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A benchmark for machine-
learning based non-invasive 
blood pressure estimation using 
photoplethysmogram
Sergio González1,2 ✉, Wan-Ting Hsieh1,2 & Trista Pei-Chun Chen1

Blood Pressure (BP) is an important cardiovascular health indicator. BP is usually monitored non-
invasively with a cuff-based device, which can be bulky and inconvenient. Thus, continuous and 
portable BP monitoring devices, such as those based on a photoplethysmography (PPG) waveform, 
are desirable. In particular, Machine Learning (ML) based BP estimation approaches have gained 
considerable attention as they have the potential to estimate intermittent or continuous BP with only 
a single PPG measurement. Over the last few years, many ML-based BP estimation approaches have 
been proposed with no agreement on their modeling methodology. To ease the model comparison, we 
designed a benchmark with four open datasets with shared preprocessing, the right validation strategy 
avoiding information shift and leak, and standard evaluation metrics. We also adapted Mean Absolute 
Scaled Error (MASE) to improve the interpretability of model evaluation, especially across different BP 
datasets. The proposed benchmark comes with open datasets and codes. We showcase its effectiveness 
by comparing 11 ML-based approaches of three different categories.

Introduction
Hypertension increases the risk of stroke, renal dysfunction, and other diseases, making it a primary cause of 
millions of deaths in the United States1. The frequent absence of symptoms leads to underdiagnosis while the 
condition can be controlled and treated once high blood pressure is identified2. Blood Pressure (BP) monitoring 
devices are categorized into two types depending on the usage scenarios: invasive and non-invasive devices. The 
invasive BP monitoring approach—even though a gold standard—requires arterial cannulation and can lead 
to serious complications. Whereas, non-invasive BP monitoring devices such as sphygmomanometers cannot 
monitor BP continuously since it is unrealistic to constantly perform cuff inflations and deflations. Alternatively, 
photoplethysmography (PPG), a small and portable optical device that continuously measures volumetric var-
iations of blood circulation, provides a potential alternative to not only monitor the BP non-invasively but also 
to monitor it continuously.

PPG devices have long been used to measure heart rate and blood oxygen saturation levels3,4 due to their 
affordable price and portability. Many studies have shown interest in extending the use of PPG to BP monitor-
ing5–7. Among them, Pulse Transit Time (PTT) based methods5, which require two PPG sensors, are consid-
ered classic with their simple algebraic inverse relation between PTT and BP. However, these methods require 
subject-specific calibration of the two waveforms from the two sensors. Single PPG approaches, on the other 
hand, are desirable as they would not require calibration. In recent years, Machine Learning (ML) and Deep 
Learning (DL) based BP estimation using the PPG has been growing in popularity7–9. Moreover, as PPG and 
Arterial Blood Pressure (ABP) are both continuous waveforms, it is possible to leverage the morphological sim-
ilarity between them to estimate continuous BP10.

To assess the rise of many ML based BP estimation approaches using PPG, a benchmark is needed. Common 
caveats when comparing different approaches include using a dataset with specific characteristics or data dis-
tribution; differing pre-processing steps; invalid training and validation set splits11,12; and incomparable results 
due to different evaluation metrics7,13. In this paper, we propose a benchmark to properly compare different 
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data-driven ML based BP estimation approaches as illustrated in Fig. 1. Such a benchmark is proposed with 
representative categories of ML & DL models in mind and works with four standard datasets14: Sensors12, UCI15, 
BCG16, and PPGBP17. First, we collect four publicly available datasets. They contain a large variety of data per 
subject, BP distributions, and data continuity characteristics i.e. recorded continuously or at different periods. 
Next, we streamline the preprocessing steps. Then we propose a validation strategy that not only preserves the 
data distribution among training, validation, and test sets but avoids subject information leaks among them. 
Furthermore, the ML pipeline in this benchmark is general enough to evaluate different categories of ML mod-
els to estimate intermittent or continuous forms of BP. We include three categories of algorithms according to 
the types of input and output: Feature-to-Label (Feat2Lab) includes models that take PPG features as input to 
generate discrete BP values, or labels, as output; Signal-to-Label (Sig2Lab) includes models that take continu-
ous PPG waveforms as input to generate discrete BP values as output; and Signal-to-Signal (Sig2Sig) includes 
models that generate continuous ABP signal from continuous PPG signal. Lastly, to quantify the performance of 
different ML models, proper evaluation metrics are needed. Besides the BP standard metrics, we propose using 
Mean Absolute Scaled Error (MASE) as the BP evaluation measure. MASE was originally designed to assess the 
accuracy of forecasts with desirable properties, such as scale invariance and interpretability18. In BP estimation, 
MASE eases model comparison across different datasets, regardless of the BP range.

Our main contribution in this work is a benchmark for researchers to fairly compare different ML based BP 
estimation approaches. In our experiments, we show an extensive comparison of 11 state-of-the-art models of 
the aforementioned categories on four different datasets. For the family Feat2Lab, we consider the most popu-
lar PPG features6,7,19 and five successful ML algorithms. As for Sig2Lab, we include three DL automatic feature 
extractors of the PPG state-of-the-art11,20,21. While for Sig2Sig, we examine another three recently published 
approaches for PPG-to-ABP translation12,22,23. We first compare the models within each category and among the 
best of each category. Then, we analyze the most useful PPG’s features selected by Feat2Lab algorithms. Besides, 
we propose a proper validation strategy considering skewed BP distribution and subject information leaking, 
and we empirically show the impact of overlooking these considerations. Furthermore, we adapt MASE to best 
evaluate BP models among different datasets. We also share the processed datasets and their partitions14 and 
codes of data preparation and of the different algorithms with this paper. Given the benchmark, we share our 
insights on ML based BP estimation approaches, and hope to help propel the development of non-invasive BP 
estimation approaches forward.

Related work
Since the 1980s, protocols and standards to validate BP measurement devices have been released. They have 
provided guidelines for subject requirements, blood pressure distributions, and validation metrics. In terms of 
subject requirements, a minimum of 85 subjects are needed24–26. As to blood pressure distribution, the European 
society of hypertension has defined accepted ranges of BP in subjects27 while other standards bodies24,25,28 have 
defined minimum numbers for samples within different BP ranges. As to validation metrics, most protocols 
and standards use Mean Error (ME) and Standard Deviation (SD) for evaluation24,25,27,28. In 2014, the IEEE 
established the standard for wearable cuffless BP devices, which first required reporting Mean Absolute Error 
(MAE) in the validation result26. Despite the minor differences between the different standards and protocols, 

Fig. 1  The flowchart of our proposed benchmark.
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the validation procedure of BP monitoring devices is well-defined. However, none of these standards apply for 
validation and comparison of the ML based algorithms as they involve learning data. Standards aim to validate 
existing approaches, whether or not ML based, to ensure the requirements of their claimed intended use. That is, 
once an ML algorithm is developed and properly evaluated with our proposed benchmark, it must still undergo 
standard validation afterward to be certified.

