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Chromosomes are a principal target of clinical cytogenetic studies. While chromosomal analysis is an 
integral part of prenatal care, the conventional manual identification of chromosomes in images is 
time-consuming and costly. This study developed a chromosome detector that uses deep learning and 
that achieved an accuracy of 98.88% in chromosomal identification. Specifically, we compiled and made 
available a large and publicly accessible database containing chromosome images and annotations for 
training chromosome detectors. The database contains five thousand 24 chromosome class annotations 
and 2,000 single chromosome annotations. This database also contains examples of chromosome 
variations. Our database provides a reference for researchers in this field and may help expedite the 
development of clinical applications.

Background & Summary
The human cell has one pair of sex chromosomes and 22 pairs of other chromosomes. Abnormalities in the total 
number or structure of chromosomes are referred to as chromosomal aberrations and are the leading cause of 
genetic disorders1. The conventional sampling method is amniocentesis, during which amniotic fluid from the 
uterus is aspirated under sonographic guidance. Approximately one in 150 babies have chromosomal abbera-
tions2. Common chromosomal aberrations occur on chromosomal pair 13 (trisomy 13), which is associated with 
Patau syndrome, pair 18 (trisomy 18), which is associated with Edwards syndrome, and pair 21 (trisomy 21),  
which is associated with Down syndrome. According to the National Center for Biotechnology Information, 
these chromosomal aberrations cause 50%–60% of early miscarriages. Karyotyping is clinically important in 
prenatal genetic diagnosis3.

Karyotyping is a diagnostic method in which characteristic dark and light bandings of chromosomes are 
visualised on images for examination by physicians or senior technicians. Abnormality is determined according 
to the number and structure of abnormal chromosomes and sex-related chromosomes. The procedure typically 
takes approximately 20 min for an experienced examiner. The examiner needs to sort, cut, orient, and rearrange 
the mapping of a raw chromosomal cell, and at least four chromosomal images need to be processed for an 
individual subject to ensure a correct diagnosis. Chromosomal analysis is labour intensive and is an urgent 
issue because of increasing shortages of medical manpower. Automated chromosome classification systems are 
scarce. Most current systems are based on artificial intelligence (AI) approaches involving machine learning and 
deep learning4–7. Earlier studies on chromosome classification were based on segmenting overlaps and adher-
ent chromosomes and employed conventional methods like border detection8,9, the watershed method10, and 
straightening of bent chromosomes11,12. These methods depended heavily on image preprocessing, resulting in 
distorted chromosome features that could result in misdiagnoses. Recent research in this field has a growing 
preference for chromosome prototypes over preprocessing.

Chromosomes are classified by basically one of two approaches. The first approach involves the analysis of sin-
gle chromosomes. This requires a human examiner, takes substantial time and effort, and is often complemented 
by background image segmentation and noise suppression13. Convolutional neural networks (CNNs)14,15 may 
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be used for classifying images; however, the accuracy is unsatisfactory due to low data volume. This approach, 
due to its repetitiveness and the variability of chromosome features, has limited clinical application. The second 
approach involves the analysis of original images by using deep learning–based object detection models16–20 
to identify and classify chromosomes. For example, DeepACEv221 requires no manual preprocessing and uses 
object detection as the backbone to frame and classify individual chromosomes, and this is followed by final con-
firmation and manual editing by a human examiner. This approach is clinically more applicable. In the literature, 
chromosome images are relatively easy to identify and classify from chromosome images. Despite the simplicity 
of these images, an examiner must spend substantial time and effort to identify the chromosomes. An automatic 
chromosome recognition system is essential for handling more difficult images for better clinical application.

The application of AI models for medical imaging is constrained by the complexity of medical images. In a 
clinical setting, an incomplete AI model would not be practically useful and may even decrease staff productiv-
ity. In the event of an incomplete database, the trust of experts and patients cannot be gained22. Many examples 
of AI in medical research require a large database to improve the credibility and stability of the AI model23–27.

