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Surface soil moisture (SSM) is an important variable in drought monitoring, floods predicting, weather 
forecasting, etc. and plays a critical role in water and heat exchanges between land and atmosphere. 
SSM products from L-band observations, such as the Soil Moisture Active Passive (SMAP) Mission, have 
proven to be optimal global estimations. Although X-band has a lower sensitivity to soil moisture than 
that of L-band, Chinese FengYun-3 series satellites (FY-3A/B/C/D) have provided sustainable and daily 
multiple SSM products from X-band since 2008. This research developed a new global SSM product 
(NNsm-FY) from FY-3B MWRI from 2010 to 2019, transferred high accuracy of SMAP L-band to FY-3B 
X-band. The NNsm-FY shows good agreement with in-situ observations and SMAP product and has a 
higher accuracy than that of official FY-3B product. With this new dataset, Chinese FY-3 satellites may 
play a larger role and provide opportunities of sustainable and longer-term soil moisture data record for 
hydrological study.

Background & Summary
Surface soil moisture (SSM) is essential for agriculture, ecosystem, weather, climate system and human health1–4. 
SSM is a boundary condition, affecting the evapotranspiration and infiltration in water cycle, as well as the 
latent and sensible heat fluxes in land surface energy balance5–9. Soil moisture is necessary for crop growth and 
yield, and soil moisture plays important role in monitoring disaster (e.g., drought, flood, landslide etc.)10–12 
and climate extremes (e.g., heatwave)13,14. Soil information can help improve weather forecasting accuracy and 
model performance when using soil moisture observed by satellites into land surface model15–17. Long-term 
and spatio-temporally consistent SSM datasets are therefore necessary for those applications and scientific 
researches18,19.

Microwave remote sensing has proven successful for providing spatial and temporal distribution of global 
soil moisture from satellite missions, especially L band passive sensors in recent years. C/X/K band sensors 
(SSM/I (Special Sensor Microwave/Imager), AMSR-E/AMSR2 (Advanced Microwave Scanning Radiometer), 
MWRI etc.20,21) provide 40 years SSM observations at sensing depth of ~1 cm, with more uncertainties due to 
vegetation effects compared with L band. In contrast, L band radiometers (SMOS (Soil Moisture and Ocean 
Salinity) and SMAP) provide only 14 years and 8 years SSM products with higher accuracy at sensing depth of 
~5 cm, with more penetration into vegetation and less opaque of atmosphere22,23.

To meet more application requirements for long-term datasets, there are generally two strategies: 1) The first 
strategy is SSM retrieval with one consistent algorithm, which requires inter-calibrated microwave observations. 
Different methods have been explored, including the regression method24, the neural network (NN) method25,26, 
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the land parameter retrieval model (LPRM), and the recent multi-channel collaborative algorithm (MCCA)27, 
etc. 2) The second strategy is to blend multi-satellite products. Owe28 developed a dataset dating back to 2007 by 
applying LPRM to the entire brightness temperature (TB) observed by C- and X-bands sensors. Then, Liu29,30 
combined products from active and passive microwave sensors by rescaling active and passive products to a ref-
erence land surface model data using a cumulative distribution function (CDF) matching approach. On the basis 
of above works, Gruber31 proposed a triple collocation analysis (TCA)-based method for merging soil moisture 
taking into account the error characteristics of the individual active and passive datasets, forming the basis of 
Climate Change Initiative soil moisture (CCIsm) product version v03.x and higher. SMOPS32 (soil moisture 
operational product system) provides a daily global SSM product with high spatial coverage (2017.03-present) 
that merged soil moisture retrievals from multiple satellites.

CCIsm33–36 is a publicly available and widely used long-term soil moisture dataset. While CCIsm has suffi-
cient record length (from 1978.11 to present) for climatological studies, it depends on numerous sensor spec-
ifications and CDF matching reduces inter-annual variability and climatological trends. It is found that the 
accuracy of CCIsm depends on regions and seasons, and the accuracy could be further improved through blend-
ing more SSM products. To be noted, the CCIsm only blends the FY-3B observations from June 2011 to August 
2019. We developed a NN method extending L band (SMOS or SMAP) benefits to previous C/X band AMSR-E/
AMSR2 data, and then released a nearly 20 years long-term soil moisture product37,38 (NNsm-AMSR), with high 
accuracy similar to SMAP but greater spatial coverage than SMOS and SMAP. Unfortunately, NNsm-AMSR has 
a temporal gap of 9 months due to data gaps between AMSR-E and AMSR2 sensors, which limits its applica-
tions. On the other hand, MWRI onboard Chinese FY-3 satellites has almost the same frequencies configuration 
with AMSR-E/AMSR2 except C-band, and the FY-3 (B/C/D) data are available since 2010. The development of 
FY-3 SSM products can be an important input for future blended SSM products.

