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City-scale synthetic individual-level 
vehicle trip data
Guilong Li  1, Yixian Chen1, Yimin Wang1, Peilin Nie2, Zhi Yu3 & Zhaocheng He1,4 ✉

trip data that records each vehicle’s trip activity on the road network describes the operation 
of urban traffic from the individual perspective, and it is extremely valuable for transportation 
research. However, restricted by data privacy, the trip data of individual-level cannot be opened for 
all researchers, while the need for it is very urgent. In this paper, we produce a city-scale synthetic 
individual-level vehicle trip dataset by generating for each individual based on the historical trip data, 
where the availability and trip data privacy protection are balanced. Privacy protection inevitably 
affects the availability of data. Therefore, we have conducted numerous experiments to demonstrate 
the performance and reliability of the synthetic data in different dimensions and at different 
granularities to help users properly judge the tasks it can perform. the result shows that the synthetic 
data is consistent with the real data (i.e., historical data) on the aggregated level and reasonable from 
the individual perspective.

Background & Summary
With the popularity of data-driven methods, data has become the foundation for urban transportation research 
today. Although there are some datasets1–3 that represent human mobility have been opened, they have limited 
benefit for solving transportation issues since these data are collected by non-transportation activities and can-
not be interpreted as trip behaviour directly4. Hence, the data directly obtained from the transportation system 
is necessary for transportation researches.

In the past, limited by the capability of detectors, only the traffic data at the aggregated level, like volume, 
could be obtained. These data characterize traffic conditions in different dimensions, based on which plenty 
of studies5–7 have been developed to assist in traffic management. However, traffic condition is formed by trip 
activities of individuals, which is not contained, and only statistical values about them remain in aggregated 
data. Thus, such data cannot support travellers behaviour mining8, personalized transportation guidance9, and 
other individual trip studies10–13, which are in high demand for refined traffic management nowadays. In this 
case, the data indicating individual trip activities is urgently needed, which we call individual-level trip data. 
Individual-level trip data describes the micro-operation of urban traffic system, and it contains each individual’s 
trip information, including trip time, origin, destination, and path. Aggregated-level traffic data can be obtained 
from it by counting, so individual-level trip data can also support studies using aggregated data.’

Individual-level trip data is now available through identity detection devices with data processing like trajec-
tory reconstruction14. Although it is technically accessible, the individual-level trip data is extremely difficult to 
obtain and open for two reasons. First, individual-level trip data collection is expensive and restricted by local 
policies, which leads to only a few researchers who have cooperated with the government can get it. The second 
is that the real individual-level trip data involves data privacy that has been discussed by researchers15, making 
it almost impossible to share. For this reason, studies that used individual-level trip data cannot open their  
dataset4,15–17. So, there are high demands for individual-level trip data, but it is hard to access.

In this paper, we will propose a city-scale synthetic individual-level trip dataset containing 1,829,218 trip 
records of 276,978 vehicle individuals in Xuancheng for one week. Each record of the dataset represents one trip 
of an individual, containing departure time at the minute level, trip origin, and destination represented by traffic 
zone, as well as the trip path that consists of a sequence of roads. Besides, because of our data-mining works, 
there is a field to indicate the traveller type of the individual, like commuter.
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Unlike removing sensitive records that will cause statistical bias, we developed an individual trip generation 
method that balances data availability with the protection of individual trip privacy. With the historical trips 
input, it can generate trips for each individual and finally form this synthetic dataset. In terms of aggregate 
metrics like trip time distribution and the frequency of different origin-destinations of all individuals, the syn-
thetic data is highly consistent with the real data. However, the synthetic dataset is not precisely aligned with the 
real data for trip privacy protection. Still, the generated trips of each individual are reasonable and can support 
research and analysis on the individual level.

The synthetic individual-level vehicle trip dataset has a wide range of use for research, such as studies focus-
ing on travellers’ trip behaviour pattern18, trip prediction17,19,20, travel time estimation10,21, origin-destination 
pattern estimation16 and analysis of the effect of transportation policies22. Also, this dataset can support studies 
using aggregated data like traffic volume23,24. Besides, since the road network data that matches this trip dataset 
is opened by this paper, simulation-based transportation research11,25–27 can also be supported by this dataset.

to

Fig. 1 Schematic illustration of elements in road networks.

