquired for external model validation 
across different spatial scales. Census data of 36 towns in the Ngari Prefecture of the Tibet Autonomous Region 
was obtained from Ngari Agriculture and Animal Husbandry Bureau (https://nm.al.gov.cn/). Census data of 60 
towns in Qinghai province were collected from the Agriculture and Animal Husbandry Bureau of Huangyuan 
County, Henan County, Maqin County, Tongde County, Zeku County, Gonghe County, Gande County, and 
Haiyan County (http://nynct.qinghai.gov.cn/). The insured cattle data of 654 towns and insured sheep data 
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of 434 towns for the Tibet Autonomous Region in 2020 were obtained from the Tibet Branch of the People’s 
Insurance Company of China Property and Casualty (https://property.picc.com/cx_gywm/jgwd/).

The location of seasonal pasture of Qinghai Province was obtained from the Provincial Forestry and 
Grassland Administration (http://lcj.qinghai.gov.cn/). The data was a part of the National Grassland Survey 
System operated by local survey stations affiliated to the Provincial Forestry and Grassland Administration.  
In total, 1365 grassland survey sample locations, with usage labels of “cold-season pasture” or “warm-season 
pasture” were obtained. For the Tibet Autonomous Region, the division maps of warm/cold-season pastures 
of 48 townships were obtained from Zhada, Geji, Jilong, and Dingjie County Forestry and Grassland Bureaus 

Fig. 1  Framework of mapping livestock distributions on the Qinghai-Tibet Plateau.
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(Fig. 2). Those distribution maps were digitalized, and converted into 1 km grids. Each grid was used later as a 
sample point in the training of the seasonal pasture classification model.

Data for generating suitable pasture mask.  The global land cover data offering 30 m-resolution land cover types 
was obtained from National Geomatics Center of China35. The Vegetation Map of the People’s Republic of China36, 
derived from a national ground-survey, gives polygon-based 11 vegetation type groupings, 55 vegetation types, 
and 960 vegetation groups and subgroups in China.

To generate a valid pasture boundary, we have also obtained the boundaries of National Nature Reserves 
from National Nature Reserve Boundary Data published in the Resource and Environment Science and Data 
Center, Chinese Academy of Science (https://www.resdc.cn/data.aspx?DATAID=272). It included 22 National 
Nature Reserves on the QTP. The boundary of grazing ban regions was collected from the article Reconsidering 
the efficiency of grazing exclusion using fences on the Tibetan Plateau37, including the area of the fence(Fig. 2). 
These regions are banned for livestock grazing.

Data for preparing random forest model predictors.  The seasonal distribution of livestock is critically linked to 
the abundance of food sources, environmental stress, and herder activity. In light of this, topography, climate, 
vegetation, snow, and socioeconomic factors were all considered in preparing predictors.

Topography is the macro-controlling factor of other elements on the QTP, and digital elevation model 
(DEM) was used. Climate is a key factor in determining grassland types and productivity on the QTP and also 
includes climate harshness to grazing livestock. Monthly near-surface temperature and precipitation, and winter 
snow were all considered. Besides, soil moisture and evapotranspiration were also considered in training but not 
included in the final model. For vegetation, normalized difference vegetation index (NDVI) was used to denote 
vegetation productivity, and grassland type (the proportion of each major vegetation type, “Alpine Steppe”, 
“Alpine Meadow”, “Subalpine Shrub”, “Temperate Desert” and “Temperate Meadow”) was derived from the 
Vegetation Map of the People’s Republic of China36. Other information such as vegetation productivity denoted 
by gross primary production (GPP), net primary productivity (NPP) and vegetation coverage were considered 
but not included in the final model. The socioeconomic data offered population distribution, gross domestic 
production distribution (GDP), nighttime lights (NTL), and travel time to cities (Travel time), and only travel 
time was used in the final model.