This research developed an SSM product (named as NNsm-FY) at 36 km resolution from 2010 to 2019 by 
transfering high accuracy of SMAP L-band SSM to X-band MWRI of FY-3B. Figure 1 shows the scheme of the 
NNsm-FY dataset development. Validation against in situ data from representative networks demonstrate that 
the NNsm-FY matches well with in situ SSM, with similar accuracy to SMAP (~0.04 m3/m3). This dataset pro-
vides a new soil moisture product of Chinese FY-3 with high accuracy, and fills in the gap (2011.11–2012.06) 
between the effective end of AMSR-E and beginning of the AMSR2, such as a previously developed long term 
dataset NNsm-AMSR39, and intends to provide opportunities for sustainable and longer-term soil moisture for 
hydrological or climate change study at global or regional scale.

Data Source Time Period Spatio-temporal resolution

FY-3B MWRI L1 TB provided by NSMC Training: 2015–2017 Swath

SMAP L3 soil moisture https://nsidc.org/data/smap Training: 2015–2017 36 km, Daily

FY-3B MWRI L1 TB provided by NSMC Retrieval: 2010–2019 Swath

Table 1. Details of data used in the study.

Fig. 1 Flow chart of soil moisture retrieval of NNsm-FY dataset.
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Methods
In our research, we used two kinds of data. SMAP level 3 soil moisture product (SMAPL3sm, Version 6), avail-
able at website of National Snow and Ice Data Center (NSIDC, https://nsidc.org/data/smap), are in a global 
cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0), with size of 406 rows × 964 col-
umns. TBs of FY-3B MWRI are re-calibration level 1 swath data, provided by National Satellite Meteorological 
Center (NSMC). And the footprint sizes of MWRI 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, 89 GHz are 
51 km × 58 km, 30 km × 50 km, 27 km × 45 km, 18 km × 30 km and 18 km × 30 km. Table 1 summarizes the data 
used, their spatial resolutions, and provenance.

A soil moisture retrieval model was developed based on artificial neural network (ANN), which is a modified 
version of method developed by Yao37,39. As shown in Fig. 1, the NNsm-FY dataset was generated with three 
steps:(1) data pre-processing and data matching, (2) training of soil moisture ANN model, (3) retrieval and 
validation of NNsm-FY dataset.

Data Pre-processing. To match FY-3B TBs with SMAPL3sm, FY-3B TBs are firstly resampled to 36 km. We 
use the “drop in the bucket” method to resample FY-3B L1 swath data to 36 km EASE-Grid format. All swath data 
that fall within a 36 km grid cell are averaged together. Microwave vegetation index(MVI), proposed by Shi40, 

Fig. 2 Statistical map between training result and SMAPL3sm over training period (2015–2017): (a) CC,  
(b) RMSE(m3/m3), (c) Relative error and (d) RMSE distribution at different NDVI interval.

Fig. 3 Location of in situ soil moisture validation dense networks.
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is an indicator of effect of vegetation in soil moisture retrieval. MVI is calculated by TBs of two bands, and the 
formula is as follows:

MVI(f , f )
TB (f ) TB (f )
TB (f ) TB (f ) (1)

v h

v h
1 2

2 2

1 1
=

−
−

Training of soil moisture ANN model. The training is implemented in Matlab R2018b version. 
Cascade-forward neural network is selected as the training model, with “hiddenSizes” being 10, “Training func-
tion” being “trainlm (Levenberg-Marquardt)”. Mean squared error (mse) is used to evaluate the performance of 
the neural network. In the training period from 2015 to 2017, the training target is SMAPL3sm, and the Input 
data are matched FY-3 TBs from 10 GHz to 36.5 GHz and MVI derived from FY-3 TBs. The training dataset 
doesn’t include the frozen condition, cause the SMAPL3sm has no value when soil is frozen.

The ANN model is trained to learn the relationship between the input TBs related variables and the target 
SMAPL3sm. The model is trained separately for each grid cell in Matlab R2018b version. To reduce the impact of 
temperature in soil moisture model, FY-3 TBs at 2:00 o’clock and SMAPL3sm at 06:00 o’clock are selected. From 
2015 to 2017, spatial-temporal matched FY-3B data and SMAP data form the training dataset.

Matlab randomly divide the training dataset into 3 kinds of samples: 70% training samples, 15% validation 
samples and 15% testing samples. The network is trained and adjusted according to its error of multiple train 
epochs with training samples. The validation samples are used to halt training when the network stops improv-
ing. The test sample provide an independent measure of network performance during and after training.

Retrieval of NNsm-FY for each grid cell. After establishing the ANN relationship model between the 
input and the target for each grid cell, the model is applied with inputting pre-processed FY-3B TBs and MVI at 
the corresponding 36 km grid cell from 2010 to 2019. The retrieval is implemented using one year’s daily data over 
one grid cell, and the global daily soil moisture from 2010 to 2019 are obtained finally.