Fig. 2 Proportion of travellers and trips of different traveller types.
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Methods
original data sources. The mobility of vehicles on urban road networks can be captured by Automatic 
Vehicle Identification (AVI)28 device. With technologies like trajectory reconstruction14, the data directly 
recorded by AVI device can be processed as individual-level trip data, which is more user-friendly and valuable. 
Specifically, each record of it covers information about one trip taken by an individual, including departure time, 
origin, destination, and trip path. Figure 1 gives a simple example of a road network in a regular square grid, and 
some elements are shown on it.

In this paper, the original trip data was collected in XuanCheng city of China for one month (2019/8/01-
2019/9/02). It is a city-scale dataset containing 823,177 vehicles and 9,002,572 trips in total. In addition to the 
trip information mentioned above, this original trip dataset has two characteristics. First is that the trip origin 
and destination are represented by the traffic zone that is enclosed by roads (see Fig. 1). In this case, the trip data 
is more reasonable and gets higher availability. Besides, some data mining works have been done on the dataset, 
by which each vehicle individual was given a traveller type like commuter. The proportion of travellers and trips 
of different traveller types are shown in Fig. 2. In addition, Figs. 3–6 show the trip information of travellers with 
different traveller types, of which the road access frequency refers to the proportion of trips through the roads 
(both directions will be counted).

trip generation. As shown in Fig. 7, the individual’s trips are generated one by one, and a new individual will 
be switched to when the former has completed generation. The generation for one trip can be decomposed into 
four steps. Before introducing each step, some definitions and notions need to be stated first.

Fig. 3 Average daily trip frequency distribution of different traveller types.

Fig. 4 Distribution of trips with time of different traveller types (Statistics and plots at 15-minute granularity).
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Note the number of individuals in the original dataset as n, who are the targets for generation. Let vi be the 
i-th individual, then the set of individuals can be represented by V = {v1, v2, …, vn}. Some numeric variables 
about individuals are described in Table 1. All of them are counted based on the range of the original dataset. Use 
Z to represent the set of traffic zones in the city, and note zx∈Ζ as the traffic zone numbered x. Let du be a specific 
day, and du+1 represents the day after du. Note the time of a day as {t1, t2, …, t1440}, of which tk represents a time 
period with an interval of one minute. For instance, t1 indicates the time period “00:00–00:01”. Further, denote 
lm, n = {tm, tm+1, …, tn} as a time slot and the set of lm, n (i.e., {l1, a, …, lb, 1440}) as L. The time periods aggregated by 
a time slot are continuous, and each tk only belongs to one lm, n ∃ ∈ ∀l t l t( ! : , )m n k m n k, , . Tp is a variable main-
tained to indicate the current time of the generation, and it will be updated as the generation proceeds. The for-
mat of Tp is du&tk, representing the time period (tk) of the day (du). Note the end time of generation as Te. It signs 
the generation of the individual is complete when Tp > Te and it’s time to switch to a new one.

Initialization. Initialization is only executed when the switch is made during generation. Specifically, it can be 
classified into two cases. First, when switching to a new individual, an initial location (i.e., traffic zone) should be 
given as the origin of the first generated trip (after that, the destination of the last trip would be set as the origin 
of the next trip). Besides, the current time should be initialled as the start time of the generation. Next, when a 
new day is switched to, of course, it includes the first day of a new individual, the trip frequency of the individual 
for the day needs to be determined by initialization.

Fig. 5 Trip distribution of different origin-destinations (ODs) of different traveller types.

Fig. 6 Road access frequency of different traveller types.
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Note the initial location of vi as zi
p. We set zi

p as the traffic zone that is most frequently visited by vi, see Eq. 1.

