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Global long term daily 1 km surface 
soil moisture dataset with physics 
informed machine learning
Qianqian Han   1, Yijian Zeng   1, Lijie Zhang2, Chao Wang3, Egor Prikaziuk1, Zhenguo Niu   4 
& Bob Su   1,5 ✉

Although soil moisture is a key factor of hydrologic and climate applications, global continuous high 
resolution soil moisture datasets are still limited. Here we use physics-informed machine learning to 
generate a global, long-term, spatially continuous high resolution dataset of surface soil moisture, 
using International Soil Moisture Network (ISMN), remote sensing and meteorological data, guided 
with the knowledge of physical processes impacting soil moisture dynamics. Global Surface Soil 
Moisture (GSSM1 km) provides surface soil moisture (0–5 cm) at 1 km spatial and daily temporal 
resolution over the period 2000–2020. The performance of the GSSM1 km dataset is evaluated with 
testing and validation datasets, and via inter-comparisons with existing soil moisture products. The root 
mean square error of GSSM1 km in testing set is 0.05 cm3/cm3, and correlation coefficient is 0.9. In terms 
of the feature importance, Antecedent Precipitation Evaporation Index (APEI) is the most important 
significant predictor among 18 predictors, followed by evaporation and longitude. GSSM1 km product 
can support the investigation of large-scale climate extremes and long-term trend analysis.

Background & Summary
Surface soil moisture (SSM) is a source of water for the atmosphere through processes leading to evapotranspira-
tion from land1–3. SSM has impacts on climate processes by influencing the partitioning of the incoming energy 
in the latent and sensible heat fluxes and controlling the partitioning of precipitation into runoff, evapotranspi-
ration, and infiltration2,3. Therefore, a global high resolution, long-term, and spatiotemporally consistent SSM 
dataset is necessary for understanding the processes between the land surface and atmosphere, and is useful for 
numerous applications, e.g. flood and drought monitoring, irrigation scheduling, and agricultural management.

Although SSM has such high importance from many perspectives, there is still a paucity of global-scale 
long-term high resolution SSM datasets with acceptable precision and accuracy. There are three main sources of 
SSM2,4–6: in-situ soil moisture, satellite observations, and soil moisture products from either Machine Learning 
(ML) algorithms or Land Surface Model (LSM)2,7. The in-situ observations provide continuous observations 
from different soil depths at the point scale. Satellite observations allow the retrieval of soil moisture at a global 
scale. However, satellite retrievals have spatiotemporal gaps, due to revisit time, land surface states, or complex 
topography1. LSM can be used to produce global soil moisture but there are big differences among different 
products due to different and uncertain parameterizations1,5,8. As a result, each type of soil moisture has its 
own advantages and limitations. There are soil moisture datasets at the global scale from satellites, e.g. AMSR2, 
ASCAT, Sentinel-1, SMAP, SMOS, ESA-CCI, and from LSM, e.g. ERA-5, GLDAS7. These products differ in terms 
of spatiotemporal resolution, coverage, and data sources. Among these products, SMAP presents a better per-
formance and has the highest spatial resolution (1–36 km) but it has a shorter time span (from 2015 until now)9.

ML makes it possible to produce high resolution soil moisture datasets by learning the relationship between 
the in-situ soil moisture and its driving factors at a global scale1. Several soil moisture products based on ML 
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have been presented, NNsm with 36 km resolution at a global scale (daily, 2002–2019) based on Artificial neural 
networks (ANN)10, SoMo.ml with 0.25° spatial resolution at a global scale (daily, 2000–2019) based on Long 
Short-Term Memory neural network (LSTM)1, and a soil moisture product with 0.25° resolution at global scale 
(daily, 2000–2018) based on Random Forest (RF)2. These datasets provide us the possibility to do soil moisture 
related research, indicating that ML is a promising tool to predict soil moisture. Nevertheless, there is a lack of 
high spatial-temporal resolution (e.g. 1 km daily) soil moisture with high precision and accuracy.