Data Records
The data records41 contain global daily soil moisture data with a spatial resolution of 36 km, in unit of m3/m3, 
from November 2010 to July 2019. These data are stored in NetCDF format with one file per day, defined by two 
dimensions (lat, lon, respectively representing latitude and longitude) and a variable soil moisture (soil_mois-
ture). The file name is “NNsm-FY-yyyyddd.nc”, where “yyyy” stands for year and “ddd” stands for Julian date. 
For example, “2019001.nc” contains the global soil moisture distribution on the first day of 2019. This dataset is 
freely available from National Tibetan Plateau Data Center (TPDC, http://data.tpdc.ac.cn/).

Naming convention:
NNsm-FY-yyyyddd.nc
Variable: soil_moisture = volumetric soil moisture [m3/m3]

technical Validation
Validation is critical for providing accurate product before widely usage. The NNsm-FY dataset was validated 
at different spatio-temporal scales. Before validation, the training results were evaluated by comparing with 
training target. The NNsm-FY dataset was firstly validated using in-situ observations. Then the performance 
of NNsm-FY was compared with that of FY-3B official soil moisture product (FY-sm) and ERA5 soil moisture. 
We previously developed a soil moisture product called NNsm_AMSR (2002–2011,2012–2020) using similar 
method with SMAPL3sm and AMSR-E/AMSR2 TB. Finally, the homogeneity of NNsm-FY and NNsm_AMSR 

Location Network Name Sampling sites amount Climate regimea IGBPb Land cover

1

USDA (North 
America)

Walnut Gulch 29 Arid Shrub open

2 Little Washita 20 Temperate Grasslands

3 Fort Cobb 15 Temperate Croplands

4 Little River 28 Temperate Cropland/natural mosaic

5 Saint Joseph’s 15 Cold Croplands

6 South Fork 20 Cold Croplands

7 Reynolds Creek 20 Arid Grasslands

8
Tibetan Plateau (Asia)

Pali 20 Arid Barren/Grasslands

9 Naqu 58 Polar Grasslands

10
OZNET (Australia)

Yanco 24 Semi-arid Croplands/Grasslands

11 Kyeamba 8 Temperate Croplands

12 REMEDHUS (Europe) REMEDHUS 24 Temperate Croplands

13
AMMA (Africa)

Benin 4 Arid Savannas

14 Niger 3 Arid Grasslands

Table 2. List of validation dense networks. Time series for bold-face networks are shown in Fig. 4 and Fig. 11. 
aKoeppen-Geiger climate classification58. bInternational Geosphere-Biosphere Program.
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was verified. For evaluation against in situ observations and other SSM products, we used the correlation coeffi-
cient (CC), root mean square error (RMSE), bias, unbiased RMSE (ubRMSE) for statistical results.

evaluation of training results. To demonstrate the reliable of soil moisture ANN model, the relationship 
between the training results with training target SMAPL3sm is shown in Fig. 2, in terms of CC, RMSE and relative 
error at each grid cell over the training period. Traning results has high CC (>0.8) with the target SMAPL3sm 
globally, except for regions of equatorial rainforest and forest at high latitude such as part of Russia. Statistically, 

Source Location Number of sitesa Time periodb

1 FLUXNET2015 Global 152 1996–2014

2 ICOS2020 Europe 66 1996–2020

3 ICOSETC2022 Europe 37 2011–2021

4 AmeriFlux FLUXNET America 44 1994–2021

5 TERN Australia 22 2002–2022

Merger — Global 258 1994–2022

Table 3. List of flux sites. a and b: Sites which have half-hour soil moisture observations.

Fig. 4 Time series comparison of the SMAPsm (red dots), NNsm-FY (blue dots) and in situ soil moisture 
observations (obs-sm in gray lines) for period 2010 to 2019 over in situ networks: (a) Little Washita, (b) Naqu, 
(c) Yanco, (d) REMEDHUS, (e) Benin.

https://doi.org/10.1038/s41597-023-02007-3
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57 percent of RMSEs over global land are below 0.03 m3/m3, and 29 percent of RMSEs is between 0.03 m3/m3 and 
0.05 m3/m3. The high CC and low RMSE indicate that the input and the target of the model has a good correlation, 
and the trained result has a good agreement with the target.

The map of relative error in Fig. 2c shows a different information of error. Statistically, over global land, only 
30 percent of relative error is below 10%, 54 percent of relative error is between 10% and 20%. At forest area and 
tundra area, where the soil moisture is generally high, the relative error is small. At the central part of Eurasia, 
where the soil moisture is generally low, the relative error is larger. Vegetation effect is an important influence 
factors in soil moisture retrieval. To test the effect of vegetation on the error level of NNsm-FY, the RMSE distri-
bution between the training result NNsm-FY and the reference target SMAPsm is displayed in Fig. 2d, at differ-
ent NDVI interval. As a whole the RMSE increases as the NDVI increases. When NDVI is between 0.6 and 0.8, 
the median of RMSE is 0.034 m3/m3, and when NDVI is greater than 0.8, the median of RMSE is 0.049 m3/m3.