We have developed here a detector called the ‘Automated Chromosome Detector Based on Metaphase 
Cell Images Using Deep Learning’ that is capable of locating and classifying chromosomes in images.  
The images used in this study have more chromosome overlaps and adherences than those used in other studies. 
Chromosome overlaps and adherences can be confusing for specialists. A probabilistic two-stage algorithm was 
adopted to improve chromosome detection accuracy. The method was trained and validated using data from 
5,000 chromosomal images of fetuses. High accuracy (98.88%) was achieved—higher than that achieved by 
experienced specialists.

The chromosomal images and annotations used to train the detector have been provided in this study. This 
is the first publicly available large database of chromosome annotations. The database contains 2,000 anno-
tations for single chromosomes and 5,000 annotations for 24 chromosomes [Fig. 1b,c, respectively]. We also 
provide criteria for defining difficult images and notes from our experts on classifying chromosomes as a series 
of common points in the clinical recognition of difficult images. What we provide is a good benchmark dataset 
for researchers in this field that can expedite technical development in this application area. For example, using 
5,000 annotations for 24 chromosomes, better accuracy can be achieved. These images can also help develop 
algorithms and expert recommendations for those images that are difficult to examine. Finally, single chromo-
some segmentation data can help segment chromosome overlap and adherence or to standardise the orientation 
of the short arms of chromosomes for examination by clinicians.

Methods
Data overview. Our dataset contains three collections, 5,000 annotations of 24 chromosome categories, 
2,000 annotations of single chromosome categories, totalling 229,852 chromosomes. The data set was compiled 
from the data of 1,598 fetuses of pregnant women undergoing prenatal chromosomal studies between 2014 and 
2021 at the Cytogenetic Laboratory, Department of Women’s Medicine, Taichung Veterans General Hospital. 
These data collections were approved by the Internal Review Board of Taichung Veterans General Hospital  
(IRB no. CE20369B). We informed all subjects and obtained their consent to use their data in relevant research.

Each collection contains a file of images and a file of annotations. Content includes the file name, image 
size, file path, category, and object box coordinates or segmentation coordinates for each chromosomal image.  
All chromosomal annotations represent markers made by an assistant trained for 3 months by specialist tech-
nicians within the department, and the results were acceptable. When the chromosomal images were collected, 
they were visually inspected and contained no personal information that could be linked to the subjects.

annotation methods. We used the Image Labeler apps in Matlab software (version: 2022a) to annotate the 
chromosomal images. Once finished, all annotations, image addresses, categories, and annotations were stored 
separately in the Matlab default storage format, gTruth. When another computer language is needed for annota-
tion, the gTruth format is converted to the xml file format. For easy reference, an image is saved as a separate xml 
file with the same header name (e.g. 104011.jpg is saved as 104011.xml).

In addition to the basic chromosome information, each original chromosome image is accompanied by a 
karyotype (Fig. 2). First, each chromosome is identified by its characteristics and checked against the karyotype 
for accuracy. At the end of each chromosome image, the number of chromosomes is checked for accuracy. 

Fig. 1 Example of a raw chromosome image with three annotated datasets. (a) Original chromosome image 
taken from fetal amniotic fluid; (b) annotation of single chromosomes; (c) annotations of 24 chromosome 
categories.
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Finally, each chromosome annotation is checked by another marker to ensure that the correct total number of 
chromosomes is recorded.

Definition of difficult image for recognition. The 5,000 chromosomal notes contain simple and difficult 
images for identification. A difficult image combines the senior technicians’ perception and identification results 
of our model. The classification in this study is intended to help other users to develop models that are more 
compatible with clinical applications. Three kinds of difficult image features are illustrated in Fig. 3a–c. The three 
definitions of difficult features adopted by the cytogenetic technician are described as follows:

 a. Multiple chromosomal overlaps: overlaps of two chromosomes can be easily handled by the examiner and 
by the model, whereas an overlap of more than two chromosomes makes identification difficult.

 b. Suboptimal banding: in the event of dull colour and unclear features, the examiner needs to adjust the 
microscope preference to turn images darker; also with poor staining, the dark and light bands appear dull.

 c. The chromosome is too elongated: for example, if point c often occurs at the same place as point b, the 
elongated chromosome stretches the band feature and is more prone to overlap.