Preparation of a pasture mask suitable for livestock grazing.  Land cover types suitable for grazing 
livestock in the QTP included grassland38, shrubland39, and wetland40. Correspondingly, the suitable mask was 
generated by fusing two datasets: the global land cover data (GlobeLand30) (Fig. 3a), and the Vegetation Map of 
the People’s Republic of China36 (Fig. 3b). The two datasets are in excellent agreement on the distribution of grass-
land, with correlation coefficients of 0.998, if summarized at the county level. In the fusion process, GlobeLand30 
was used as the base mask, and the vegetation type information contained in the Vegetation Map was allocated to 
each 30-m pixel. Then, only the pixels with land cover types of grassland, shrubland, and wetland were kept in the 

Data type Source Dataset Predictor (Unit) Description

Modeling Use

Seasonal 
pasture

Livestock 
number

Mask data The 30-meter resolution global 
land cover data product35 Land cover types Grassland/ Shrubland/ Wetland

Topography data The SRTM 1 Arc-Second Global 
DEM data61 DEM (m) Digital elevation model ✓ ✓

Climate data
Monthly 1-km temperature and 
precipitation dataset for China 
(2000–2017)62

Tmp (°C) Annual average temperature ✓

GStem (°C) Average growing-season (April–Oct) 
temperature ✓

Wtem (°C) Average snow-season (Nov–March) 
temperature ✓

GSpre (mm) Average growing-season (April–Oct) 
total precipitation ✓ ✓

Wpre (mm) Average snow-season (Nov–March) 
total precipitation ✓ ✓

Snow data
Snow cover dataset based on 
multi-source remote sensing 
products blended on the Qinghai-
Tibet Plateau (2000–2018)63

Snow cover days 
(day)

Average snow-season (Nov–March) 
number of snow-cover-days ✓

Vegetation data

MOD13Q1 - MODIS/Terra 
Vegetation Indices 16-Day L3 
Global 250 m SIN Grid (2020)64

NDVI Annual average maximum NDVI ✓ ✓

Vegetation map of the People’s 
Republic of China (1:1,000,000)36

Grassland type 
ratio (%)

The proportion of the major vegetation 
types ✓

Socio-economy data 1-km Global map of travel time to 
cities for 201549

Travel time 
(hour)

Travel time to cities of at least 
50,000 inhabitants with the shortest 
associated journey

✓ ✓

Table 1.  List of mask datasets and final datasets to prepare model predictors in random forest modeling.
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mask. In addition, there are regions that livestock grazing is prohibited, according to Chinese policy, including 
the core zones of National Nature Reserves (https://www.resdc.cn/data.aspx?DATAID=272), and grazing ban 
regions37 (Fig. 4). These regions were excluded from the mask.

Random forest classification modeling for predicting seasonal pastures.  A random forest classifi-
cation (RFC) model was used to derive the relationship between the binary response variable (warm-season pas-
tures vs. cold-season pastures) and predictors. The model could then classify each pixel on the pasture mask into 
each of the warm/cold-season pastures. The binary response variable took a value of “1” if the underlying location 
was used as warm-season pastures, and “0” otherwise. In total, there are 69,409 pixels in Tibet Autonomous 
Region and 1,365 stations in Qinghai Province.

The selection of predictors has benefited from the interview of investigations at local Agriculture and Animal 
Husbandry Administrations, and conversations with local herder representatives during field work in 2021 and 
2022. According to the interview, (1) warm-season pastures are typically situated at higher elevations, and fur-
ther away from the herder’s residences, mostly on remote mountain slopes. By contrast, cold-season pastures 
are at relatively lower elevations, warmer in winter times, and closer to herders’ settlements, i.e., in valleys.  
(2) Herders generally move to warm-season pastures for grazing during the forage growing season (April–Oct) 
and then start to transfer to cold-season pastures for grazing around the beginning of October. (3) Due to the 
seasonal pasture contracting policy, each herder household has been allocated certain areas of warm-season and 
cold-season pastures, which might not be adjacent to each other, but must be within a township administrative 
boundary.

Based on the above information, predictors were prepared in following manners.
(1) As the distribution of seasonal pastures is closely related to topography, climate, forage growth, and distance 

to towns, our predictors included DEM, growing season (April–Oct) precipitation and temperature (GSpre, GStem), 
snow-season (Nov–March of the subsequent year) precipitation and temperature (Wpre, Wtem), NDVI, and the travel 
time to the nearest cities (Travel time) (Table 1). All predictors were resampled to 500 m.

Fig. 2  The distribution of seasonal livestock pastures sampled, the grazing ban regions, and the core zones of 
National Nature Reserves.

Fig. 3  GlobeLand30 land cover classes in Qinghai-Tibet Plateau (a); Distribution of grassland vegetation types 
in Qinghai-Tibet Plateau (b).
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(2) All the predictors were turned into relative values within each township boundary (1), as the allocation of 
seasonal pastures are totally within towns:

= −RV X X X( ) / (1)ij i i

Where RV represents the relative value of the predictor variable, Xij represents the raw value of the predictor 
variable in j th grid in the i th township, and Xi is the township average value.