Validation using in situ observations. An ideal in situ validation network should has multiple sampling 
sites and represent the “truth” within a spatial domain that matching a satellite product grid. We choose both 
classical “dense” in situ networks with multiple sampling sites for validation, and “sparse” in situ networks with 
only one or very few sampling sites. These validation networks distribute in different climate regime and land 
cover in five continents.

 (1) Dense validation networks
14 representative in situ dense networks are used for validation, shown in Fig. 3 and Table 2, including: 
(a) 7 United States Department of Agriculture (USDA) watershed networks42,43, (b) 2 Tibetan Plateau 

2018–2019

NNsm-FY vs. in situ SMAPsm vs. in situ

CC RMSE Bias ubRMSE CC RMSE Bias ubRMSE

1.Walnut Gulch 0.71 0.029 −0.001 0.029 0.80 0.030 0.004 0.030

2.Little Washita 0.73 0.038 −0.011 0.037 0.88 0.034 −0.019 0.028

3.Fort Cobb 0.83 0.038 −0.008 0.037 0.86 0.047 −0.024 0.041

4.Little River 0.58 0.079 0.069 0.038 0.68 0.063 0.051 0.037

5.Saint Joseph’s 0.56 0.071 0.048 0.052 0.69 0.074 0.052 0.052

6.South Fork 0.35 0.063 0.019 0.060 0.57 0.068 0.022 0.065

7.Reynolds Creek 0.64 0.055 −0.047 0.027 0.77 0.046 −0.041 0.021

8.Pali 0.70 0.056 −0.052 0.023 0.75 0.052 −0.047 0.022

9.Naqu 0.91 0.099 0.014 0.098 0.94 0.091 0.028 0.087

10.Yanco 0.57 0.080 0.045 0.066 0.50 0.062 0.035 0.051

11.Kyeamba 0.59 0.103 0.033 0.097 0.57 0.093 0.032 0.087

12.REMEDHUS 0.68 0.057 0.025 0.052 0.80 0.047 0.020 0.042

13.Benin(2010–2014) — — — — — — — —

14.Niger(2010–2014) — — — — — — — —

Median 0.66 0.060 0.017 0.045 0.76 0.057 0.021 0.042

Flux Sites(Median) 0.44 0.117 0.012 0.065 0.55 0.110 0.001 0.064

2018–2019 NNsm-FY vs. in situ (Anomalies) SMAPsm vs. in situ (Anomalies)

1.Walnut Gulch 0.68 0.024 0.001 0.024 0.72 0.024 0.001 0.024

2.Little Washita 0.63 0.040 −0.013 0.038 0.82 0.040 −0.027 0.029

3.Fort Cobb 0.73 0.038 0 0.038 0.77 0.045 −0.015 0.042

4.Little River 0.72 0.037 −0.011 0.035 0.75 0.045 −0.024 0.039

5.Saint Joseph’s 0.47 0.049 −0.024 0.043 0.53 0.051 −0.024 0.045

6.South Fork 0.23 0.051 −0.004 0.051 0.60 0.045 0.004 0.045

7.Reynolds Creek 0.85 0.024 −0.014 0.019 0.82 0.019 −0.006 0.018

8.Pali 0.56 0.025 0.017 0.019 0.80 0.022 0.017 0.013

9.Naqu 0.57 0.060 0.015 0.058 0.72 0.061 0.040 0.047

10.Yanco 0.41 0.053 −0.001 0.053 0.51 0.050 0.002 0.050

11.Kyeamba 0.36 0.077 −0.037 0.067 0.60 0.056 −0.010 0.055

12.REMEDHUS 0.55 0.047 0.021 0.042 0.67 0.035 0.015 0.032

13.Benin(2010–2014) — — — — — — — —

14.Niger(2010–2014) — — — — — — — —

Median 0.57 0.044 −0.003 0.040 0.72 0.045 −0.003 0.041

Flux Sites(Median) 0.23 0.062 0.013 0.056 0.42 0.059 0.009 0.052

Table 4. Statistical comparisons of NNsm-FY derived from FY-3B and SMAPL3sm against in situ soil moisture 
at 12 dense validation networks and flux sites, at an independent validation period (2018–2019), for both actual 
SSM and SSM anomalies.

https://doi.org/10.1038/s41597-023-02007-3
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networks, (c) 2 Australian Moisture Monitoring Network (OZNet) networks44, (d) the REMEDHUS 
network, and (e) 2 African Monsoon Multidisciplinary Analysis (AMMA) networks45. Data of OZNet, 
REMEDHUS and AMMA sites are provided by International Soil Moisture Network (ISMN) (https://
ismn.geo.tuwien.ac.at/) website46,47. As space is limited, time series of bold-face networks are shown in the 
following figures.