Recently, there have been efforts in comparing different ML based BP estimation approaches. Maqsood et al.6  
analyzed handcrafted features from the PPG signal and concluded that time-domain features were more accu-
rate than frequency-domain features. Rather than using the PPG only, in another paper by Maqsood et al.8, the 
authors reviewed DL methods that used PPG and Electrocardiogram (ECG) waveforms, which is outside the 
scope of this paper, as this paper focuses on using PPG signals only. Furthermore, the conclusion that nonlinear 
models outperformed linear models drawn by Hajj et al.7 might be limited as it was conducted on specific data-
sets only. Similarly, papers by Mahmud et al.29, Athaya et al.22, and Aguirre et al.12 showed comparisons between 
their approaches and others on selected datasets only.

The proposed benchmark in this paper covers a broad variety of datasets with various characteristics so that 
the conclusions can be more general. The benchmark is also not limited to either handcrafted or automatically 
extracted features. The validation scheme and evaluation metrics are tailored to correctly compare data-driven 
ML methods. The datasets and code to prepare the data and validate the results are provided. Open datasets and 
code enable this benchmark to provide fairly comparable results and allow for reproducibility. Furthermore, it is 
also extensible by adding new models and new evaluation metrics.

Results
The proposed standard benchmark is used to compare 11 different state-of-the-art algorithms of three catego-
ries, namely, Feat2Lab, Sig2Lab, and Sig2Sig. Results are shown on four publicly available datasets with different 
characteristics. First, we present the datasets and briefly describe the essential concepts before the following 
analysis. Then, we analyze the performance of the algorithms within each category and across them. We exam-
ine the most relevant features selected by the Feat2Lab algorithms. Finally, we stress the importance of a proper 
data-splitting strategy with the results of different validation schemes.

Data characteristics.  This study uses four different datasets14 briefly summarized in Table 1. The table 
shows the dataset characteristics, such as data amount before and after preprocessing, demographic information, 
the continuity property among segments, and the data distribution.

Sensors dataset12,30 is a subset of the MIMIC-III, which includes records of 1195 patients in the intensive 
care units. PPG and ABP waveforms were collected using Philips CareVue Clinical Information System and 
iMDsoft MetaVision ICU. As a particularity, the authors kept only two 15 s segments spaced 5 min apart per 
record. The Sensors dataset has a medium-to-large number of segments and subjects with a high sample varia-
bility, a decent ratio of segments per subject, and a discrete data segmentation.

UCI dataset, also known as Cuff-Less Blood Pressure Estimation Dataset15,31 is a subset of the MIMIC-II 
Waveform Dataset. MIMIC-II and MIMIC-III come from the same underlying sets of records, sharing conditions, 
hospitals, and collection devices. However, the Sensors and UCI datasets are different subsets, so they are unlikely 
to share records. Furthermore, the UCI dataset includes complete records and no limitation of data per record. 
Originally UCI dataset was released in four different parts without subject information. After preprocessing,  
it is the biggest dataset with a considerably higher ratio of continuous segments per record.

Dataset 
Name Original Amount Processed Amount

Demography 
(%Male & Age)

Sampling 
Rate (Hz)

Segment 
Length (s)

Segment 
Continuity

Validation 
Strategy

Data Distribution 
(SBP/DBP)

Sensors12,30

Subject: 1196
Record: 5821
Segment: 11642
Duration: ~16 hours

Subject: 1195
Record: 5726
Segment: 11102
Duration: ~15 hours
Seg./Sub.: ~9

59.8% 57.1 ± 14.2 125 5 Discrete 5-fold CV
Min.: 81.84/50.07
Max.: 198.66/116.64
Mean: 134.36/65.37
SD: 21.78/10.51

UCI15,31

Subject: unknown
Record: 11844
Segment: 518036
Duration: ~719 hours

Subject: unknown
Record: 10793
Segment: 410596
Duration: ~570 hours
Seg./Rec.: ~38

unknown 125 5 Continuous HOO
Min.: 64.45/50.00
Max.: 199.66/102.18
Mean: 131.57/66.79
SD: 11.16/10.48

BCG16,32

Subject: 40
Record: 40
Segment: 3268
Duration: ~5 hours

Subject: 40
Record: 40
Segment: 3063
Duration: ~4 hours
Seg./Sub.: ~76

44.5% 34.2 ± 14.5 1000 5 Continuous 5-fold CV
Min.: 71.75/44.47
Max.: 191.07/100.67
Mean: 120.99/67.23
SD: 15.29/9.30

PPGBP17,33

Subject: 219
Record: 219
Segment: 657
Duration: < 1 hour

Subject: 218
Record: 218
Segment: 619
Duration: < 1 hour
Seg./Sub.: ~3

46.9% 56.9 ± 15.8 1000 2.1 Discrete 5-fold CV
Min.: 80.00/42.00
Max.: 182.00/107.00
Mean: 128.02/71.91
SD: 20.50/11.20

Table 1.  The table summarizes four datasets used in this study. It shows the amount of original (downloaded) 
data and processed data, demographic information (sex and age), the sampling rate and segment length of each 
dataset, the continuity property among segments, the applied validation strategy, and the statistics of Systolic 
Blood Pressure (SBP) and Diastolic Blood Pressure (DBP). Some abbreviations in the table: Subject (Sub.), 
Segment (Seg.).
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BCG dataset is the bed-based ballistocardiography dataset collected by Carlson et al.16,32. Signals were 
recorded from 40 subjects with one record per subject. Four subjects have some previous heart conditions, 
while the rest were healthy. The data collection was done under Kansas State University IRB protocol #9386, 
using Finapres Medical Systems Finometer PRO, for the continuous brachial blood pressure, and GE Datex 
CardioCap 5 for PPG. We resampled the original 1000 Hz signals at 125 Hz and re-scaled the BP signals by a fac-
tor of 100 mmHg/volt. BCG dataset is a small to medium-sized set with less data variation given its low number 
of subjects; its remarkably high ratio of segments per subject; and a narrower BP distribution.