This study aims to present a global long-term daily 1 km surface soil moisture dataset through 
physics-informed RF. Namely, we used RF to build a soil moisture prediction model, with related meteorolog-
ical forcings and static features obtained from both satellite and reanalysis datasets, while guided by the physi-
cal understanding of processes impacting soil moisture dynamics. The produced Global Surface Soil Moisture 
(GSSM1 km) dataset has a temporal coverage of 21 years (2000–2020) with a daily 1 km resolution.

Methods
Physics-informed RF and predictor variables.  From the physical process perspective (Fig. 1a), there are 
many land surface features affecting SSM in the land-atmosphere interaction6. In this study, 18 predictors were 
used to predict SSM. The data source of them is shown in Table 1 and the detailed processing steps are provided 
in supplementary materials.

The spatial and temporal changes of soil water storage depend on the variability of precipitation (P), evapo-
ration (Evapo), and runoff (R)11,12 (Fig. 1a). Precipitation has a moderate to strong positive correlation with soil 
moisture13. Evaporation is the process that water – originating from a wide range of sources – is transferred from 
the soil compartment and/or vegetation to the atmosphere. Evaporation directly connects with soil moisture 
since soil moisture that can potentially evaporate is usually related to water contained in the upper 1–2 m of a 
soil profile14. The cumulative water balance, calculated as the surplus between precipitation and evapotranspi-
ration & runoff (i.e., P-Evapo-R), in previous days influences the soil moisture in the current day15,16. Therefore, 

Fig. 1  (a) Conceptual diagram; (b) Schematic overview of the methodology.

Fig. 2  Spatial distribution of the ISMN stations.
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Antecedent Precipitation Evaporation Index (APEI) is used in this study which indicates the time-weighted 
summation of precipitation and evapotranspiration over a specific time window16,17. APEI can reflect some 
soil moisture characteristics caused by meteorological elements, such as precipitation and evapotranspiration. 
The historical precipitation and evapotranspiration influence the soil moisture in a weakening effect along the 
reverse time axis, which means the most recent precipitation and evapotranspiration event has a higher impact 
on the current soil moisture. The detailed calculation of APEI can be found in section 2.1 in supplementary 
materials.

Land Surface Temperature (LST) is the radiative skin temperature of the land driven by solar radiation, 
which measures the emission of thermal radiance from the land surface where the incoming solar energy inter-
acts with and heats the ground surface or the canopy in vegetated areas18. After the solar energy is absorbed by 
the ground, the ground transfers part of the heat to the air through radiation, conduction, and convection, which 
is the main source of heat in the air. LST and air temperature are intrinsically distinct yet often strongly related 
because the temperature between them determines the sensible heat flux, and their correlation arises from the 
surface energy balance19,20. There is a negative feedback between soil moisture and air temperature and LST2,21. 
Furthermore, the daily LST difference is strongly related to the thermal inertia of soil, while thermal inertia 
increases with soil moisture22,23.

The vegetation index is the reflectance transformation of two or more spectral bands from satellite images. 
For example, the Normalized Difference Vegetation Index (NDVI) is one of the most used vegetation indices, 
representing the greenness of the vegetation condition, and is considered as a conservative water stress index24. 
Plenty of research has been done on retrieving SSM with the help of vegetation indices. Temperature/Vegetation 
Dryness Index has a strong negative relationship with SSM, and SSM has been often estimated using LST, albedo, 
and NDVI25,26. In addition, the Enhanced Vegetation Index (EVI) is also commonly used to improve the sensi-
tivity of SSM estimation at high vegetation-covered areas27.