= +z z (1)i
p

argmax v v( )k i k
o

i k
d

, ,

Let vi
f  be the average of trip frequency per day of vi, and it can be calculated by Eq. 2, where D is the number of 

days for vi
f  counting. vi

f  can be represented as = +v v v{ }i
f

i
f

i
f⌊ ⌋ . On this basis, the number of trips needed to be 

generated of the day can be calculated by Eq. 3, where ξ ~ B v(1, { })i
f , i.e., ξ = = − −P k v v{ } { } (1 { })i

f k
i
f k1 , 

k = 01. Note the number of trips that have been generated for vi of the day as vi
dh. Then −v vi

d
i
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number of trips that remain to be generated. When v v 0i
d

i
dh− = , a new day would be switched to, as well as 

recalculated vi
d. It is worth noting that, in this way, the single-day trip frequency of generated individuals will be 

more evenly distributed.

v
v
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f i
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=

ξ= +⌊ ⌋v v (3)i
d
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f

Trip time generation. The trip time mentioned in the section refers to the departure time of trips. Its granularity 
is at the minute level, which is equal to the original data. There are two steps to determine the trip time: 1) time 
slot determination; 2) time period determination.

Time slot determination. This step determines the departure time slot of the trip being generated. An indi-
vidual’s trips should be spatially continuous, i.e., the destination of the previous trip should be the origin of the 
next trip after the individual’s trips are ordered chronologically. To satisfy this objective fact of trips as much as 
possible, we generate trips of each traveller by time with Tp recording the current time. In other words, the trip 
time of the last generated trip would be later than the former one. In this case, the present location of individuals 
is explicit, which benefits to guarantee spatial continuity. Besides, it is consistent with the law of individuals trav-
elling in the real world. To achieve this, we introduce the logic factor cs of time slots.

Trip time
Generation

Time slot 

determination

Time period 

determination

Destination
Generation

Trip Path&
Duration

Generation
Initialization

Steps for generating one trip

Individuals

Trips

Generate one by one

Fig. 7 The framework of the trip generation.

Notation Description

vi
f The trip frequency of vi

vi k
t
, The trip frequency of vi with tk as departure time.

vi a
o
, The trip frequency of vi with za as the origin.

vi b
d
, The trip frequency of vi with zb as the destination.

vi k
p
, The number of trips of vi with trip path pk.

Table 1. Description of some numeric variables.
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Suppose Tp = dr & td and a trip in dr is being generated. Define the subsequent time slot set of td as 
= ∈ ∃ < < >L l L m k n k d{ : }s m n, . The time slot that td belongs to is contained in Ls, enabling individuals to 

make multiple trips in the same time slot. Denote set Le ⊆ Ls, and Le satisfies L min v v L( 1, 1)e i
d

i
dh

s= − − − . 
If |Le|≠0 (i.e., |Le|≠φ), |Le| further follows the constraint: ∀ ∈ ∈ − >l L l L L m p, :m n e p q s e, , . Under the above 
constraints, Le contains the latest time slots of the day. Note set A L L Ls

c
e= − −  (i.e., Ls–Le). On this basis, 

l Lm n,∀ ∈ , the logic factors can be calculated by Eq. 4. k is a very small value, and its constraints will be described 
later. It can be proved that A≠φ.

c l l A
k else

l L( )
1

(4)
s

m n
m n

m n,
,

,=





∈ ∈

The aggregated temporal distribution of trips portrays the urban traffic operation in the time dimension, 
which is valuable for transportation research6,27,29. To restore the distribution of the real data and guarantee data 
availability at the aggregated level, we first ensure the consistency of the proportion of trips among time periods. 
To achieve this, we introduce the aggregation factor cr of time slots.

Note the number of trips taken within lm, n by vi as vi m n
l
, , , i.e., = ∑ =v v( )i m n

l
k m
n

i k
t

, , , . Denote u(x) as an aggre-
gate function for individuals, and = ∑ =u l v( ) ( )m n i

n
i m n
l

, 1 , , . Similarly, we denote u l( )g
m n,  for counting the gener-

ated data to measure the difference between generated and real data. Then the aggregation factor can be 
calculated by Eq. 5, where f(x) is a continuous function that satisfies the constraints shown in Eq. 6.

c l f u l u l u l u l l L( ) ( )/ ( ) ( )/ ( )
(5)

r
m n

g
m n

l L

g
m n m n

l L
m n m n, , , , , ,

m n m n, ,

∑ ∑=





−






∈

∈ ∈

µ µ.