PPGBP dataset17,33 involves 219 subjects with different cardiovascular diseases, such as hypertension and 
diabetes. After 10 minutes of rest, one BP reading was recorded per subject with the Omron HEM-7201 device, 
followed by three 2.1-second PPG segments with the SEP9AF-2 device. Thus, it is the smallest set in the number 
of segments (613) but with a relatively high number of subjects. The original sampling frequency of 1000 Hz was 
resampled at 125 Hz.

A benchmark for machine-learning based non-invasive blood pressure estimation using 
PPG.  Here, we briefly describe the main aspects of our benchmark to understand the following results.

Data preprocessing.  The four datasets have been preprocessed following the same procedure. First, PPG and 
ABP signals were aligned based on the maximum cross-correlation and segmented into 5-seconds chunks with-
out overlapping. Then, we remove distorted ABP segments from which it is impossible to identify cardiac cycles 
or that do not follow reasonable values of amplitudes (30–220 mmHg), pulse pressure (over 10 mmHg), and 
heart rate at rest (35–140 BPM). From each ABP segment, SBP and DBP labels were extracted by the median 
of the systolic peaks and the median of the onset and offsets of the cardiac cycles. Finally, the PPG signals have 
been removed by following the same criteria as in ABP; by eliminating additional distorted signals related to 
the standard deviation of their peaks and valleys; and by correcting the baseline wander using cubic spline 
interpolation.

ML Algorithms.  Our benchmark includes 11 different methods classified into three different categories: 
Feat2Lab, Sig2Lab, and Sig2Sig. Feat2Lab approaches rely on PPG handcrafted features to estimate BP labels. 
We have considered the most successful PPG features6,7,19, comprising time-based, frequency-based, and sta-
tistical features. We conducted feature selection based on the mean decrease of the Gini impurity achieved 
across tree-based ensembles independently trained for SBP and DBP. The features sorted by importance can 
be selected by a hyperparameter. The Feat2Lab models are classical and popular ML methods, such as Light 
Gradient Boosting Machine (LightGBM)34, Support Vector Regressor (SVR)35, Multi-Layer Perceptron (MLP)36, 
Adaptive Boosting (AdaBoost)37, and Random Forest (RF)38. Sig2Lab models directly learn from the PPG signal 
to output BP labels. Among the Sig2Lab approaches, ResNet11,39, SpectroResNet20, and MLP-BP21 were selected 
as representative algorithms. The SpectroResNet method consists of a ResNet-GRU architecture for the extrac-
tion of temporal and spectro-temporal information. MLP-BP adapted MLP-Mixer neural networks for BP esti-
mation. Sig2Sig approaches generate continuous ABP signal from continuous PPG signal. We have considered 
U-Net40, PPG2IABP12, and V-Net23 in this category. U-Net is the base architecture of several BP estimation 
approaches22,41,42. PPG2IABP12 proposed GRU encoder-decoder architecture with an attention mechanism to 
estimate an ABP’s mean cycle. When implementing previous works, the models that originally used ECG have 
been adapted to only use PPG. Besides, we are not using any subject calibration or PPG scaling.

Validation.  We have used 5-fold Cross-Validation (CV) for Sensors, BCG, and PPGBP datasets, while the 
Hold-One-Set-Out (HOO) strategy was used with UCI datasets. The original UCI dataset was released without 
subject identification. Due to this and its large number of samples, we decided to follow the HOO strategy. In 
our validation strategies, the data is not split into folds, as usual, with a uniform probability distribution, because 
it would lead to different examples of the same subject in different folds, i.e. information leakage, and there is a 
risk that one or more folds have few or no examples of underrepresented BP labels (very high or low BP values). 
To mitigate these potential issues, the data are split considering the subjects and following a stratified partition-
ing procedure for multi-label data43,44.

Evaluation metrics.  The performance of the different algorithms is assessed on the estimation of both SBP and 
DBP. Feat2Lab and Sig2Lab output BP labels directly, while for Sig2Sig, the estimated labels are extracted from 
the predicted ABP by identifying the systolic peaks, onset, and offset of each cardiac cycle. Thus, we consider the 
commonly used metrics of MAE, ME, and SD. Besides, we propose MASE as the main evaluation metric. MASE 
is computed as the ratio of the model’s MAE and the naïve MAE result. The naïve predictions are the mean of the 
SBP and DBP labels of the training dataset.

Comparison of machine learning based blood pressure estimation approaches.  Now, we compare 
the different representative ML models from the three categories. Table 2 shows the performance results of the 11 
algorithms grouped into three categories. The result of the best-performing algorithm for each metric and each 
dataset appears in bold. The results of U-Net are omitted in the PPGBP dataset due to the lack of ABP for training 
this model. As a scale invariance metric, MASE brings both SBP and DBP errors on a comparable scale and helps 
the comparison across different datasets. Besides, MASE does not require extra information from the data distri-
bution to be interpretable unlike absolute metrics, such as the MAE and ME ± SD. Therefore, we best summarize 
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the model performance using MASE in Fig. 2. Figure 2 demonstrates the model comparison by showing the con-
fidence intervals extracted with bootstrapping45, while the significance lines are computed by pair-wise algorithm 
comparisons. The analysis of the results is conducted within each category and across them, as follows:

Sensors dataset

SBP DBP

MAE ME ± SD MASE (%) MAE ME ± SD
MASE 
(%)