Data records
Images and their associated annotations are publicly available on CELL IMAGE LIBRARY, which is a well-known 
website with a diverse library of cellular images (data set link: https://doi.org/10.7295/W9CIL54816)28.  
We stored images and annotations in folders with the structure shown in BOX 1. The xml format is shown 
in BOX 2. All 24 chromosome annotations are stored in the file ‘24_chromosomes_object’. Table 1 shows the 
number of each chromosome type in the data set. Annotations are stored in the annotation files, and images are 
stored as JPEG files. We categorised the data set into simple and difficult images according to our assessment 
criteria. The number and proportion of simple and difficult images in the training and test sets are shown in 
Table 2. The annotated files (xml) of the data sets are stored under the simple file and difficult file directories 
accordingly.

Fig. 2 Karyotype (46, XY) produced by an expert processing from the original chromosome map.
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Single chromosomal annotations are stored in the ‘single_chromosomes_object’ files. Annotations and 
images are stored in the folders for annotation files and JPEG files, respectively. This data set only provides users 
with a distinction between chromosomes and backgrounds. Chromosomes are not classified; therefore, having 
the same number of annotations for the 24 chromosomes is not required.

Three additional csv files are provided. One records the image file names and related descriptions corre-
sponding to the normal cases of chromosomes (file name: normal.csv), another records the cases of abnormal 
numbers (file name: number_abormalities.csv), and the other records the cases of structural abnormality (file 
name: structural_abormalities.csv). These relevant descriptions contain information on which pairs of chromo-
somes are abnormal in number or structure. This information will allow researchers in the field of chromosomal 
abnormalities to make better use of our database. Table 3 shows the total cases of normal, abnormal number, and 
structural abnormality in our data set.

Comparison with other data sets. Table 4 compares our data set with other chromosome data 
sets7,10,21,29,30. The total number of chromosomes and images in our data set is much higher than in the other 
data sets. Except for our data set and the SRAS-net data set29, the data sets used in the other studies are not pub-
licly available. Although chromosome painting (e.g. spectral karyotyping) is a different method that allows the 
identification of both numerical and structural chromosomal aberrations and the chromosomes from which the 

Fig. 3 Examples of difficult image according to three definitions. (a) Multiple chromosomal overlaps;  
(b) suboptimal dark and light banding; (c) excessively elongated chromosomes.

training set

category instances category instances category instances

A1 9999 A2 10000 A3 10000

B4 10001 B5 10001 C6 9997

C7 10002 C8 10001 C9 9997

C10 9997 C11 9996 C12 9997

D13 9998 D14 9993 D15 10000

E16 9995 E17 9996 E18 10003

F19 9993 F20 9997 G21 9997

G22 9993 X 7334 Y 2564

Table 1. Details of individual chromosomes (training set and testing set).

image (per)

difficult 1173(28%)

simple 3827(72%)

Total 5000

Table 2. Difficulty and simple image scale.
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fragments originate, the most common method used at present for chromosome analysis is the G-banding tech-
nique. Moreover, only our data set and DeepACEv221 contain difficult images. Difficult images can facilitate the 
development of a more clinically applicable system.

Technical Validation
The objective of chromosomal identification and classification is to address the drawbacks of existing auto-
mated chromosomal identification software, to reduce manual involvement, and to improve expert efficiency. 
To verify the validity of the chromosomal database, two classification models were trained using the database to 
test its validity and clinical applicability. The first model was used to identify chromosomes and backgrounds.  
The results of the model were truncated and exported for image classification and semantic segmentation. In this 
test, an accuracy of 98.91% was achieved. The output of the model can be applied to semantic segmentation to 
further obtain single chromosomes without the background. In this test, the results, classified as general, simple, 
and difficult, reached accuracies of 98.88%, 99.15%, and 98.78%, respectively. Results were validated by experts. 
Images of detected chromosomes are shown in Fig. 4.

Table 5 shows the detection accuracy for each of the 24 chromosome categories. Detection accuracy was 
higher than 98.5% for all categories except for pair G22, chromosome X, and chromosome Y, for which the 
detection accuracy was still higher than 97.4%. The reason for the lower accuracy is that their body size is rel-
atively short compared to the other chromosomes and they are easily covered or overlapped by other chromo-
somes and not easily detected.