Besides the above dynamic predictors, static soil physical properties including soil texture, porosity, 
and organic matter content (OMC) also affect soil moisture. Soil texture refers to the composition of the soil in 
terms of the proportion of small, medium, and large particles (clay, silt, and sand, respectively) in a specific soil 
mass28. Soil porosity refers to the space between soil particles, which consists of various amounts of water and 
air28. Water-holding capacity is controlled primarily by soil texture and organic matter. Soil with smaller parti-
cles (silt and clay) has a larger surface area than those with larger sand particles, and a large surface area allows 
soil to hold more water. Organic matter content (OMC) also influences water-holding capacity. As the content 
increases, the water-holding capacity increases because of the affinity organic matter has for water.

A study in Switzerland shows elevation determines SSM dynamics, but the relation between SSM and ele-
vation is non-linear29. The SSM regularly increases with an increasing elevation below 2000 m a.s.l (above sea 
level), and then decreases with elevation above 2000 m a.s.l29. This tipping point also corresponds to a clear shift 
in the SSM regime. Below 2000 m a.s.l, the maximum SSM is recorded in winter and the minimum in summer, 
while above this threshold it occurs the opposite (maximum SSM in summer and minimum in winter)29.

Topography is an important determinant of SSM distribution, and plenty of indices have been used to assess 
SSM spatial variability30. The most frequently used index, the topographic index (TI), is based on the topography 
of landscapes and was first introduced in TOPography based hydrological MODEL (TOP-MODEL) to generate 
the patterns of runoff-contributing areas governed by a saturation runoff generation process in landscapes30–33. 
TI quantifies the trends of soil moisture distribution, which is affected by topography30.

The latitude determines the solar radiation and temperature and the longitude relates to the closeness to the 
oceans (moisture and temperature), atmospheric circulation, and the amount of precipitation. The incoming 

Predictors source Spatial resolution Temporal resolution Time span Unit of predictors

Dynamic

APEI

ERA5Land

11 km Hourly

1981-1-1 to now

mm

Tair 11 km Hourly °C

Evaporation 11 km Hourly mm

Daily LST
MOD11A1

1 km Daily
2000-2-24 to now

°C

Daily LST Diff 1 km Daily °C

NDVI
MOD13A2

1 km 16-day
2000-2-18 to now

/

EVI 1 km 16-day /

Static

Longitude / / / / /

Latitude / / / /

Elevation
MERIT Hydro

92 m / m

TI 92 m / / /

Soil Texture (sand, 
silt, clay fraction)

SoilGrids

250 m / / %

Porosity 250 m / / %

OMC 250 m / / %

WTD Ying Fan36 1 km / / m

DTB Wei Shangguan39 1 km / / m

Table 1.  Predictors used for the RF model (for more details about source data and data processing see 
supplementary materials section 1: Satellite and reanalysis data, and section 2: Data processing).
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solar radiation plays an important role in determining SSM variability34. Solar radiation and temperature are 
the thermal (radiation and sensible heat energy) sources that cause water to evaporate from the earth’s surface35.

The groundwater table is an undulating surface between the oxygenated soils and the water-saturated 
aquifers below36. Groundwater may have a small effect on soil moisture in areas with a deep water table depth 
(WTD), but it can act as a SSM source and have substantial effects in areas where the water table depth is shallow 
by sustaining river base-flow and root-zone SSM in the absence of rain36,37. The water table depth distribution in 
these areas creates an additional spatial heterogeneity, similar to that created by variations in topography, surface 
vegetation, and soil properties, and is critical for regional processes affecting spatial variations of SSM38.

Bedrock is either exposed at the earth surface or buried under soil and regolith, which is a key parameter of 
interest because it restricts root penetration of plants39,40. Depth to bedrock (DTB) is considered as the lower 
boundary in land surface modeling, which controls the energy, water, and carbon cycle39. DTB is equivalent to 
the total thickness of the solum and weathered rocks40.

In-situ soil moisture data.  In-situ soil moisture data are provided from the International Soil Moisture 
Network (ISMN) website. The ISMN was initialized to collect the in-situ soil moisture into an open-access data-
base  in 2009. By the end of 2019, the database consisted of 2443 stations from 58 networks around the world, and 
ISMN is still growing.