Naïve 17.61 −0.01 ± 21.82 100.00 8.27 0.00 ± 10.53 100.00

LightGBM 15.63 −0.05 ± 19.64 88.76 7.61 −0.02 ± 9.82 92.04

SVR 15.60 −0.00 ± 19.68 88.62 7.50 −1.45 ± 9.81 90.76

RF 15.86 −0.12 ± 19.85 90.08 7.66 −0.03 ± 9.86 92.63

MLP 16.03 −0.50 ± 20.10 91.03 7.77 −0.19 ± 10.04 94.05

AdaBoost 15.75 −0.06 ± 19.77 89.45 7.68 −0.27 ± 9.96 92.91

ResNet 17.46 −0.12 ± 21.70 99.15 8.33 −2.51 ± 10.78 100.76

SpectroResNet 17.83 0.90 ± 28.05 101.28 8.31 0.13 ± 11.08 100.52

MLPBP 17.61 0.01 ± 21.86 100.03 8.26 −0.02 ± 10.51 99.90

U-Net 15.64 −1.16 ± 19.64 88.82 7.66 −0.45 ± 9.93 92.62

PPGIABP 16.45 −3.23 ± 20.41 93.40 7.99 −0.31 ± 10.28 96.64

V-Net 16.77 −7.06 ± 19.95 95.21 8.62 3.52 ± 9.82 104.26

UCI dataset

Naïve 17.62 0.57 ± 21.86 100.00 8.55 −0.65 ± 11.40 100.00

LightGBM 16.85 1.53 ± 20.62 95.60 8.21 −0.22 ± 11.00 96.07

SVR 17.45 2.10 ± 21.25 99.02 8.07 −1.02 ± 11.06 94.46

RF 16.85 1.26 ± 20.67 95.60 8.25 0.03 ± 11.08 96.48

MLP 18.18 3.67 ± 21.92 103.18 8.21 0.90 ± 11.02 96.05

AdaBoost 16.86 1.19 ± 20.86 95.68 8.67 0.23 ± 11.72 101.39

ResNet 16.59 −3.90 ± 20.65 94.12 8.30 −4.80 ± 10.84 97.06

SpectroResNet 19.88 3.99 ± 24.20 112.78 9.00 0.85 ± 12.16 105.31

MLPBP 17.57 −3.56 ± 21.84 99.69 8.38 −1.68 ± 11.30 98.00

U-Net 16.93 0.06 ± 20.92 96.04 7.88 −2.46 ± 10.80 92.17

PPGIABP 17.06 0.20 ± 20.99 96.79 8.07 0.25 ± 10.99 94.41

V-Net 17.58 −9.28 ± 20.53 99.78 8.95 3.90 ± 10.66 104.67

BCG dataset

Naïve 12.30 −0.19 ± 16.67 100.00 7.91 −0.11 ± 9.96 100.00

LightGBM 12.15 −1.12 ± 16.78 98.80 7.84 −0.04 ± 10.29 99.19

SVR 11.45 −0.79 ± 15.56 93.07 7.34 0.01 ± 9.88 92.75

RF 12.88 −1.46 ± 17.75 104.72 7.89 −0.01 ± 10.44 99.77

MLP 12.98 −0.27 ± 16.35 105.50 7.14 0.03 ± 9.28 90.24

AdaBoost 11.42 −2.50 ± 16.44 92.84 8.06 −0.33 ± 10.73 101.91

ResNet 12.20 −0.67 ± 16.69 99.20 7.76 −4.75 ± 8.98 98.13

SpectroResNet 12.41 1.34 ± 16.49 100.93 8.30 1.22 ± 10.41 104.91

MLPBP 12.39 −1.02 ± 16.77 100.75 8.05 −0.32 ± 10.31 101.81

U-Net 12.30 1.32 ± 16.42 99.98 7.98 −0.09 ± 10.45 100.94

PPGIABP 11.66 −2.52 ± 15.95 94.76 7.78 −1.67 ± 9.88 98.37

V-Net 11.42 −3.89 ± 14.84 92.89 8.01 −1.27 ± 10.10 101.25

PPGBP dataset

Naïve 16.38 −0.02 ± 20.52 100.00 8.85 0.00 ± 11.20 100.00

LightGBM 13.06 0.00 ± 16.65 79.76 8.16 −0.04 ± 10.30 92.18

SVR 13.15 −0.64 ± 17.05 80.29 8.04 −0.22 ± 10.14 90.90

RF 13.17 0.02 ± 16.81 80.42 8.12 0.19 ± 10.17 91.76

MLP 13.38 −0.13 ± 17.09 81.69 8.21 −0.16 ± 10.40 92.77

AdaBoost 13.22 −0.56 ± 16.95 80.72 8.04 −0.16 ± 10.25 90.84

ResNet 13.62 −1.85 ± 17.45 83.18 8.61 −2.17 ± 10.81 97.33

SpectroResNet 18.87 −6.26 ± 23.76 115.18 11.38 −5.22 ± 14.59 128.60

MLPBP 16.49 −0.81 ± 20.66 100.68 8.80 −0.52 ± 11.22 99.41

Table 2.  Performance of the ML algorithms grouped in three categories on four datasets.
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Feat2Lab category.  Overall, SVR and LightGBM are the best models among the Feat2Lab, since they frequently 
achieve the first or second-best results in terms of MASE. In particular, SVR, closely followed by LightGBM, signifi-
cantly outperforms the rest in the Sensors dataset (Fig. 2a). In Fig. 2b related to UCI, LightGBM, and SVR are again 
the best in SBP and DBP, respectively. In contrast, Adaboost and MLP result better in SBP and DBP of the BCG data-
set, while SVR is the second best as shown in Fig. 2c. Although Fig. 2d shows no significant difference in PPGBP’s 
results, LightGBM and Adaboost stand out in SBP and DBP, respectively. Despite some absence of significant dif-
ferences, the LightGBM is considered more efficient in its training and inference, especially with large datasets34,46.

Fig. 2  MASE results for SBP (left) and DBP (right) with confidence intervals extracted with bootstrapping 
of (a) Sensors, (b) UCI, (c) BCG, and (d) PPGBP. The significance lines show the pairwise comparison of 
the best model against the same category models (inside) and across categories (outside). The significance 
(a = 0.001(***), 0.01(**), 0.05(*)) is measured by assessing if the 1-a confidence intervals of the models’ 
difference contain 0. ‘ns’ stands for not significant. Bonferroni’s correction is used for these multiple 
comparisons. We highlight with bold type the best result within each category.
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Sig2Lab category.  ResNet is the best model among the Sig2Lab, achieving the lowest MASE in all datasets, 
excluding DBP of Sensors. In Fig. 2a (Sensors) and 2c (BCG), the results of the different Sig2Lab models are very 
similar, especially for ResNet and MLPBP. While for UCI and PPGBP datasets, ResNet significantly outperforms 
the rest of the models, and SpectroResNet performs worse than usual as shown in Fig. 2b,d.

Sig2Sig category.  In Sensors and UCI datasets, U-Net is significantly the best model, followed by PPGIABP, and 
lastly, V-Net. In contrast, V-Net significantly outperforms the rest for SBP estimation of the BCG dataset, and 
PPGIABP is slightly better for DBP as shown in Fig. 2c. Therefore, we consider U-Net as the best model among 
Sig2Sig algorithms.

Across categories.  Feat2Lab approaches achieve better results for the smaller datasets, BCG and PPGBP. 
However, there are some cases where the best results of Feat2Lab, Sig2Lab, and Sig2Sig are comparable. For the 
BCG dataset, the first models of Feat2Lab and Sig2Sig (Adaboost and V-Net) show comparable performance 
for SBP estimation in Fig. 2c. In the Sensors dataset, SVR and U-Net show similar SBP results in Fig. 2a. For the 
largest dataset (UCI), ResNet and U-Net are the best models for SBP and DBP, respectively. Thus, Sig2Lab and 
Sig2Sig approaches can outperform Feat2Lab models, but they require considerably large datasets.