> >
=
=

∈ −f x satisfies
f x f x x x
f
f

x( )
( ) ( ) ,
(0) 1
(1) 0

[ , ]

(6)

1 2 2 1

As shown in Fig. 4, we have divided the travellers into five types based on our previous work. Their different 
distributions indicate they have different proportions of trips in time slots, such as the trips of commuters (dur-
ing weekdays) are mainly concentrated in the morning and evening rush hours, which is important information 
for research. Therefore, to preserve the information for each type of traveller, we propose that cr only share 
among the same type of travellers when performing trip generation.

The larger the time granularity considered for the trip time, the weaker the uniqueness of individual tempo-
ral features. For instance, there may be only one individual trip at time period tq, tw and te in a day, but it will be 
hidden among many individuals considering the time slots these time periods belong to. Hence, for time slot 
choices of individuals, we make it consistent with one’s choice in real data to get better usability on the individual 
level. Then two individual preference factors are designed: (1) whole preference factor; (2) location preference 
factor.

Column name Description

traveller_ID The identify of the individual

traveller_type The traveller type of the individual

Date The date when the trip happened

Departure_time The departure time (minute-level) of the trip

Time_slot The time slot that the departure time belongs to

O_zone The origin of the trip, represented by traffic zone

D_zone The destination of the trip, represented by traffic zone

Path The path that the trip take (roads are separated by “-”)

Duration The length of time for completing the trip

Table 2. The synthetic (or generated) individual-level trip data attributes.

Column name Description

Zone_ID The ID of the traffic zone

Longitude The center point longitude of the traffic zone

Latitude The center point latitude of the traffic zone

Roads The related roads of the traffic zone

Table 3. Attributes of data about the relationship of traffic zones and roads.
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The whole preference factor cp of the time slot is defined by Eq. 7. Let = ∑ =v v( )i m n a
l o

k m
n

i k a
t o

, , ,
,

, ,
, , which denotes 

the trip frequency of vi with za as the origin during lm, n. Suppose =z zi
p

c, then location preference factor cop can 
be calculated by Eq. 7.
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After defining c l c l c l( ), ( ), ( )s
m n

r
m n

p
m n, , ,  and cop(lm, n), we give the formula for factor integration, see Eq. 8. 

Then the probability of each time slot to be chosen is given by Eq. 9.

ε= ∗ ∗ ∗ + +c l c l c l c l c l( ) ( ) ( ) ( ( ) (1 ( )) ) (8)m n
s

m n
r

m n
p

m n
op

m n, , , , ,

Fig. 8 Distributions of trip time of the synthetic data and the real data (Statistics and plots at 15-minute 
granularity).
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Commuter Stable traveller
Random 
traveller

High-freq 
traveller

Passby 
traveller

Top-5% 90% 100% 90% 90% 100%

Top-10% 95% 100% 90% 90% 95%

Top-15% 93% 97% 97% 93% 100%

Top-25% 96% 96% 98% 98% 100%

Top-50% 98% 96% 97% 97% 100%

Table 5. Degree of overlap of hot traffic zones.

Fig. 9 Distribution of visited hotness of traffic zones on the road network (Commuter and other two types of 
traveller).