The in-situ data were collected from different organizations and groups. There is no standard protocol for 
the soil moisture collection strategy, massive diversity has been seen between the data from various networks, 
e.g. sensor types, sensor installation depths, and temporal measurement steps. For all these reasons, extensive 
efforts have been made to harmonize the in-situ soil moisture through a prime data quality control system, and 
to improve the reliability of the in-situ data41. Besides, the observation time has been converted from local time 
to Coordinated Universal Time (UTC), and the temporal resolution was also harmonized into hourly intervals 
for convenience, the time span is 2000 to 2018.

Machine learning and prediction.  We trained a Random Forest (RF) regression model on the Google 
earth engine (GEE) to generate the GSSM1 km dataset. GEE is a cloud-based platform for planetary-scale geo-
spatial analysis that brings Google’s massive computational capabilities to serve a variety of high-impact societal 
issues including deforestation, drought, disaster, disease, food security, water management, climate monitoring, 
and environmental protection42,43. Random Forest (RF) regression is an ensemble learning method that outputs 
a result based on the mean of the many individual training models (trees). RF follows the Bootstrap Aggregation 
(Bagging) strategies, i.e. random sampling with replacement44.

The RF model was trained to learn the relationship between the 18 predictors and soil moisture. All  
18 predictors were synchronized based on the temporal coverage of in-situ data time-series of each ISMN  
station. We used the following strategy for data split: First, divide the predictors and SSM time series into training  
& testing set (70%) and validation set (30%). For example, assuming the data were recorded from 1 January 2000 
to 31 December 2019, the training & testing set consists of the first 70% data (14 years, from 2000 to 2013), and 
the validation set consists of the last 30% data (6 years, from 2014 to 2019). Second, split the training & testing 
set into two parts (e.g., training set and testing set) randomly with the proportion of 75% and 25% (in RF algo-
rithm). After establishing the relationships, the RF model was applied using the predictors to predict surface soil 
moisture over the globe at 1 km spatial resolution for 21 years.

Data Records
The GSSM1 km dataset can be accessed at: https://figshare.com45. It contains global daily soil moisture data with 
a spatial resolution of 1 km, in cm3/cm3, from February 2000 to December 2020. These data are stored in GeoTiff 
format with one file per year and it is divided based on continents, including Europe, Africa, North America 
(1&2), South America, Oceania, and Asia (1&2&3&4). An example file name is “SM2002Europe1 km”, and an 

Fig. 3  RF model testing performance and feature importance of 18 predictors.
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Fig. 4  Boxplot of the metrics and number of observation of the validation set: GSSM1 km vs SMAP vs ESA-
CCI06.1 at the global scale for the validation period.

Fig. 5  Statistical metrics distribution and number of observations in the validation set between in-situ SM 
and GSSM1 km, SMAP and ESACCI06.1 at the global scale (a1-a3: RMSE; b1-b3: ubRMSE; c1-c3: Pearson 
Correlation; d1-d3: number of observations).
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example of the band name is “band_2002_01_01_classification” which means soil moisture on January 1, 2002, 
the scale factor is 1000 (need to divide 1000). The coordinate system is WGS84 (“EPSG:4326”).

Technical Validation
Model testing.  The performance of the RF model was tested on the testing set (64226 samples). As presented 
in Fig. 3, the performance has RMSE (see more details in supplementary materials section 3: Evaluation metrics) 
of 0.05 cm3/cm3, ubRMSE of 0.05 cm3/cm3, and r of 0.9. In addition, it is also essential to know which land surface 
feature has the most significant influence on SSM prediction. The feature importance ranking could also help us 
to understand comprehensively the underlying physics responsible for the SSM dynamics. As shown in Fig. 3, 
APEI is the most important explanatory variable among the 18 considered predictors, which is consistent with 
the physical process, followed by Evaporation (Evapo) and longitude (lon).