 (2) Flux sites
FLUXNET (https://fluxnet.org/) is a global network of micrometeorological tower sites that measure the car-

bon dioxide, water vapor, and energy between terrestrial ecosystems and the atmosphere. We use 5 flux datasets: 
(1) FLUXNET201548, the most recent FLUXNET data product, (2) ICOS202049, Warm Winter 2020 ecosystem 
eddy covariance flux product, (3) ICOSETC202250, (4) AmeriFlux Network (https://ameriflux.lbl.gov/), and (5) 
TERN, the Terrestrial Ecosystem Research Network(https://portal.tern.org.au/). The half-hour soil moisture 
observations at 5 cm depth from those sites are used shown in Table 3.

The performance of NNsm-FY over in situ dense networks and Flux sites are shown in time series in Fig. 4 
and in a statistical result for an independent validation period (2018–2019) in Table 4.

Figure 4 shows time series comparison of the SMAPsm (red dots), NNsm-FY (blue dots) and in situ soil 
moisture observations (obs-sm in gray lines). For demonstration, we only show time series for one in situ net-
work in every continent. NNsm-FY can reconstruct the pattern of SMAPsm including magnitude and varia-
bility, with a mean CC 0.86. Both NNsm-FY and SMAPsm show good agreement with in situ SSM (obs-sm) 
at daily time scale, capturing the daily and seasonal dynamics of SSM. For the Little Washita network, there is 
a slight underestimation during dry period. In Naqu, NNsm-FY has more retrievals than SMAPsm, especially 
in winter. Over Yanco, in many instances, NNsm-FY overestimates soil moisture associated with precipitation 
events, together with SMAPsm. For the AMMA-Benin, NNsm-FY overestimates soil moisture at both dry and 
wet period.

Fig. 5 CC of NNsm-FY and SMAPL3sm against in situ soil moisture at 12 dense validation networks, at an 
independent validation period (2018–2019), for both actual SSM and SSM anomalies.

Fig. 6 Box plots of statistics of NNsm-FY and SMAPsm against in situ soil moisture at an independent 
validation period (2018–2019), for both actual SSM and SSM anomalies: (a) CC, (b) ubRMSE(m3/m3) at dense 
networks, (c) CC and (d) ubRMSE(m3/m3) at flux sites.

https://doi.org/10.1038/s41597-023-02007-3
https://ismn.geo.tuwien.ac.at/
https://ismn.geo.tuwien.ac.at/
https://fluxnet.org/
https://ameriflux.lbl.gov/
https://portal.tern.org.au/


8Scientific Data |          (2023) 10:133  | https://doi.org/10.1038/s41597-023-02007-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Table 4 and plots in Figs. 5, 6 show statistical results for NNsm-FY and SMAPsm at dense networks and flux 
sites, at an independent validation period of 2018–2019, for both actual satellite SSM and SSM anomalies. For 
actual SSM and its anomalies, NNsm-FY generally have a lower accuracy than SMAPsm for most networks, with 
lower CC and higher ubRMSE. For actual SSM, correlations of NNsm-FY with in situ SSM are slightly lower 
than that of SMAPsm at dense netwoks, ranging from 0.56 to 0.91 (except 0.35 at South Fork) for NNsm-FY, 
and ranging from 0.50 to 0.94 for SMAPsm. For SSM anomalies, NNsm-FY performs worse than SMAPsm at 
most networks in terms of CC. For both NNsm-FY and SMAPsm, SSM anomalies have higher accuracy in terms 

Fig. 7 time series comparison of the NNsm-FY (blue dots), FY-sm (green dots) and in situ soil moisture 
observations (obs-sm in gray lines) for period 2010 to 2019 over in situ networks: (a) Little Washita, (b) Naqu, 
(c) Yanco, (d) REMEDHUS, (e) Benin, (f) Saint Joseph’s and (g) South Fork.

https://doi.org/10.1038/s41597-023-02007-3
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of ubRMSE. Although the SSM anomalies show lower CC than actual SSM, both products still have relatively 
strong correlations and high accuracy after removing seasonal cycle.

From Fig. 5 over most sites CC of SSM anomalies are stable or slightly decrease from the CC of actual SSM, 
both for NNsm-FY and SMAP. Over site South Fork, NNsm-FY performs worse than SMAPsm, and it is more 
pronounced for SSM anomalies. Over site Naqu and site Kyeamba, NNsm-FY and SMAPsm have similar per-
formance, but CC of NNsm-FY (Anomalies) is lower than CC of SMAP (Anomalies). There are several reasons 
for the difference of performance between NNsm-FY and SMAPsm. L-band on SMAP has higher sensitivity to 
soil moisture than high-frequency bands such as X-band,Ku-band and K-band on MWRI/FY-3B; The incident 
angle of SMAP (40°) is different with incident angle of MWRI/FY-3B (53°). Studies have shown that perfor-
mance of soil moisture estimations is better at intermediate incidence angle of 40°to 45°, while performance will 
be degraded when incident angle is larger than 50°or less than 30°. And the sensitivity of different microwave 
bands to soil moisture and soil moisture change varies with the rainfall event, change of surface cover type and 
vegetation cover51,52.