Commuter Stable traveller
Random 
traveller

High-freq 
traveller

Passby 
traveller

Weekday 0.000500 0.000304 0.0002099 0.000307 0.0004044

Holiday 0.000364 0.000100 0.000100 0.000196 0.0002049

Table 4. Jensen-Shannon divergences of trip frequency with time (generated data vs. real data).
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Equation 8 can be seen as three terms, and they consider trip time logic, aggregation information, and indi-
vidual preference, respectively. ε > 0 is a small value, and it ensures ε∗ + + >c l c l( ) (1 ( )) 0p

m n
op

m n, , , making 
a time slot will not be excluded only by individual preference. On this basis, it can be proved that 
∑ >∈ c l( ) 0l m n L m n( , ) , . So whatever the case, Eq. 9 can pick a time slot with strong robustness. Conflicts may occur 
between different factors. For example, suppose a time slot li, o, its proportion in generation data is much lower 
than the real, i.e., µ∑ − ∑ → −∈ ∈u l u l u l u l( )/ ( ) ( )/ ( )g

i o l L
g

i o i o l L i o, , , ,i o i o, ,
, but the individual never tripped on li, o 

=c l( ( ) 0)p
i o, . This lets cr give a high value for balancing at aggregation, while ε ε∗ + + =c l c l( ) (1 ( ))p

m n
op

m n, ,  
that a small value since li, o is not preferred by the individual. To handle these conflicts, we determine the priority 
of these factors by following constraints.
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 gives higher priority to aggregation factor over individual preference factor. v1/ i
f  is the 

minimum of ∗ +c l c l( ) (1 ( )p
m n

op
m n, ,  when ∗ + >c l c l( ) (1 ( )) 0p

m n
op

m n, , . Hence ε � v1/ i
f  makes ε hardly 

influence the individual preference factor. Also, κ ≈
µ→−

f xlim ( ) 1
x

 defines that the priority of logic factor is higher 

than aggregation factor. To summarize, the time logic of trips is the first thing to ensure, followed by aggregate 
information. On this basis, the preferred trip time slots of individuals will be followed.

Time period determination. This step is to determine the time period ts based on the selected time slot ls. In this 
dataset, for privacy reasons, we cannot fully expose an individual’s real trip time. However, it is achievable that 
make the trip time period distribution of generated data approximate to the real data.

Assuming ls = la, b and the current time period of Tp is td, then the range of trip time period that can be selected 
from is lr, b, where r = max(a, d). Denote = ∑ =u t v( ) ( )k i

n
i k
t

1 , , and = ∑ =e t u t t( ) ( ) / ( )k k j j1
1440 . using eg to indicate the 

statistics of the data have been generated like ug. Define e t e t e t( ) ( ) ( )k k
g

kΔ = − , and the probability of tk ∈ lr, b to 
be selected can be calculated by Eq. 11.

Fig. 10 Distribution of visited hotness of traffic zones on the road network (High-freq and passby travellers).
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With the same consideration of letting cr be shared only among the same type of travellers, we propose to 
distinguish the traveller types when computing Δe(tk) to restore aggregated temporal distribution for each type 
of traveller.

Trip destination generation. In the real world, trip origin and trip time are two significant elements related to 
the trip destination choice of individuals. Individual trip features are mainly reflected by these spatiotemporal 
and spatial associations of trips, which means that these information would very easily reveal the trip privacy of 
individuals. For privacy protection reasons, in our method, the information about the spatiotemporal associa-
tion of individual trips is protected. In other words, only the trip origin (current location) is considered when 
determining the destination.

Note vi a b
o d
, ,
,  as the trip frequency of vi with za and zb as the trip origin and destination, respectively. Define 

= ∑v vi a
o

m i a m
o d

, , ,
, , which represents the trip frequency of vi with za as the trip origin. Supposing the current loca-

tion is zc (the origin of this trip), then the destination zs can be determined with the probability given by Eq. 12.

p z z v v z z( ) / (12)s
t i c t

o d
i c
o

i
p

c, ,
,

,= = =

Fig. 11 The access frequency of major roads of the synthetic and real data (Commuter and other two types of 
traveller).

https://doi.org/10.1038/s41597-023-01997-4


1 1Scientific Data |           (2023) 10:96  | https://doi.org/10.1038/s41597-023-01997-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Trip path and duration generation. Trip path refers to a sequence of spatially continuous roads (see Fig. 1) by 
which the individual trips from the origin to the destination. There are usually multiple access paths between 
two traffic zones, and individuals’ selections of trip paths affect road flow distribution, which is significant infor-
mation for traffic condition analysis. However, according to this study15, just a few spatiotemporal tuples can 
identify most individuals uniquely. Even though we are generating all trips, privacy leakage is still possible if 
we completely restore the individual path choices. Thus for an individual, we sample the trip path based on its 
crowd (e.g., random traveller), which is a way for generalization. It can recover the flow distribution of roads 
and conceal individual trip preferences. Specifically, note zo, zd as the origin and destination of the trip being 
generated, and note the set of trip paths that connect zo and zd as Po, d. The probability to be chosen of each trip 
path in Po, d can be given by Eq. 13.