The RFC model was fitted by sklearn.Ensemble.RandomForestRegressor toolkit41 in Python 3.8.8. The details 
of the training process were described in the codefile attached. A ten-fold internal cross-validation was applied 
to the raster predictors to estimate a pasture class for each pixel. The ten-fold internal cross-validation was 
performed by the sklearn.model_selection.StratifiedKFold toolkit41 in Python 3.8.8. The mode of the ten antici-
pated values for each pixel was used as the result of seasonal pasture classification. The area under the receiver 
operating characteristic (ROC) curve (AUC) was used to evaluate the performance of our model42. The AUC 
score ranges from 0 to 1, and accordingly prediction accuracy can be classified as excellent (0.9–1), very good 
(0.8–0.9), good (0.7–0.8), average (0.6–0.7), and poor (0.5–0.6).

Random forest modeling for predicting livestock density distribution.  The livestock density, 
equivalent to livestock number divided by the area of masked suitable lands for each county, was used as the 
response variable. Year-end numbers of sheep and cattle were both turned into standard sheep units (SSUs), and 
therefore the unit of the response variable was SSUs/km2. One cattle was turned into five SSUs according to the 
Implementation Plan of Subsidy and Incentive Policies for Establishing Grassland Ecological Protection in Tibet 
Autonomous Region (2016–2020) (http://nynct.xizang.gov.cn/).

The relationship between the natural logarithm of the response variable (livestock density) and various pre-
dictors was derived using the random forest model43. All predictors were resampled to 500 m. Zonal statistics, 
using the county polygon and the pasture mask (the warm-season pasture and the cold-season pasture together), 
were computed to summarize all variables to the county level for random forest modeling purposes. For each 
polygon, the average values of variables were taken.

The model training process tried to select a small group of predictors that enables explanatory and predicting 
power44. Before fitting the model, correlation analysis was conducted between all potential predictors (Fig. S2). 
Although the random forest algorithm is believed to be capable of handling multiple collinearity issues, we still 
cautiously tried to avoid highly correlated (|r| > 0.745,46) predictors to enter the model simultaneously.

The RF model was fitted by sklearn.Ensemble.RandomForestRegressor toolkit41 in Python 3.8.8, and the 
details of the fitting could be found in the code file. A ten-fold internal cross-validation was then applied to the 
raster predictors to estimate a density value for each pixel. The ten-fold internal cross-validation was performed 
by the sklearn.model_selection.StratifiedKFold toolkit41 in Python 3.8.8. The ten predicted values were used to 
estimate the prediction means in each pixel. The error metrics were R2, mean square error (MSE), and mean 
absolute error (MAE). A higher R2, lower RMSE, and lower MAE indicate better fits between the predicted and 
observed values. The coefficient of variation (CV), the ratio of the standard deviation to the arithmetic mean, 
is employed to estimate the variability of the ten-fold internal cross-validation of each RF model47. A high CV 
value indicates a large variability of livestock density among the ten-fold internal cross-validation. On the con-
trary, it embodies a relatively stable livestock density.

To exclude less important predictors, we reported the cross-validation performance of models after removing 
each predictor with the least importance44, together with the partial dependence plots (PDPs)48 (Fig S4–S6).  
In the final model (Table 1), DEM reflected the topographic control effect. Annual average temperature (Tmp) 
and snow-season (Nov–March of the subsequent year) total precipitation (Wpre) reflects the climatological dif-
ference. The snow threat was denoted by the multi-annual average number of snow-cover-days. For the vegetation 

Fig. 4  Pasture mask for livestock grazing in Qinghai-Tibet Plateau. Region A and B are two local study areas 
selected to display the details of livestock distribution in these two local study areas.
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factors, NDVI was included to indicate average grassland productivity. Travel time was used to express accessibil-
ity in the RF model because it is easily interpretable and is known to be a predictive metric in research domains 
such as conservation, food security, trade, and population health49. In RF training, we also considered using the 
full sample and two sub-regional samples for Tibet and Qinghai to test model robustness against sample selection.