Time series validation.  The trained RF model was applied to the validation set. Figures 4, 5 show the box-
plots and error maps of evaluation metrics among different SSM products: GSSM1 km, SMAP, and ESACCI06.1. 
For GSSM1 km, the median of RMSE and ubRMSE for all validation stations is 0.052 cm3/cm3 and 0.04 cm3/
cm3, and the median r value for all validation stations is 0.7. SMAP shows a median of RMSE 0.082 cm3/cm3 and 
ubRMSE of 0.052 cm3/cm3 and a median r of 0.68 among all validation stations. ESACCI06.1 shows a median 
of RMSE 0.089 cm3/cm3 and ubRMSE of 0.043 cm3/cm3 and a median r of 0.65 among all validation stations. 
From both statistical perspective and spatial error distribution maps, GSSM1 km performs better than SMAP 
and ESACCI06.1.

The predicted SSM time series from GSSM1 km, SMAP, and ESACCI06.1 have been analyzed along with 
the in-situ observation to demonstrate the capability of the GSSM1 km for depicting extreme events. Figure 6a 
shows the comparison at four stations. In SAA120, GSSM1 km matches well with in-situ SSM, but SMAP 
and ESACCI06.1 overestimated SSM. In node403, GSSM1 km can capture the in-situ SSM variability while 
ESACCI06.1 and SMAP overestimated SSM. In ARAPAHORIDGE, GSSM1 km, SMAP and ESACCI06.1 all 
underestimated SSM but GSSM1 km has better performance relatively. DRYLAKE is located in Colorado,  

Fig. 6  (a) Time series and spatial distribution in specific days of predicted SSM with ESACCI06.1, SMAP and 
GSSM1 km at selected stations during extreme events. (1) Station SAA120; (2) Station DRYLAKE; (3) Station 
node403; (4) Station ARAPAHORIDGE. (b) Colorado (DRYLAKE) in ESACCI06.1-0.25°, SMAP-9 km, 
GSSM1 km-1 km on 7 Aug, 2016.

https://doi.org/10.1038/s41597-023-02011-7
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the USA. Nearly all (98 percent) of Colorado was experiencing at least abnormal dryness (D0), and 35 percent 
of the state was in moderate drought (D1) or severe drought (D2), most of which was occurring in the eastern 
half of the state in 201646. There was an extreme drought on August 7, 2016 in DRYLAKE46. Next we present 
the spatial distribution of soil moisture on August 7, 2016 from ESACCI06.1, SMAP, and GSSM1 km (Fig. 6b), 
which demonstrates that GSSM1 km can capture extreme events and provide more spatial information than 
SMAP and ESACCI06.1.

Global-scale comparison with existing gridded datasets.  We also compared the spatial patterns of 
GSSM1 km with ESACCI06.1 and SMAP at the global scale. Figure 7a presents the mean soil moisture values of 
these three datasets in 2020 (more detail is explained in supplementary materials section 6: Latitudinal patterns, 
see Fig. S4). Due to the missing data of ESACCI06.1, ESACCI06.1 mean in 2020 was used as a mask to calculate 
the latitudinal profiles for GSSM1 km and SMAP, which is named as GSSM1 km-mask and SMAP-mask. For 
fair comparability, we focus our discussion on the masked result. A similar spatial pattern is observed between 
GSSM1 km-mask, ESACCI06.1, and SMAP-mask, but SMAP-mask is relatively wetter. For instance, the highest 
average soil moisture occurs near the equator in the tropics and 60° N, while the driest soil moisture is found 
near 20° N. Nonetheless, GSSM1 km-mask between 15° N and 15° S tends to be drier than the other two datasets. 
GSSM1 km-mask might be less skillful at predicting soil moisture in arid regions, due to the sparse soil moisture 
stations in these regions (Fig. 2). The uncertainty of GSSM1 km is described in supplementary materials section 5:  
Uncertainty for those regions without ground observations (Fig. S1–S3).