∑ ∑∑= = ∈
= =

p p p v v p P( ) /
(13)

s
k

i

n

i k
p

k i

n

i k
p

k o d
1

,
1

, ,

Trip duration (or travel time) means the time taken to complete the trip. It is mainly related to the length of 
the trip path, while it is significantly affected by traffic control strategies like signal control and actual traffic con-
dition. Since the generated trip data includes departure time, origin, destination, and trip path, the trip duration 
can be estimated or obtained by simulation. However, considering some users just need a possible trip duration 
for analysis, we give each trip’s duration retrieved from the real data. Considering the correlation between trip 
duration and trip time slots, in determining the trip duration of a generated trip, we randomly sample among 
historical trips of the same trip path and trip time slot. In this way, each trip’s duration was tripped by an individ-
ual in the real world with that traffic condition.

Fig. 12 The access frequency of major roads of the synthetic and real data (High-freq and passby travellers).

Commuter Stable traveller
Random 
traveller

High-freq 
traveller

Passby 
traveller

Top-1% 74.0% 79.4% 81.2% 80.4% 93.3%

Top-5% 80.6% 80.4% 84.9% 78.0% 93.5%

Top-10% 79.6% 81.0% 86.8% 77.5% 92.0%

Top-30% 82.6% 79.7% 88.5% 79.1% 85.2%

Top-50% 82.2% 78.4% 87.2% 81.0% 80.3%

Table 6. Degree of overlap of main OD combinations.
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Data records
The city-scale synthetic individual-level vehicle trip data is released by comma-separated values (CSV) files, 
containing 1,829,218 trip records of 276,978 vehicle individuals in XuanCheng for one week. The fields of data 
record and the meanings are shown in Table 2. To support more applications, the road network of XuanCheng 
city, which matches this synthetic trip dataset, is also given and released in a Zip file. Besides, the relationship 
between the traffic zones and roads is released by a CSV file (see Table 3 for detail). These data are available at 
the Figshare30 repository.

technical Validation
Although the trip data proposed in this paper is synthetic and a lot of effort has been made to protect individual 
trip privacy during generation, the dataset still has a high value for research and application. In this section, we 
will validate our data by comparing it with the real trip data (2019/8/12-2019/8-18) from both aggregated and 
individual perspectives.

aggregated level. Aggregated level data (e.g., Figs. 4–6) refers to the data formed by individuals’ trips aggre-
gated from spatial or temporal dimensions, such as the distribution of trips with time. It can be obtained from the 
individual-level trip data by simply counting, indicating the aggregated information of trips within the selected 
range. The generated data can support the aggregated level research or analysis when it keeps consistent with the 
real one on this level. Next, a series of comparisons of generated versus real data will be demonstrated. For quan-
titative evaluation, the Jensen-Shannon divergence (Eqs. 14, 15) is introduced, where p, q are the distributions 
based on historical data and generated data statistic, respectively. Besides, for two set S, S′ that satisfy |S| = |S′|, we 
denote S

S
S ′⋂  as the overlap ratio of these two sets, which will be used in spatial dimension evaluation.