Filename Description File type
Coordinate Reference 
System

Spatial 
resolution

QTP_Da_2020_Livestock_Warm-season.tif
Livestock numbers of 
dasymetric product on 
warm-season pastures

GeoTIFF GCS_WGS_1984 15 arc-second

QTP_Da_2020_Cattle_Warm-season.tif
Cattle numbers of 
dasymetric product on 
warm-season pastures

GeoTIFF GCS_WGS_1984 15 arc-second

QTP_Da_2020_Sheep_Warm-season.tif
Sheep numbers of 
dasymetric product on 
warm-season pastures

GeoTIFF GCS_WGS_1984 15 arc-second

QTP_Da_2020_Livestock_Cold-season.tif
Livestock numbers of 
dasymetric product on 
cold-season pastures

GeoTIFF GCS_WGS_1984 15 arc-second

QTP_Da_2020_Cattle_Cold-season.tif
Cattle numbers of 
dasymetric product on 
cold-season pastures

GeoTIFF GCS_WGS_1984 15 arc-second

QTP_Da_2020_Sheep_Cold-season.tif
Sheep numbers of 
dasymetric product on 
cold-season pastures

GeoTIFF GCS_WGS_1984 15 arc-second

Table 2.  Information of all species distribution maps provided in this study.

Filename Description File type
Coordinate 
Reference System

Spatial 
resolution

QTP_CV_Livestock.tif Coefficient of variation (CV) of livestock density model GeoTIFF GCS_WGS_1984 15 arc-second

QTP_CV_Cattle.tif Coefficient of variation (CV) of cattle density model GeoTIFF GCS_WGS_1984 15 arc-second

QTP_CV_Sheep.tif Coefficient of variation (CV) of sheep density model GeoTIFF GCS_WGS_1984 15 arc-second

Table 3.  Information on coefficient of variation (CV) of livestock, cattle, and sheep density model provided in 
this study.

Filename Description Unit File type
Coordinate 
Reference System Time resolution

QTP_YB_Cattle.shp Cattle numbers at the county-level Ten thousand head Shapefile GCS_WGS_1984 2020 (2019 for Sichuan 
and Qinghai)

QTP_YB_Sheep.shp Sheep numbers at the county-level Ten thousand head Shapefile GCS_WGS_1984 2020 (2019 for Sichuan 
and Qinghai)

Table 4.  Information on the number of livestock at the county level in the yearbook provided in this study.

Fig. 5  Model-derived distribution of seasonal livestock pastures on the QTP (grid size: 500 m).
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Disaggregation through dasymetric mapping and external cross-scale validation.  Dasymetric 
(DA) mapping is a common method for creating gridded population products, in which re-distributes census 
counts bounded at an administrative level onto higher-resolution spatial units50,51. The raster data of selected 
predictors were used to force the final RF model to predict the livestock/sheep/cattle distribution. Then the aver-
age density values, predicted by the final RF model, were turned into pixel-based weights in the pasture mask  
(the warm-season pasture and the cold-season pasture) of each county-level polygon to disaggregate county-level 
total numbers into pixel values. It was assumed that, livestock only distributed on cold-season pastures during 
the cold-season, and vice versa. For each polygon, the number of livestock per county-level polygon was multi-
plied by the ratio of pixel weights to the sum of pixel weights in either of the cold-season or warm-season masks.  
The final distribution maps of livestock numbers on the QTP were then created.

Fig. 6  The spatial distribution of livestock numbers on the QTP. (a–c): The spatial distribution of livestock, 
cattle, and sheep on the warm-season pasture; (d–f): the spatial distribution of livestock, cattle, and sheep on the 
cold-season pasture (grid size: 500 m).
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Dasymetric mapping results were aggregated by township-level polygons and compared with two sets of 
township-level census data for external cross-scale validation as a final measure of the data accuracy. Again, 
R2 and mean absolute error (MAE) were used as error metrics. As the DA results separated cold-season and 
warm-season, the external cross-scale validation process also applied to the result of both seasons.

Data Records
Data derived with the above methods, containing the warm/cold-season spatial distribution of livestock, cattle, 
and sheep numbers with a spatial resolution of 15 arc-seconds (approximately 500 m), were provided in Geotiff 
files on the Zenodo (Link: https://doi.org/10.5281/zenodo.7692064)52. The data has a spatial extent of 73.50°E 
to 104.67°E and 25.99°N to 39.83°N, with 4800 rows and 2130 columns (Table 2). The coefficient of variation 
(CV) of livestock, cattle, and sheep density model (Table 3) and the original county statistical yearbook data in 
shapefiles by species are also provided (Table 4).