Feature importance in Feat2Lab models.  As previously mentioned, we have considered the most pop-
ular features for Feat2Lab models: point/time-based, which comprise elapsed times, amplitudes, areas, and width 
between points of interest of the cardiac cycle; frequency-based features; and statistical features, which include 
histograms, Slope Deviation Curve (SDC), Signal Quality Index (SQI), and indices features. Given a large number 
of features, we conducted feature selection based on the Gini impurity independently for SBP and DBP of each 
dataset. Thus, we assess the most relevant individual features and subgroups.

Overall, the three highest-ranked features are Ts_e, Ts_z, and vpgz, which are the elapsed time from the systolic 
peak to the dicrotic notch (e) and the diastolic rise (z), and the amplitude of the first derivative (vpg) at point z. 
Besides, we show the relevance of each feature subgroup in Fig. 3. Among the features selected by the algorithms, 
the feature groups with the largest percentage are histogram-based and time-based features for both SBP and 
DBP. However, these can be biased by the larger number of these features. When taking the average feature 
importance into account, the time-based features remind as one of the most important, while the importance 
of the histograms is reduced. Therefore, we can ensure that the time-based features are highly relevant to the 
models. Besides, some of the area-based and SDC features are also relevant for SBP and DBP, as indicated by 
their average feature importance. Frequency-based and width-based features are the least relevant features with 
the smallest percentage and average importance. Moreover, width-based features share similar information to 
elapsed time features, which justifies their low relevance to the models.

Data splitting: subject information and skewed blood pressure distributions.  General ML model 
development includes splitting a dataset into training, validation, and test sets. BP datasets usually have multiple 
records corresponding to the same human subject. Besides, the SBP and DBP frequently exhibit skewed distribu-
tions. When splitting the data into folds with a uniform probability distribution, a common practice in ML, it would 
lead to examples of the same subject in different folds, i.e. information leakage, and to the risk of having folds with 
few or no samples of underrepresented BP labels. Here, we analyze the impact of overlooking these issues.

When different segments of the same subjects are simultaneously in different partitions, the results can be 
misleading and over-optimistic. Models may rely mainly on subject-specific characteristics to estimate their BP. 
This is more pronounced with consecutive segments of the same subject since their BP values do not change 
much. Figure 4 exemplifies this by comparing the performance of a model of each category on the different 
datasets, with or without this issue (Leak or No Leak, respectively). The leaked datasets were split into different 
folds with a uniform distribution. As shown, all three models have better results in the leaked scenario than the 
no-leaked scenario regardless of the evaluation metric used. The difference in performance is more significant 
for UCI and BCG, which have multiple consecutive segments, 32 and 64 segments on average, respectively. In 
UCI and BCG datasets, the MASE of SBP and DBP decrease from values around 98–92% to below 60% in some 

Fig. 3  Relevance of the selected features divided into subgroups of the main three families: Point/time-based, 
Frequency-based, and Operational/Statistical features. Feature relevance is computed in two ways: the average 
feature importance among the features selected by the models, and the percentage of each subgroup among the 
selected features.
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cases. Besides, the significant drop is also shown in the SD metric. This is a common mistake in BP estimation 
research, where some practitioners considered it as a way of personalization or calibration12,20, and sometimes, 
it is not clear whether some proposals fall into this error20.

We also emphasize the importance of accounting for the skewed distributions of SBP and DBP. Figure 5 
shows the difference in the MASE between validation and testing before and after maintaining the SBP and 
DBP distribution. We picked the Sensors dataset to demonstrate this because the other datasets lack subject 
information or are too small. In Fig. 5, we can see a larger mean and standard deviation in the MASE difference 

Fig. 4  The experiment compares with and without leaking subject information in different sets for (a) SBP and 
(b) DBP. In the leaked datasets, the percentage of samples of the test set that share subject with the training set 
are 100% in Sensors and BCG, 99.5% in UCI, and 94.6% in PPGBP.

Fig. 5  Examples of before and after maintaining the training/validation/test sets distribution are shown in the 
histogram. The differences between the MASE performance of the validation and the test sets are shown in box 
plots.
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of validation and test sets before maintaining the distribution. This implies that the results in validation will not 
transfer correctly to test, because some folds will have fewer examples of extreme BP labels as shown in Fig. 5.

Discussion
In this paper, we have presented a standardized benchmark for ML and DL based non-invasive BP estimation 
approaches using the PPG waveform. Our benchmark includes four different datasets with a wide variety in the 
number of subjects and segment continuities. We have extensively described three learning paradigms for BP 
estimation (Feat2Lab, Sig2Lab, and Sig2Sig). Furthermore, we have defined the standard evaluation metrics and 
proposed using MASE to compare performance across datasets. Cross-validation strategies have been adapted 
to the problem singularities, ensuring the correct training and tuning of the ML models. We have empirically 
compared 11 different approaches of the three paradigms, setting the baselines for future model development 
and comparisons. We have analyzed the importance of the feature groups used in Feat2Lab approaches. Besides, 
we have shown the impact of overlooking important factors when preparing validation folds, such as BP skewed 
distribution and multiple samples per subject. This study enables reproducibility and fair comparison among 
different BP estimation proposals with shared datasets and code.

Next, we discuss the main conclusions of our experiments giving some interpretations and suggestions when 
addressing a BP estimation problem with PPG using ML and DL approaches:

•	 When splitting the data into validation folds, the skewed BP distribution and subject information leakage 
are commonly overlooked in BP research11,12,20, even discussing the latter as a calibration strategy20. We have 
empirically shown how overlooking them leads to misleading and over-optimistic results. Therefore, we have 
shared a data splitting that considered these particularities.

•	 Comparing the different approaches within each category, SVR and LightGBM have the best performance 
among the Feat2Lab models, while the latter, as a versatile ML model, enables great fitting and efficiency in 
different scenarios. ResNet significantly outperforms the rest of the automatic feature extractors. Besides, 
U-Net is the best model among the Sig2Sig approaches.

•	 Across different families of approaches, Feat2Lab models still are very competitive, especially for medium 
and smaller datasets. ResNet and U-Net outperform the rest of the algorithms in the largest dataset (UCI). 
Sig2Lab approaches have the potential to outmatch Feat2Lab proposals and eliminate the arduous and error-
prone task of hand-crafted feature extraction. Sig2Sig methods, leading with the U-Net architecture, are 
always preferred since they are available to estimate ABP. However, the need for massive amounts of invasive 
ABP waveforms makes its training and implementation challenging.