Fig. 13 Distribution of road access frequency on the road network (Commuter and other two types of 
traveller).

https://doi.org/10.1038/s41597-023-01997-4


13Scientific Data |           (2023) 10:96  | https://doi.org/10.1038/s41597-023-01997-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

∑= ⋅
=

D p q p x log
p x
q x

( ) ( )
( )
( ) (14)

KL
i

N

i
i

i1

∣∣ ∣∣= 



+ 

 + 




+ 

D p q D p

p q
D q

p q
( ) 1

2 2
1
2 2 (15)JS KL KL

Temporal dimension. The distributions of trips with time (distinguished weekday and holiday) of the synthetic 
and real data are shown in Fig. 8, and the Jensen-Shannon divergences of the two distributions are shown in 
Table 4. The vertical axis of Fig. 8 adopts the frequency of trips to show that the quantity of generated trips is also 
similar to the real one. Moreover, the result of high consistency would be kept when considering a smaller time 
scale, like each day or a specific time slot.

Spatial dimension. The spatial information of urban trips can be portrayed from three levels: (1) the visited hot-
ness of traffic zones; (2) the dominated origin-destination of trips; (3) the distribution of road access frequency.

The visited hotness of traffic zones can reveal the main activity areas of travellers in the city. We have counted 
the top-k most frequently visited traffic zones of the synthetic and real dataset with different k values. The over-
lap ratio is calculated and formed Table 5. The hotness of traffic zones may vary over time, so we conducted 
further experiments, such as limiting the time to specific periods. The results show that the performance shown 
in Table 5 is stable. Further, Figs. 9, 10 show the distributions of traffic zones with different hotness levels on the 
road network. In addition to using colour to distinguish the hotness levels, a larger dot indicates a higher visited 
frequency, i.e., the largest red dot is the most visited traffic zone.

From the perspective of origin-destination of trips, we count the trip frequency of different origin-destination 
of the synthetic and real data. The overlap ratios of top-k dominated origin-destinations are shown in Table 6. 
The results can be maintained when distinguishing weekdays and holidays.

Fig. 14 Distribution of road access frequency on the road network (High-freq and passby travellers).

Commuter
Stable 
traveller

Random 
traveller

High-freq 
traveller

Passby 
traveller

0.00074 0.00095 0.00083 0.00052 0.0016

Table 7. Jensen-Shannon divergences of the access frequency of main roads (generated data vs. real data).
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The distribution of access frequency of roads can help identify critical roads and is valuable for urban trans-
portation management. The access frequency proportion of major roads of the synthetic and real data are shown 
in Figs. 11, 12. In addition, the Jensen-Shannon divergence of the two distributions is calculated and shown 
in Table 7. When limiting the time range to specific slots, such as the morning and evening rush hours, the 
Jensen-Shannon divergence will be double but still at a pretty low level. Further, the distributions of daily access 
frequency of roads on the road network are shown in Figs. 13, 14.

In summary, the generated data can restore the aggregated level information of the real data. Besides, we 
found the bias between the generated and real data is close to that of two weeks of the real data. This means that 
the generated data will not be distinguished by aggregated information.

Individual level. The availability of the generated trip data on the individual level is based on the reasona-
bleness of trips from the individual perspective. Specifically, it includes two levels of information: (1) the reason-
ableness of a single individual’s trips; (2) distributions of individual-based statistics. Next, we will validate the 
generated data from these two levels.

Reasonableness of single individual trips. In the real world, individual travel follows certain laws. For instance, 
Individuals’ trips are spatially continuous, and there is generally an interval of time between trips. Therefore, the 
trip data of an individual that follows these laws are considered reasonable. Next, we will explain the reasonable-
ness of the generated trip data in the following aspects.

•	 Trip frequency. The trip frequency of an individual is generally in a reasonable range. In the generation, the 
daily trip frequency is determined with an individual in the real world as the template. In this case, the generated 
individual’s trip frequency each day, as well as the cumulative frequency of trips in a week, is in a reasonable 
range.

•	 Trip time interval. There is a certain time interval between two consecutive trips of an individual in the real 
world. Thanks to the introduction of trip time logic and preference factors in trip time determination, there 
are almost no two trips with very short intervals (e.g., a few seconds) in the generated data, which are consid-
ered abnormal and should be merged.