Cold/warm-season pastures on the QTP.  The RFC model predicted the distribution of cold/
warm-season pastures on the QTP (Fig. 5). The ten-fold cross-validation accuracy result of the RFC model had 
an average AUC of 0.98 (Fig. S1), which demonstrates that the model has an excellent ability to delineate seasonal 
pastures. As shown in Fig. 5, warm-season pastures are generally distributed at higher altitudes and farther away 
from residential settlements than cold-season pastures, which is consistent with the results of the field interview.

Livestock distribution mapping illustration.  The spatial distributions of livestock numbers in cold/
warm-season pastures on the QTP are illustrated in Fig. 6. The number of livestock in the seasonal pasture on 
the QTP decreases from southeast to northwest, with the highest number of livestock to the junction east of 
Qaidam Basin, north of Bayan Har Mountain, and west of Zoige Platea, where the number of livestock per grid 
cell (500 m) can reach more than 100 SSUs (Fig. 6). Meanwhile, livestock is densely distributed in the vast grass-
lands in the source regions of the Yarlung Zangbo River, Nyangqu River, and Lhasa River Region (also known as 
the YNL River Region53), the southern slope of Tanggula Mountain, with 100 to 200 SSUs in each grid. Livestock 
were sparsely distributed in the Qiangtang Alpine Grassland, essentially having less than 20 SSUs per grid.  
The number distribution of cattle in seasonal pastures showed a more obvious trend of gradually decreasing from 
the southeast to the northwest of the QTP. The highest cattle density in the southeast has more than 200 SSUs of 
cattle per grid, whereas the Qiangtang Plateau and the area around the Qaidam Basin have less than five SSUs of 
cattle per grid. The spatial distribution of sheep in the seasonal pasture is slightly different from the preceding 

Fig. 7  The land cover classes, grassland vegetation types, and seasonal spatial distributions of livestock in the 
local region A (grid size: 500 m).
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two. Its distribution is primarily determined by terrain (Fig. S3). There are more sheep on each grid in the YNL 
River Region and the source regions of the three great rivers.

Maps focusing on the local regions of Tibet and Qinghai Province was shown in Figs. 7 and 8, further reveal-
ing the spatial heterogeneity of livestock distribution. During the warm-season, livestock are typically found at 
higher elevations as opposed to lower elevations during the cold-season. Grassland vegetation plays a dominant 
role in the distribution of livestock and cattle, while topography is the main factor determining the distribution 
of sheep (Fig. S3). More livestock is distributed in places close to cultivated land and water sources, where the 
terrain is relatively flat and the water is relatively abundant. More livestock are distributed on the alpine meadow 
than on the alpine steppe when the terrain conditions are similar.

Technical Validation
Model internal cross-validation.  The R2 of the internal cross-validation metric of the random forest (RF) 
model based on all pasture masks is between 0.68 and 0.83, indicating a reasonable goodness-of-fit (Table 5). 
Overall, the goodness-of-fit for sheep is better than that for cattle. The Qinghai sample results of sheep were better 
than the full sample (QTP), while the Tibet sample results of cattle were better than the full sample (QTP).

As there are still 46 counties outside the Tibet Autonomous Region and Qinghai Province, results derived 
from the full sample of 164 counties were used for final prediction purposes. Figure 9 depicts the relationship 

Fig. 8  Similar to Fig. 7, but for region B.

Region Response factor Pasture mask N R2 MAE MSE

QTP

Ln(Livestock density) All pastures 164 0.700 0.510 0.250

Ln(Cattle density) All pastures 164 0.706 0.612 0.565

Ln(Sheep density) All pastures 164 0.742 0.783 0.515

Tibet

Ln(Livestock density) All pastures 74 0.684 0.385 0.249

Ln(Cattle density) All pastures 74 0.809 0.401 0.274

Ln(Sheep density) All pastures 74 0.712 0.646 0.899

Qinghai

Ln(Livestock density) All pastures 44 0.709 0.448 0.447

Ln(Cattle density) All pastures 44 0.678 0.635 0.685

Ln(Sheep density) All pastures 44 0.830 0.519 0.467

Table 5.  Ten-fold cross-validation of livestock densities estimation in different regions (N represents the 
number of training samples (counties)).
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between the predicted and observed livestock densities with respect to its natural logarithm, with each data 
point representing a county in the QTP.

External cross-scale validation.  External cross-scale validations were conducted between the dasymetric 
mapping results and township census data (Fig. 10) and township insured data (Fig. 11). All sets of validation 
results achieved reasonably high goodness-of-fit in terms of external cross-validation. Overall, the validation 
results used township-level census data are better than the Tibet insured data’s validation results. Among them, 
the sheep validation result using township-level census data on the cold-season pasture can reach 0.703 with a 
MAE of 21.35, while the validation result of livestock on the cold-season pasture using the township-level insured 
data can reach 0.673 with a MAE of 45.68.