Validation and Comparison with FY-3B official product FY-sm at dense networks and flux 
sites. To further illustrate the accuracy of our product, we compared NNsm-FY with FY-3B official soil mois-
ture product53,54 (FY-sm), at dense networks and flux sites.

Figure 7 shows time series of the NNsm-FY (blue dots), FY-sm (green dots) and in situ soil moisture observa-
tions (obs-sm in gray lines) at dense networks. NNsm-FY shows good agreement with in situ observations, while 
FY-sm shows overestimation over some networks. For Little Washita network and REMEDHUS network, FY-sm 
significantly overestimates soil moisture. In Naqu network, FY-sm has very few retrievals only in Northern sum-
mer, and at Yanco network, FY-sm retrievals has very few retrievals in southern winter. For the AMMA-Benin, 

2010–2019

NNsm-FY vs. in situ FY-sm vs. in situ

CC RMSE Bias ubRMSE CC RMSE Bias ubRMSE

1.Walnut Gulch 0.77 0.026 0.002 0.027 0.62 0.049 0.041 0.027

2.Little Washita 0.66 0.043 −0.007 0.043 0.41 0.081 0.061 0.054

3.Fort Cobb 0.72 0.047 −0.016 0.044 0.56 0.085 0.068 0.051

4.Little River 0.65 0.083 0.070 0.044 0.07 0.176 0.165 0.066

5.Saint Joseph’s 0.59 0.089 0.075 0.048 −0.06 0.195 0.148 0.120

6.South Fork 0.43 0.068 0.028 0.061 0.15 0.154 0.091 0.124

7.Reynolds Creek 0.63 0.058 −0.026 0.051 0.24 0.065 0.008 0.065

8.Pali — — — — — — — —

9.Naqu 0.70 0.071 0.017 0.069 0.70 0.087 0.050 0.071

10.Yanco 0.66 0.082 0.041 0.071 0.44 0.105 0.045 0.094

11.Kyeamba 0.57 0.125 0.067 0.105 0.53 0.168 0.130 0.107

12.REMEDHUS 0.76 0.040 0.007 0.040 0.64 0.054 0.039 0.037

13.Benin 0.78 0.073 0.057 0.046 0.88 0.086 0.076 0.041

14.Niger 0.52 0.029 0.018 0.023 0.40 0.047 0.039 0.026

Median 0.66 0.068 0.018 0.046 0.44 0.086 0.061 0.065

Flux sites(Median) 0.40 0.093 0.007 0.064 0.13 0.145 0.061 0.093

2010–2019 NNsm-FY vs. in situ (Anomalies) FY-sm vs. in situ (Anomalies)

1.Walnut Gulch 0.63 0.022 −0.001 0.022 0.54 0.019 −0.001 0.019

2.Little Washita 0.61 0.040 −0.005 0.040 0.60 0.039 −0.005 0.039

3.Fort Cobb 0.67 0.043 −0.005 0.043 0.62 0.040 −0.002 0.040

4.Little River 0.52 0.039 −0.001 0.039 0.50 0.035 0 0.035

5.Saint Joseph’s 0.53 0.048 −0.002 0.048 0.45 0.046 0.002 0.046

6.South Fork 0.50 0.056 0.006 0.056 0.54 0.044 0.014 0.042

7.Reynolds Creek 0.37 0.034 0.000 0.034 0.39 0.033 0 0.033

8.Pali — — — — — — — —

9.Naqu 0.40 0.079 −0.005 0.079 0.43 0.063 0.031 0.056

10.Yanco 0.54 0.064 0.001 0.064 0.39 0.052 0.006 0.051

11.Kyeamba 0.30 0.080 0.002 0.080 0.23 0.060 0.013 0.059

12.REMEDHUS 0.52 0.036 0.002 0.036 0.45 0.028 0.002 0.028

13.Benin 0.36 0.041 −0.007 0.041 0.28 0.029 −0.003 0.029

14.Niger 0.30 0.023 0.005 0.023 0.36 0.022 −0.004 0.021

Median 0.52 0.041 −0.001 0.041 0.47 0.039 0 0.039

Flux Sites(Median) 0.26 0.055 −0.001 0.054 0.22 0.050 0.001 0.048

Table 5. Statistical comparisons of NNsm-FY and FY-sm with in situ soil moisture for the whole FY-3B period 
(2010–2019).
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NNsm-FY and FY-sm have similar soil moisture distribution curve, and both products overestimates soil mois-
ture, especially in dry period.