•	 Trip spatial range. When determining the destinations for generating trips, we take the destinations visited 
by a real individual as the candidate set. Thus the trip spatial range of the generated individual will not exceed 

Fig. 15 Distribution of the number of individual trip time slots.
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that of its template individual in reality, which makes the trip spatial range of all individuals in the synthetic 
dataset reasonable.

•	 Spatial continuity of trips. Objectively, the trips of the individuals should all be of spatial continuity (the 
destination of the previous trip is the same as the origin of the next trip). However, it cannot be completely 
ensured due to incorrect license plate recognition and driving out of the perception boundary. In the syn-
thetic data, the trip spatial continuity ratios of commuters, stable travellers, and random travellers are 81.68%, 
79.55%, and 76.96%. Compared to the real data, they improved by 10.86%, 12.55%, and 11.82%, respectively.

Fig. 16 Distribution of entropy of individual trip destinations (Commuter and other two types of traveller).
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Distributions of individual-based statistics. Although the trips are reasonable from an individual perspective, 
the availability of the generated data on the individual level would be decreased if the distribution of individual 
trip characteristics does not match a real city. In this section, we focus on the following three distributions of 
individual-based statistics.

•	 Distribution of trip frequency. The daily trip frequency of individuals is calculated based on the historical 
trips of real individuals. Thus, the distribution of individual trip frequency of the generated data is highly 
consistent with the real data.

•	 Distribution of the number of trip time slots. The number of time slots covered by individuals in the gener-
ated data and the real data of one week are counted and displayed in Fig. 15.

•	 Distribution of entropy of trip destinations. Entropy is a measure of the regularity of travellers31. The dis-
tributions of the generated and real data are shown in Figs. 16, 17 (the trip frequency of passerby travellers is 
too low to analyze entropy). The colour blocks represent the proportion of individuals among all individuals 
with the same number of trips. It should be noted that the dynamic range of colours is set to 0–0.12, and the 
scale higher than 0.12 is also marked with the same colour as 0.12 (i.e., red), for better display of details. Since 
the destination candidate set for generation considers the individual’s destination choice for one month while 
comparing the real data with one week, the entropy of individuals in the generated data is slightly higher than 
that of the real data. This reflects our data privacy protection and has little impact on data availability.

Usage Notes
All datasets open in this paper are in file form, and users can access them in their entirety without any further 
permission. To make the individual-level trip dataset publicly available, we perform works on traveller’s trip pri-
vacy protection that we have mentioned in the Methods section, which inevitably affects the usability of the data. 
Here, to prevent the data’s misuse, we would like to remind potential users of the characteristics of the synthetic 
(or generated) trip dataset and the tasks for which it is unsuitable. First, The average daily trip frequency for each 
individual in the generated trip dataset is reasonable, and the overall distribution is realistic. However, for a sin-
gle individual, the distribution of individual trip frequencies in the synthetic dataset is more uniform. Therefore, 
we do not recommend using this synthetic dataset to analyse the variation and patterns of individual single-day 
trip frequency. Second, in the synthetic dataset, traveller trip temporal and spatial preferences are reliable, but 
trip spatio-temporal associations are broken. Hence, this dataset is not applicable for tasks involving the analysis 
of trip spatio-temporal associations of travellers.

In addition to reminding synthetic data of the limitations of its use, we would also like to make a few notes 
to facilitate better data usage. First, the traveller labels given in the dataset are not true values and can be reas-
signed or divided by the user according to the specific task. Second, the individuals whose “traveller_ID” starts 
with “Wan_P” can be considered as local vehicles (or travellers). Thus this synthetic dataset can support the trip 
pattern analysis for local and foreign vehicles. Third, we may have prior knowledge or common sense about 
travelling in the city, such as commuters usually travel to their workplace in the morning. Most travellers may 
behave in line with common sense, but we also need to be aware of the presence of unusual travellers. For exam-
ple, in our previous analysis, we found that there were night commuters in the city who travelled to their homes 
in the morning.

Fig. 17 Distribution of entropy of individual trip destinations (High-freq traveller).
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Code availability
The codes for trip generation algorithms and the synthetic dataset validation are available via the GitHub 
repositories32.
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