•	 Analyzing the importance of the features selected by Feat2Lab approaches, we have concluded that the 
elapsed times between PPG’s points of interest are the most relevant features for both SBP and DBP. In par-
ticular, the times related to the dicrotic notch and the diastolic rise of the PPG cardiac cycle have ranked very 
high. Besides, area and SDC features are valuable to estimate SBP and DBP, respectively. On the other hand, 
width-based and frequency-based features are the least relevant.

•	 MASE has proven useful for the comparison and interpretation of model performance across different BP 
datasets. For instance, given the SVR’s MAE of 15.60 in the Sensors dataset and 11.42 in the BCG dataset, one 
may conclude that the model trained with BCG performs significantly better. This is not necessarily true, as it 
is natural to obtain smaller errors in the BCG dataset due to its narrower BP range. Looking at the MASE of 
88.62% in Sensors and 92.84% in BCG, we can realize that the performance of the model trained with Sensors 
data is slightly better.

•	 As shown by our results, PPG-based proposals for non-invasive BP estimation still require substantial 
research to meet the requirements of medical validation standards. Other physiological signals, such as ECG, 
or individual calibration might help to reach those accuracy standards, but it reduces applicability, usability, 
and portability. We hope our benchmark serves as a baseline and eases the model comparison for future 
research and proposals.

Methods
This section provides the design of our benchmark for ML and DL based BP estimation approaches. First, we 
describe the data preprocessing and preparation steps. Second, we detail the ML and DL based BP estimation 
approaches and categorize them into three categories: Feat2Lab, Sig2Lab, and Sig2Sig. Then, we explain the 
adapted validation strategies to train and tune the ML/DL models. We define the evaluation metrics used in 
our benchmark. Lastly, we describe the procedure followed to tune the hyperparameters of ML and DL models.

Data preparation and preprocessing.  Data preparation and preprocessing are crucial to ML and DL 
model training as they clean noise and signal artifacts to avoid perturbed modeling. This process has been 
designed as a standard and common procedure for all the presented datasets. Figure 6 shows an overview of the 
whole data preparation and preprocessing process, while Table 3 lists the data amount in every cleaning step. 
First, the procedure aligns the signals (PPG & ABP) of each record available using cross-correlation. The PPG sig-
nal usually has a certain delay to the ABP signal due to the difference in the extraction points23. This delay might 
affect the learning and estimation of ML and DL approaches, particularly those estimating the ABP waveform22,23. 
The alignment shift is set as the maximum cross-correlation magnitude, limited to a maximum of 1 second to 
avoid an excessively unrealistic shift. Once aligned, each record is segmented into 5-seconds chunks without 
overlapping. The following preprocessing steps aim at removing poor quality signals caused by numerous factors, 
such as noise, movement and respiration artifacts, outliers, and extreme cases:
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•	 Extremely abnormal ABP removal: Although ABP is the gold standard to measure blood pressure, it is not 
spared from errors and disturbances. To avoid training and testing on erroneous signals, we remove extremely 
distorted ABP segments from which it is impossible to identify cardiac cycles or that do not follow reasonable 
values of amplitudes (30–220 mmHg), pulse pressure (over 10 mmHg), and heart rate at rest (35–140 Beats 
Per Minute (BPM)).

•	 PPG cycle identification and BPM limitation: The cardiac cycles are delimited by an initial valley, the sys-
tolic peak, and a second valley. Segments with missing or excessive valleys or peaks are excluded. Additional 
segments are removed if their heart rates are abnormal for adults at rest (35–140 BPM).

•	 Distorted PPG waveforms elimination: Additional distorted PPG waveforms are identified by high standard 
deviations of the peak-to-peak and valley-to-valley intervals as well as their amplitudes29. We eliminate any 
segments whose standard deviations exceed certain thresholds. These were set by examining the waveforms 
and cumulative percentage plots of these statistics. Figure 7 shows the cumulative percentage plots of the 
mentioned statistics and vertical lines of the chosen thresholds for the UCI dataset.

•	 Baseline Wander (BW) removal: BW is a low-frequency artifact commonly caused by respiration and move-
ment. To correct it, we estimate the baseline using Cubic Spline Interpolation (CSI) on the valleys of the seg-
ments47. Then, the estimated baseline is subtracted from the original segment as shown in Fig. 8.

•	 Refining and SQI: Finally, we reiterate the aforementioned cleaning process to ensure high signal quality 
standards. We perform the feature extraction explained in the following section, eliminating the segments 
with which the extraction process fails. Lastly, we also exclude those signals with SQI skewness below 048.

Feat2Lab: From PPG waveform features to BP labels.  Feat2Lab approaches engineer meaningful rep-
resentations of PPG waveforms to help ML regression models learn the relation between PPG and BP . This paper 
has considered the most successful and popular features of PPG and its derivatives6,7,49. We have categorized them 
into three groups: points-of-interest and time-based features, frequency-based features, and finally, operational 
and statistical features .

Points-of-interest and time-based features characterize the signal morphology by extracting particular 
points from the PPG cardiac cycle and its derivatives49: the systolic peak from PPG; w, y, z from the first deriv-
ative (VPG); and a, b, c, d, e from second derivative (APG). Then, different features are computed as shown in 
Fig. 9: (1) Amplitudes of PPG, VPG, and APG for each point, (2) Elapsed Times, and (3) Areas under the PPG 
curve. In addition, we have considered the (4) Widths of the systolic and diastolic phases (SW & DW) at 25%, 
50%, and 75% of the systolic peak amplitude7, as shown in Fig. 9c. The sum and ratio of DW and SW at the same 
percentage are considered additional features.

Frequency-based features are extracted from the information of the Fast Fourier transform (FFT) of the 
PPG waveform. We have included the most dominant frequency, its magnitude, and the average magnitude 
nearby it20,50.

Operational and statistical features characterize the PPG cardiac cycle with distribution information, indi-
ces, and features combinations: (1) Histogram features are the density values of a 5-bin histogram for the sys-
tolic phase, and a 10-bin histogram for the diastolic phase in PPG, VPG, and APG. (2) Slope Deviation Curve 

Fig. 6  Data preprocessing pipeline.
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(SDC) features are the deviation of the systolic upstroke waveform and the diastolic falling waveform from 
their corresponding mean slope curves50. (3) SQI features are Skewness and Kurtosis of the PPG cardiac cycle.  
(4) Indices features are the Aging Index (AI) and three other indices (Ibd, Ibcda, and Isdoo)51.