Table 5 shows statistical results for NNsm-FY and FY-sm at dense networks and flux sites for the whole FY-3B 
period (2010–2019). In terms of accuracy, our product NNsm-FY outperforms FY-sm, with lower ubRMSE and 
relatively higher CC (except Benin network). At Little River, Saint Joseph’s and South Fork networks, FY-sm 
highly overestimates soil moisture. FY-sm has no retrievals in northern winter caused by failure of algorithm 
and overestimate soil moisture in northern summer (as shown in the time series figures in Fig. 7f,g) at Saint 
Joseph’s and South Fork networks, which belong to the cold climate area according to Table 2. At those two 
networks, FY-sm even has no correlations with in situ observations. The same issues occur at two networks on 
the Tibetan Plateau, FY-sm has a few retrievals in northern summer at Naqu network, and has little retrievals at 
Pali networks.

Fig. 8 Box plots of statistics for NNsm-FY and FY-sm against in situ soil moisture observations for both 
actual SSM and SSM anomalies: (a) CC, (b) ubRMSE(m3/m3) at 13 dense validation networks, (c) CC and  
(d) ubRMSE(m3/m3) at flux sites.

Fig. 9 Global distribution of daily averaged soil moisture and standard deviation from 2010 to 2019.
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Figure 8 shows the validation results at dense networks and flux sites. At dense networks, it is found that 
NNsm-FY has a relatively good performance with median CC of 0.66 and median ubRMSE of 0.046 m3/m3, 
while FY-sm has a worse performance with median CC of 0.44 and median ubRMSE of 0.065 m3/m3. At flux 
sites, although all statistical results get worse, NNsm-FY performs better than FY-sm. To be noted, there is a spa-
tial scale mismatch between satellite and in situ flux sites soil moisture, as Cosh et al.43 demonstrated that at least 
6 soil moisture sampling sites are necessary to adequately represent a 25 km × 25 km footprint-scale soil mois-
ture. Here, soil moisture from flux sites, which is a measurement at point scale, is compared with 36 km × 36 km 
or 25 km × 25 km averaged satellite observation. These statistical results have certain uncertainty and are found 
lower than that from dense networks.

Fig. 10 Comparisons of daily data of NNsm-FY with ERA5sm in the whole FY-3B period (2010–2019) at each 
grid cell globally: (a) CC, (b) Bias(m3/m3).

Fig. 11 time series comparison of the NNsm-AMSR (purple dots) and NNsm-FY (blue dots) for period 2010 to 
2019 over in situ networks: (a) Little Washita, (b) Naqu, (c) Yanco, (d) REMEDHUS, (e) Benin.
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Comparison with eRA5 soil moisture. Due to the limited coverage of ground soil moisture observations, 
we complemented the comparison between our product and ERA5 soil moisture (ERA5sm, first layer soil mois-
ture of fifth generation of European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis data). We 
presented the global distribution of mean and standard deviation values of NNsm-FY and ERA5sm in Fig. 9, and 
the statistical results of CC and bias between the two in Fig. 10.

In Fig. 9a,b, at a global scale, NNsm-FY shows very similar spatial pattern as ERA5sm but it’s globally drier 
than ERA5sm, with lower SSM in Sahara, Australia and other arid areas, and higher SSM in tropical rainforests 
and in northern high latitudes. There are two exceptions to this similar pattern, the eastern Russia, and the 
Great Lakes and adjacent coniferous forest area of Canada. In eastern Russia, NNsm-FY is relatively dry, while 
ERA5sm is wetter. In the Great Lakes and adjacent coniferous forest area of Canada, NNsm-FY is wetter than 
ERA5sm. These two exceptions are also displayed in the bias map in Fig. 10b. The standard deviation (SD) of 
soil moisture in Fig. 9c,d is calculated on the daily soil moisture from 2010 to 2019. SD is an excellent descriptor 

Fig. 12 Statistical comparisons of NNsm-FY with NNsm-AMSR in the whole FY-3B period (2010–2019) at 
each grid cell globally: (a) CC, (b) Bias(m3/m3), (c)CDF and (d) Q-Q plot.

Locations of grid cells

NNsm-FY vs. NNsm-AMSR

CC Bias

1.Walnut Gulch 0.82 0.0002

2.Little Washita 0.76 −0.001

3.Fort Cobb 0.79 0.017

4.Little River 0.84 0.005

5.Saint Joseph’s 0.72 0.002

6.South Fork 0.80 0.014

7.Reynolds Creek 0.75 −0.006

8.Pali 0.77 0.006

9.Naqu 0.90 −0.140

10.Yanco 0.85 0.005

11.Kyeamba 0.76 −0.002

12.REMEDHUS 0.83 0.001

13.Benin 0.85 −0.015

14.Niger 0.75 −0.003

Table 6. Statistical comparisons of NNsm-FY with NNsm-AMSR in the whole FY-3B period (2010–2019) at 
grid cells where 14 dense validation networks located.
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of the average seasonal variation. SD is low for long-term dry and wet areas, indicating less variability in soil 
moisture for those areas such as tropical regions and deserts. Both NNsm-FY and ERA5sm have a high sea-
sonal variation (high SD values) in the Sahel region, the southern part of Central and East Africa, India. SD of 
NNsm-FY are systematically lower than SD of ERA5sm, indicating that ERA5sm may overestimate SSM var-
iability, which was also evidenced in researches when comparing ERA5sm with SMAPsm or in situ data from 
agrometeorological stations55,56.