Figure 5 shows the curve of number of images and model accuracy (%). We started recording with 81.79% 
accuracy by using 800 images. After increasing the number of images, the accuracy increased dramatically and 
reached 98.87% by using 2,000 images and 98.91% by using 5,000 images. This result shows that if the number 
of images in the data set is not large enough, the model cannot achieve good accuracy. Moreover, the images in 
our proposed data set were all obtained by using the G-banding method. This method uses an AI model that 
can determine cases with abnormal chromosome numbers or structural variations. In other words, our data set 
allows researchers to develop highly accurate and clinically practical assisted chromosome detection systems 
without using chromosome painting images that require expensive and special image analysis systems. This also 
explains the necessity and value of our data set.

Highly accurate AI models are useful in clinical settings; however, they must be trained with large data 
sets containing images of sufficient complexity. No public chromosome image database with a large number 
of complex images is available. Furthermore, validating a model is difficult; even if a model can achieve 100% 
accuracy in a small, private data set, its clinical practicability may not be high. However, our data set exceeds 
that of existing public data sets in terms of quantity and the complexity of images it contains. Such a data set 
can be used to verify whether a developed model is actually clinically usable. In addition, considering current 
clinical regulations, AI cannot completely replace doctors or medical examiners. Most AI is still employed in 
decision-making assistance roles. Therefore, a model that can feasibly be applied in a clinical setting may be able 
to increase confidence to a level at which experts finally decide to trust it.

In a previous study, among fetuses with chromosome aberrations, 144 (69.56%) had trisomy 13, trisomy 18, 
trisomy 21, or sex chromosome disorder, and 63 (30.44%) had balanced translocation, unbalanced abnormal-
ity, inversion, or marker chromosome31. Because cases of chromosomal structural abnormalities are relatively 
rare in the general population, few images with chromosomal structural abnormalities are present in our data 
set. To allow researchers to develop AI models capable of detecting abnormalities in chromosome structure 
in the future, we will continue to increase the data on abnormalities in chromosome structure in our data set.  
To expand our data set, we have organised another four high-quality cytogenetic laboratories in Taiwan and will 
work together to build a better data set that can be used in clinical applications.

type of case Number of cases

normal case 4893

abnormal numbers 59

structural abnormality 50

Table 3. Total cases of normal, abnormal number, and structural abnormality in our data set.

Dataset chromosome number image number public/private banding method contains difficult images

SRAS-net29 5474 119 O Q-banding X

CIR-Net10 2990 65 X G-banding X

mCNN_GO30 30,287 658 X G-banding X

Varifocal-Net7 87,831 1,909 X G-banding X

DeepACEv221 63,026 1,375 X G-banding O

Ours 229,852 5,000 O G-banding O

Table 4. Data set comparison.
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Fig. 4 Two images containing detected chromosomes. (a) Simple and (b) difficult images. Detection accuracy 
was 100% with a simple image. Multiple overlapping and adherent chromosomes make detection more difficult. 
Chromosomes not captured correctly were those that fell between three overlapping chromosomes.

category Accuracy (%) category accuracy (%) category accuracy (%)

A1 99.81 A2 98.94 A3 98.95

B4 98.91 B5 98.90 C6 98.95

C7 98.96 C8 98.67 C9 98.97

C10 98.80 C11 98.99 C12 98.87

D13 98.96 D14 98.91 D15 98.86

E16 98.80 E17 98.93 E18 98.82

F19 98.53 F20 98.86 G21 98.81

G22 97.44 X 97.60 Y 97.5

Table 5. Detection accuracy of 24 chromosome categories (testing set).

Fig. 5 Curve of number of images and model accuracy (%).
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Usage Notes
The 24 chromosome class annotations and single chromosome annotations data sets are provided in the file 
‘xml2coco_ob.py’. The code can convert the box coordinates to diagonal coordinates. Results are saved in the 
coco format. Similarly, for the single chromosome segments data set, xml2coco_seg.py is provided in the code 
to convert the mask to a polygon, and the results are saved in the coco format.

Code availability
We provide two model weights using Pytorch as a deep learning framework to detect the 24 chromosome 
categories for both object detection and single chromosome object detection. Our neural network model is based 
on YOLOv4. We recommend using argusswift’s code (https://github.com/argusswift/YOLOv4-pytorch) and 
provide a py file that converts xml files to coco format (xml2coco.py).
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