Given a large number of features, we conduct feature selection based on tree-based ensembles. We train 
fully-grown RF38 and Extra-Trees52 with 500 trees independently for SBP and DBP. The feature importance is the 
normalized mean decrease of the Gini impurity achieved across the ensembles. Thus, the features sorted by their 
importance can be selected by a hyperparameter of the percentage of desired features. With these features and 
the selection procedure, we can use any ML regressor algorithm to estimate blood pressure. We have considered 
the most popular models6,7,53 such as LightGBM34, SVR35, MLP36, AdaBoost37, and RF38.

Sig2Lab: From PPG signal to BP labels.  Aside from extracting features via handcrafted methods, 
Convolutional Neural Network (CNN) serves as an automatic feature extractor that could capture signal morpho-
logical information. Considering that expert-knowledge-based feature extraction techniques are time-consuming 
and susceptible to noisy signals, CNN-based models have gained significant interest in PPG signal processing9,11. 
Among the CNN-based models, ResNet39 has shown its ability across multi-dimensional signals and is com-
monly used in PPG feature extraction. For example, Schrumpf et al.11 compared the BP estimation performance 
of different neural network architectures, including AlexNet54, ResNet, and their proposed CNN-LSTM archi-
tecture. They found that ResNet achieved the lowest MAE in both SBP and DBP. Slapničar et al.20 proposed a 
ResNet-GRU architecture, called SpectroResNet, to extract the temporal information with residual blocks and 
spectro-temporal information from PPG’s spectrogram with Gated Recurrent Units (GRU). In another deep 
learning architecture comparison work9, Paviglianiti et al. found that ResNet followed by three Long Short Term 
Memory (LSTM) layers could achieve the best performance. Other deep learning architectures have been applied 
to estimate BPs, such as MLP-BP21–a model that adapts MLP-Mixer neural networks. In this benchmark, we have 
used ResNet, SpectroResNet, and MLP-BP as the representative algorithms of the Sig2Lab category.

Sig2Sig: From PPG signal to ABP signal.  In addition to intermittent BP measurements, continuous BP 
monitoring indicates the reactions of the cardiovascular system, which allows physicians to tailor treatment or 
predict heart failure55. In recent years, several engineering works aimed to estimate ABP signals from PPG signals 
with Recurrent Neural Network (RNN) based models, such as LSTM and GRU, and CNN-based models.

For example, Harfiya et al. created an LSTM-based autoencoder for sequence-to-sequence learning. They 
first trained an autoencoder to reconstruct the PPG waveform input and then further trained the decoder for 
constructing the ABP waveform56. Aguirre et al. proposed PPG2IABP, a GRU encoder and decoder network 
followed by MLP to predict the next value of a target sequence (in this case, ABP signal) given a source sequence 
(in this case, PPG signal)12.

As for the CNN-based models, U-Net consists of a contracting path and an expansive path with bypass con-
nections in between to prevent the loss of border pixels in every convolution40. Several works22,41,42,57 propose to 
use U-Net architecture to estimate ABP from PPG due to its capability of signal-to-signal translation. Similarly, 
Hill et al.23 proposed a V-Net architecture for the estimation of ABP. Due to their promising and common use, 

Step Criterion Sensors dataset UCI dataset BCG dataset
PPGBP 
dataset

0 Ori: # subjects/records/segments 1196/5821/11642 -/11844/518036 40/40/3268 219/219/657

1

Del: # segs. with ABP > 220 or < 30 mmHg 4 16 0 —

Del: # segs. with ABP’s BPM > 140 or < 35 1 2205 0 —

Del: # segs. with pulse pressure < 10 mmHg 0 456 0 —

Kept: # subjects/records/segments 1192/5821/11637 -/11788/515359 40/40/3268 219/219/657

2

Del: # segs. with no peaks or valleys found 1 35 0 11

Del: # segs. removed by p2p distance (BPM) 34 4019 34 0

Del: # segs. removed by v2v distance (BPM) 43 4458 36 0

Kept: # subjects/records/segments 1196/5808/11586 -/11710/509453 40/40/3213 217/217/646

3
Del: # segs. with PPG distortion 373 29203 74 0

Kept: # subjects/records/segments 1195/5751/11213 -/11581/480250 40/40/3139 217/217/646

4
Del: # segs. show bad quality after BW removal 10 13492 58 4

Kept: # subjects/records/segments 1195/5741/11139 -/11499/466758 40/40/3081 219/219/642

5
Del: # segs. failed in feature generation 33 48422 10 2

Kept: # subjects/records/segments 1195/5726/11106 -/11057/418336 40/40/3071 219/219/640

6
Del: # segs. With skewness SQI < 0 4 7740 8 21

Kept: # subjects/records/segments 1195/5726/11102 -/10793/410596 40/40/3063 218/218/619

Table 3.  The table details the amount of data in preprocessing steps. The definition of each step is as follows: 
Step 0 - alignment and segmentation; Step 1 - Extremely abnormal ABP removal; Step 2 - Cycle identification 
and BPM limitation; Step 3 - Distorted waveforms elimination; Step 4 - Refinement after baseline wandering; 
Step 5 - Segment removal by feature extraction; Step 6 - Segment removal by skewness SQI. The terms “Ori”, 
“Del” and “Kept” refer to the original amount, deleted amount, and kept amount, respectively. One should 
notice that every segment could meet several removal criteria simultaneously in every step.

https://doi.org/10.1038/s41597-023-02020-6


1 2Scientific Data |          (2023) 10:149  | https://doi.org/10.1038/s41597-023-02020-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

we have considered U-Net40, PPG2IABP12, and V-Net23 as the representative algorithms of the Sig2Sig category 
in this benchmark paper. Since SBP refers to the maximum pressure while DBP is the minimum pressure within 
one complete cardiac cycle58, they can be extracted from the estimated ABP with peak and valley detection 
methods afterward.

Validation strategies.  BP estimation is not a standard regression problem. For instance, the data points 
of the BP datasets are not completely independent of each other, since many segments come from the same 
subject with very similar information. In addition, there are two targets, SBP and DBP, which are more akin to a 

Fig. 7  Cumulative percentage plots of the standard deviations of PPG’s (a) intervals and (b) amplitudes for the 
UCI dataset.

Fig. 8  Example of Baseline Wander correction using CSI. (a) Original waveform in blue and its baseline in 
orange. (b) Corrected waveform.