Figure 10 shows the statistical results of CC and Bias between daily data of NNsm-FY with ERA5sm in the 
whole FY-3B period from 2010 to 2019. In general correlations are positive over most regions globally, and 
relatively strong correlations occur in regions with high seasonal variability in soil moisture, where may lack of 
seasonal repeatability. This indicates that the neural network is indeed working. It is reasonable that the correla-
tion can be very weak for regions with lower values of SD of soil moisture.

Homogeneity of NNsm_FY and NNsm_AMSR. 
 (1) Fill in gap of NNsm-AMSR

Previously developed product NNsm-AMSR39 has a similar accuracy with SMAPL3sm, successfully 
transferring high accuracy of L-band SMAP to C/X-band AMSR. Unfortunately, NNsm-AMSR has a gap 
in period from Oct. 2011 to Jun 2012, because AMSR-E and its successive sensor AMSR2 have a gap in this 
period. This gap limits application of NNsm-AMSR such as drought analysis and climate change research. 
NNsm-FY dataset developed in this research, spanning from late 2010 to 2019, exactly fill in this gap, with 
a similar high accuracy with SMAP, as shown in the red dotted box in Fig. 11.

 (2) Homogeneity of NNsm_FY and NNsm_AMSR

Before combination usage of NNsm_FY and NNsm_AMSR, we evaluated the homogeneity of those two 
datasets. As shown in Fig. 11, NNsm_FY and NNsm_AMSR have the similar dynamic range and values of soil 
moisture. We also tested the consistency in terms of CC, bias Cumulative Distribution Function (CDF), and 
Quantile-Quantile plot(Q-Q plot), shown in the Fig. 12 (all global grid cells) and Table 6 (taking the grid cells 

Fig. 13 Amount of soil moisture retrievals at each grid cell within 2018 for the following products: (a) NNsm-FY, 
(b) FY-sm, (c) SMAPsm, (d) SMOSsm, (e) NNsm-AMSR, and (f) CCIsm.
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where validation networks located as examples). The Q-Q plot and CDF, based on all of the daily data for the 
NNsm_FY and NNsm_AMSR in Fig. 12c,d, demonstrates that those two datasets have similar spatio-temporal 
distribution pattern. NNsm_FY agrees well with NNsm_AMSR, with high CC values in regions with significant 
soil moisture dynamics, and with most absolute values of bias less than 0.01 m3/m3, as shown in the Fig. 12a,b 
and Table 6.

Advantages of NNsm-FY. As described in the previous section, NNsm-FY has high accuracy, showing 
good agreement with SMAPsm and in situ observations, and performs better than FY-3B official soil moisture 
product (FY-sm) when comparing with in situ soil moisture. Filling in gap of NNsm-AMSR (2011.11–2012.06), 
NNsm-FY works together with NNsm-AMSR to provide complete long-term soil moisture since 2002, both hav-
ing a high accuracy similar with SMAPsm.

For the convenience of application, we also compare data spatial coverage, taking 2018 as an example. 
In Fig. 13a, NNsm-FY can provide considerable amount of soil moisture retrievals at each grid cell globally. 
Another important detail worth mentioning is that, NNsm-FY has more soil moisture retrievals in the Tibetan 
Plateau and in some part of the high latitudes. FY-sm shown in Fig. 13b has no retrievals at most grid cell in 
the Tibetan Plateau, and has less retrievals in the high latitudes, caused by the failure of algorithm or flagging of 
frozen soil. In addition to high accuracy, our product NNsm-FY has a greater spatial coverage than SMAPsm 
and SMOSsm, especially in the Tibetan Plateau area, as shown in Fig. 13a,c,d. This is primarily determined by 
the satellite configuration, as swath width of SMAP and SMOS is 1000 km and swath width of FY-3 MWRI is 
1400 km. In the Tibetan Plateau area, NNsm-FY has more retrievals both for swath width and retrieval algo-
rithm. NNsm-AMSR in Fig. 13e can provide most soil moisture retrievals globally among those 5 single satellite 
products, except that NNsm-FY has more retrievals than NNsm-AMSR in the Tibetan Plateau. In Fig. 13f for 
CCIsm(Version v05.2), numbers of retrievals per year at some medium- and low-latitude grid cells are close 
to or equal to 365, namely CCIsm has retrievals almost every day at those gird cells, which is because CCIsm 
merged ASCAT, AMSR2, SMOS and SMAP into one product57. Even so, CCIsm has less retrievals in the Tibetan 
Plateau (less than 100 retrievals per year at one grid cell), due to the LPRM retrieval algorithm as well as different 
quality and uncertainties of other used soil moisture products.

Code availability
The input data processing, dataset generation and validation were conducted using Matlab software (R2018b 
version). Code is available on Github: https://github.com/panpanyao/NNsm-FY-code.
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