Validation using stations in the Netherlands.  The GSSM1 km has gone through the versions history 
from v1.0 to v1.7 with global training samples. Here, we focus on presenting only results from v1.2.2 to v1.7 in 
the Netherlands (the details of change between each version are provided in supplementary materials section 4: 
History of versions). The SSM networks in the Netherlands include Raam (14 stations, 2016-04-05 to 2019-04-05) 
and Twente (10 stations, 2016-01-01 to 2019-12-31) (referred to as NL stations). The six versions of GSSM1 km 

Fig. 7  Global mean SSM map of 2020, (a) GSSM1 km; (b) ESA-CCI06.1; (c) SMAP. Areas in white means no 
data. (d) Comparison of latitudinal profiles among GSSM1 km, GSSM1 km-mask, ESA-CCI06.1, and SMAP, 
SMAP-mask. ESACCI06.1 is used as a mask for GSSM1 km and SMAP because it has missing data.
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(v1.2.2 to v1.7) were produced and compared with the in-situ SSM in the Netherlands over the whole observation 
period.

From Fig. 8a, we can see the performance was improved over the NL stations. For specific stations, some sta-
tions were improved significantly from v1.2.2 to v1.7, while others are not. RM_SM_02 was improved the most, 
and so did RM_SM_12 and Twente_04. RM_SM_09 is an example that did not get improved obviously (it is to 
note that RM_SM_12 and RM_SM_09 are at the same 25 km pixel). The soil moisture from in-situ SM, v1.2.2, 
v1.7, ESACCI06.1, and SMAP of these 4 stations are further compared (see Fig. 9 and Table 2).

In these 4 stations, v1.7 performs better than v1.2.2 either significantly or slightly. In RM_SM_02, v1.7 is bet-
ter than v1.2 and performs similarly as ESACCI06.1. In RM_SM_12, v1.7 is better than v1.2 and ESACCI06.1.  

Fig. 8  (a) Mean of each metric over 24 stations in each version, (b–d) Evaluation metrics of 1 km SSM (v1.2.2 to 
v1.7) in NL stations over the whole observation period.

https://doi.org/10.1038/s41597-023-02011-7
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In Twente_04, all datasets underestimated SSM, but relatively v1.7 has a better performance in terms of magnitude.  
In RM_SM_09, all datasets cannot capture the dynamic changes well but v1.7 still performs relatively better.

Validation using stations on the tibetan plateau.  On the Tibetan Plateau, GSSM1 km (v1.7) was com-
pared with the in-situ SM, ESACCI06.1, and SMAP over the whole observation period. There are three SM mon-
itoring networks in Tibetan Plateau, including Maqu, Naqu, and Nagari (including Shiquanhe and Ali)8,47. In this 
study, based on the evaluation result, we choose one station from each network to do a detailed comparison: ‘NST 05’  
from Maqu, ‘South’ from Naqu, and ‘SQ04’ from Nagari (Fig. 10, Table 3).

At station NST 05 (Fig. 10a1), GSSM1 km and ESACCI06.1 both underestimated SSM but GSSM1 km per-
forms better. SMAP lacks data in most days, but in the days it has data, it performs similarly to GSSM1 km. At 
station South (Fig. 10b1), SMAP does not have data when there is in-situ SSM. GSSM1 km is better at capturing 
dynamics, but ESACCI06.1 is better at the magnitude. At station SQ04 (Fig. 10c1), SMAP does not have data 
when there is in-situ SSM. ESACCI06.1 can capture 3 peaks (less than 0.4 cm3/cm3) of high SSM, which leads to 

Fig. 9  Comparison of SSM from in-situ, v1.2.2, v1.7, ESACCI06.1, and SMAP in NL stations over the whole 
observation period.