Fig. 9  Extracted features related to (a) VPG’s points, (b) APG’s points, and (c) the width of the systolic and 
diastolic phases (SW & DW) at a given elevation of the systolic peak. Amplitude features of PPG and APG 
are represented, for point e as an example, with ppge and apge respectively. Time-based features measure the 
time passed between two points, for instance, Ts_z is the time between s and z. Areas under the curve (a) are 
computed in different cycle phases including the areas of systole Asys = A1 + A2, and diastole Adia = A3 + A4.
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multi-task or multi-output regression problem59. Finally, the distributions of SBP and DBP are often skewed, as 
extreme BP is much rarer, which makes it an imbalance regression problem60.

These differences must be considered to correctly partition the data during the cross-validation. For example, 
cross-validation strategies often shuffle the data before partitioning, which may lead to segments of the same 
subject simultaneously occurring in the training, validation, and test sets. This would result in the breakdown of 
independence between sets, and potentially lead to unrealistically good results. Moreover, due to the imbalanced 
distribution, random data partitioning could lead to rare cases missing in the test set.

To avoid these problems, we propose a new procedure for splitting BP data that keeps all samples from the 
same subject in the same set and the original distribution of SBP and DBP. Maintaining the distributions is 
not trivial with two different targets and the subject constraint. First, we encode the SBP and DBP values into 
four classes. The classes of SBP are (1) below 100 mmHg, (2) between 100 mmHg and 140 mmHg, (3) between 
140 mmHg and 160 mmHg, and (4) over 160 mmHg. The classes of DBP are (1) below 60 mmHg, (2) between 
60 mmHg and 80 mmHg, (3) between 80 mmHg and 100 mmHg, and (4) over 100 mmHg. Then, we count the 
frequencies of the class combinations (16 classes) for each subject. Thus, we consider the BP label distributions 
of each subject separately. Finally, we split the subjects with their label distributions into K folds by iterative 
stratification for multi-label data43,44. This partitioning strategy is applicable for K-fold CV and HOO.

Evaluation metrics.  Following the BP standards25,26,61, we strongly suggest that researchers report these 
three metrics simultaneously: the MAE, the ME, and its SD. For the ML pipeline, researchers should gather all 
the predictions from every fold first and then compute the metrics. The definition of ME is the mean value of the 
differences as shown in Eq. 1:

∑= ×
=

ME
n

Diff1
(1)i

n

i
1

where n is the number of Determinations or Predictions (PREDs) in engineering terms, i is the index of PREDs, 
while Diff P P( )i PRED REFi i

= −  denotes the difference between the ith pair of blood pressure values (predicted 
blood pressure - reference blood pressure). SD is the standard deviation of differences as shown in Eq. 2. MAE, 
on the other hand, is defined as the mean of absolute differences as illustrated in Eq. 3.

Category Algorithm Parameter

Feat2Lab

Feature selection Rate: [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0]

SVR
Kernel: rbf
C: [1.0, 5.4, 10, 100, 170, 1001]
Gamma: [0.001, 0.008, 0.1, 0.7, 1]
Epsilon: [0.0003, 0.007, 0.01, 0.05, 0.1, 0.15, 0.2]

MLP Layer: [[32], [64], [256], [256, 64], [512, 64]]

AdaBoost
Trees: [5, 10, 50, 100, 150, 200]
Maximum depth: [1, 3, 5, 8, None]
Minimum samples per leaf: [5, 25, 50]

RF

Trees: [10, 50, 100, 150, 200, 300, 400]
Maximum depth: [1, 3, 5, 8, None]
Minimum samples per leaf: [5, 25, 50]
Sampling rate: [0.5, 0.7, 0.9]
Column sampling per split: [0.3, 0.7, 1.]

LightGBM

Trees: [10, 50, 100, 150, 200, 300, 400]
Learning rate: [0.01, 0.05, 0.1]
Maximum depth: [1, 3, 5, 8, None]
Minimum samples per leaf: [5, 25, 50]
Sampling rate: [0.5, 0.7, 1.]

Sig2Lab

ResNet
Channel: [32, 64, 128, 256]
Kernel size of the first conv. layer: [5, 9, 11, 15]
Kernel size of residual blocks: [3, 5]
Amount of residual blocks: [4, 8, 10]

SpectroResNet
N. dft, N. hop: [16, 64]
Kernel sizes: [[8, 5, 3], [8, 5, 5, 3]]
Amount of residual blocks: [4, 8, 10]

MLPBP
Depth: [4, 6, 8]
Dropout: [0.1, 0.2]
Token & channel dimension: [256, 512]

Sig2Sig

U-Net Channel: [8, 16, 32, 64, 128]
Layer: [[2, 2], [2, 3, 2], [2, 2, 2], [2, 2, 2, 2]]

PPGIABP Hidden size of GRU layers: [4, 8, 10]

V-Net Layer: [[2, 2], [2, 2, 2], [1, 2, 3], [1,2,3,3]]

Table 4.  Parameter-search-space for ML and DL parameters tuning. The Layer parameter indicates the number 
of layers stacked in each depth block. For example, [2, 3, 2] defines the U-Net architecture with 3 depth blocks 
with 2, 3 and 2 CNN layers, respectively.
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Besides, comparing the performance of different algorithms is more difficult without fixed BP datasets. The 
MASE metric18 was proposed in time series forecasting to mitigate this issue by scaling the MAE of model pre-
dictions with the MAE of the Naïve estimations as shown in Eq. 4. We propose using MASE as the standard BP 
evaluation metric. We define the Naïve predictions as the mean SBP or DBP of the training set. Along with the 
Naïve result, the MASE metric is scale-independent and easy to interpret, allowing the comparison of various 
algorithms across different datasets.

MASE MAE
MAE (4)Naive

=

Hyperparameter tuning.  Training and hyperparameter tuning were done using nested 5-fold CV, strati-
fied by subject SBP and DBP, except for the UCI dataset with HOO. We tuned ML models by grid searching the 
parameter-search-space shown in Table 4 and monitoring the MAE performance of validation sets. For the DL 
models, we used the Mean Squared Error (MSE) as the loss function, the Adam optimizer, and early stopping with 
the patience of 15 epochs in the validation loss. Their hyperparameters were greedily searched using the Optuna 
Toolkit62 to monitor the MAE performance. Table 4 lists the tuned hyperparameters.

Data availability
The four datasets used in this paper are available via Figshare14. We provide the split datasets where the sensors, 
BCG, and PPGBP datasets are split into 5 folds, and the UCI is in 3 folds. The purpose of this is to enable 
researchers to compare their methods under the same split datasets.

Code availability
The data preprocessing scripts and machine learning algorithm are publicly available via GitHub at https://
github.com/inventec-ai-center/bp-benchmark. The custom code used for data visualization is available from the 
corresponding authors upon request.
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