Fig. 9  Validation of livestock densities based on ten-fold cross-validation.

Fig. 10  Validation results of livestock numbers between the dasymetric mapping results and township census 
data: (a–c): validation results of livestock, cattle, and sheep numbers on the warm-season pasture; (b–f): validation 
results of livestock, cattle, and sheep numbers on the cold-season pasture.
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Usage Notes
The dataset generated one of the first seasonal pasture mask and provided correspondingly seasonal livestock 
distribution information of the QTP at the resolution of 500 m in 2020. These data sets have a wide array of 
potential applications in analyzing the interplay between livestock, environment, and the herder community.  
For instance, the dataset can be used to study the potential impact of climate change on livestock, enhancing a 
better understanding of sustainable livestock systems54,55. It could also be used for the risk assessment of natural 
hazards and zoonotic disease emergence56–58. The seasonal component is especially valuable when studying sea-
sonal environmental stresses, i.e., snow disaster in the winter44,59, or heat stress during the summer55,60.

There are several notes for the potential users of this data. (1) We disaggregated the county-level census 
livestock number at the pixel level through DA mapping, and the values in each pixel reflected the livestock 
numbers. The users can convert to livestock density by dividing their numbers by the area of each pixel.  
(2) Our data only provides the spatial distribution of open-air grazing livestock. The spatial distribution for 
cattle and sheep in agricultural counties kept in livestock farms and fed with fodders and agricultural byprod-
ucts is much less subjected to the constraint of grassland vegetation and climate and, therefore, cannot be 
reasonably predicted with the DA mapping approach. (3) Users can choose the appropriate version accord-
ing to their focus. For example, when studying the impact of snow hazard on livestock, the cold-season 
livestock distribution can be used as the base exposure. When studying the severity of heat stress on live-
stock in the summer, the warm-season livestock distribution could be used instead. Last but not the least,  
it is also worth noting that the total numbers of livestock on warm-season pastures and cold-season pastures in 
this study are the same at the county-level, representing livestock inventories at the county level in 2020.

Although our results have substantially improved upon the mapping of livestock on the QTP by introduc-
ing warm/cold-season difference and improving accuracy and spatial resolution, there are still uncertainties 
in the study results. (1) As the third pole of the world, QTP’s gridded input data, including climate, vegetation, 
etc. are with greater uncertainty than other regions due to the lack of ground-observation, particularly in its 
northwest parts. But these gridded data are the best product we could ever obtain at this stage, and have also 
been widely used in other studies focusing the QTP. (2) Much of our input data had a coarse resolution of 
1 km, and the resampling process could have brought further uncertainty. Fortunately, the key drivers of live-
stock density difference were DEM and NDVI, which had spatial resolutions of 30 m and 250 m, respectively.  
(3) Detailed township-level census data only covered Qinghai and Tibet, but data information for other prov-
inces, i.e., Sichuan, Gansu, and Xinjiang were absent. Fortunately, Qinghai and Tibet covered 79% grassland area 
of the QTP, and therefore the uncertainty of validating the model was alleviated. (4) In training the livestock 
distribution model, we used the county-mean of each predictor, for county-level statistics is the spatially finest 
official livestock number data available. Consequently, such statistical relationship derived could suffer from 

Fig. 11  Similar to Fig. 10, but for township insured data.
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uncertainty should the value of predictors vary largely within counties. Our pasture mask helped reduce hetero-
geneity by excluding non-pasture pixels, and the within-county standard deviations of predictors were relatively 
small as compared to their corresponding means (Table S2). (5) Random forest model derived different runs 
when fed with random seeds. We used the coefficient of variation (CV) of density estimates derived from the 
10-fold cross-validation process to denote the agreement/disagreement of model runs (Fig. S7). The users could 
judge the quality of the model results based on the CV layer.

Code availability
The code in this study is fully operational under Python 3.8.8, and the key packages were contained in the sklearn.
Ensemble.RandomForestRegressor and the sklearn.model_selection.StratifiedKFold toolkit41 in Python 3.8.8. 
The code can be found on GitHub (https://github.com/NingZhan1978/High-resolution-livestock-seasonal-
distribution-data-on-the-Qinghai-Tibet-Plateau-in-2020.git).
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