r ubRMSE RMSE

RM_SM_02

V1.2.2 0.76 0.04 0.05

V1.7 0.86 0.03 0.03

ESACCI06.1 0.85 0.04 0.05

SMAP 0.79 0.06 0.07

RM_SM_12

V1.2.2 0.36 0.15 0.17

V1.7 0.63 0.13 0.13

ESACCI06.1 0.52 0.15 0.15

SMAP 0.55 0.13 0.14

Twente_04

V1.2.2 0.36 0.2 0.28

V1.7 0.71 0.15 0.16

ESACCI06.1 0.72 0.19 0.29

SMAP 0.7 0.16 0.29

RM_SM_09

V1.2.2 0.36 0.06 0.1

V1.7 0.43 0.06 0.07

ESACCI06.1 0.37 0.07 0.11

SMAP 0.52 0.08 0.14

Table 2.  Evaluation metrics of v1.2.2, v1.7, ESACCI06.1, and SMAP in NL stations over the whole observation 
period.
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a better consistency metric. However, both GSSM1 km and ESACCI06.1 cannot capture the SSM higher than 
0.4 cm3/cm3. The possible reason we found is the APEI (Fig. 10c2) in this station is relatively lower than the APEI 
in South and NST and APEI has a positive relationship with SSM.

Usage Notes
We present a global, long term, daily 1 km surface soil moisture dataset generated through a physics-informed 
ML algorithm, constrained with in-situ measurements. Our GSSM1 km dataset outperforms other existing grid-
ded datasets, in terms of daily temporal dynamics as shown by the highest temporal correlation with the in-situ 
measurements. Nevertheless, under conditions for those regions outside the spatiotemporal range sampled by 
the in-situ measurements, the uncertainties of the GSSM1 km are difficult to be determined.

RF performance can be significantly affected by the lack of diversity in the training data. As shown in Fig. 3, 
although the in-situ soil moisture measurements were obtained from global networks, the data did not cover 
all climate zones across the globe. Therefore, outside of the training conditions such as high latitudes and in 
arid regions, relatively high uncertainty is expected. The lack of observations under specific conditions poses 
the same challenges for other datasets and models. Therefore, using GSSM1 km in an ensemble of differently 
derived datasets may help obtain more reliable soil moisture information in these data-sparse regions. The new 
soil moisture dataset is an important complement to the existing suite of soil moisture datasets and can enhance 
the future large-scale analysis of extreme events.

Fig. 10  Comparison of Tibetan Plateau stations over the whole observation period. In-situ SSM, GSSM1 km 
(v1.7), ESA-CCI06.1, and SMAP (a1: NST 05, b1: South, c1: SQ04). In-situ SSM, GSSM1 km (v1.7) and APEI 
(a2: NST 05, b2: South, c2: SQ04). In-situ SSM, GSSM1 km (v1.7) and Evaporation (a3: NST 05, b3: South, c3: 
SQ04).

r ubRMSE RMSE

NST 05

GSSM1 km 0.76 0.11 0.13

ESACCI06.1 0.4 0.11 0.24

SMAP 0.52 0.1 0.11

South

GSSM1 km 0.59 0.09 0.11

ESACCI06.1 0.4 0.05 0.13

SMAP — — —

SQ04

GSSM1 km −0.03 0.11 0.12

ESACCI06.1 0.65 0.18 0.2

SMAP — — —

Table 3.  Evaluation metrics of GSSM1 km (v1.7), ESACCI06.1, and SMAP at Tibetan Plateau stations over the 
whole observation period (Cells with a hyphen represent that no SMAP data are available).
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The data source (satellite, reanalysis data, and other data), data processing (including pre-processing of pre-
dictors, spatial resampling of predictors, and samples splitting), evaluation metrics, history of versions, uncer-
tainty, and latitudinal patterns are given in the supplementary materials.

Code availability
All the codes used in this study to generate the dataset were written in the Javascript in Google Earth Engine 
and are available through GitHub (https://github.com/AliciaPython/GSSM1km). The GSSM1 km dataset can be 
accessed at: https://code.earthengine.google.com/?asset=users/qianrswaterr/GlobalSSM1km0509.
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