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A large dataset of semantic ratings 
and its computational extension
Shaonan Wang   1,2, Yunhao Zhang1,2, Weiting Shi3,4, Guangyao Zhang3,4, Jiajun Zhang1,2, 
Nan Lin3,4 ✉ & Chengqing Zong1,2

Evidence from psychology and cognitive neuroscience indicates that the human brain’s semantic 
system contains several specific subsystems, each representing a particular dimension of semantic 
information. Word ratings on these different semantic dimensions can help investigate the behavioral 
and neural impacts of semantic dimensions on language processes and build computational 
representations of language meaning according to the semantic space of the human cognitive system. 
Existing semantic rating databases provide ratings for hundreds to thousands of words, which can 
hardly support a comprehensive semantic analysis of natural texts or speech. This article reports a large 
database, the Six Semantic Dimension Database (SSDD), which contains subjective ratings for 17,940 
commonly used Chinese words on six major semantic dimensions: vision, motor, socialness, emotion, 
time, and space. Furthermore, using computational models to learn the mapping relations between 
subjective ratings and word embeddings, we include the estimated semantic ratings for 1,427,992 
Chinese and 1,515,633 English words in the SSDD. The SSDD will aid studies on natural language 
processing, text analysis, and semantic representation in the brain.

Background & Summary
Accumulating behavioral and neural evidence indicates that semantic representation of words is distributed 
across multiple neural subsystems, each representing a particular dimension of semantic information1,2. These 
semantic subsystems and dimensions provide important clues for the organization of the human semantic sys-
tem. To investigate how word meaning is represented and processed in the human brain, many studies have 
built databases of word ratings on the psychologically and neurobiologically plausible semantic dimensions1,3–6. 
Different from free-association-based7 and feature-generation-based8,9 semantic databases, dimension-based 
semantic databases provide quantified rating scores for words on experiential semantic dimensions, which 
enable investigating the behavioral and neural impacts of semantic dimensions on language processes3,4,10 and 
building computational representations of language meanings11–15. However, the existing databases typically 
contain hundreds to thousands of words and are not large enough to support comprehensive semantic analysis 
of natural texts or speech. For example, if a researcher wants to analyze the behavioral or neural effects of par-
ticular semantic dimensions of words during natural text processing, then they may want to conduct an analysis 
using the semantic ratings of all or most of the words of the text; however, in most cases, the existing semantic 
rating databases can only provide the ratings of a small part of the words.

This article reports a large semantic rating database named the Six Semantic Dimension Database (SSDD)16. 
The SSDD focuses on six major semantic dimensions: vision, motor, socialness, emotion, time, and space. The 
visual and motor dimensions are included to reflect the impact of sensory-motor experience on semantic rep-
resentation. Sensory and motor dimensions are probably the most frequently investigated semantic dimen-
sions, and their importance for object and action concepts has been well established1,4,17–20. Among the multiple 
sensory dimensions associated with semantic representation, we chose the visual dimension because vision is 
the dominant sensory modality. The behavioral and neural impacts of visual and motor semantics on cogni-
tive processing have been indicated by many previous studies18,19,21–25. The social and emotional dimensions 
are included to reflect the impact of social-emotional experience on semantic representation. These dimen-
sions have dissociable neural correlates10,24,26–33 and are especially important for the representation of mental 
and abstract concepts5,32–35. Huth et al.2 investigated the organization of semantic representation in the brain 
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using a data-driven approach and found that social-emotional and sensory-motor semantics are associated with 
the opposite ends of the most important data-driven semantic dimension. Therefore, the social and emotional 
dimensions can serve as important supplements to the visual and motor dimensions to reflect semantic rep-
resentation. The time and space dimensions are especially important for the representation of events and situa-
tions36–38. Dissociable neural correlates of these dimensions have also been indicated by neuropsychological and 
neuroimaging research37,39. The representativeness of the six dimensions has been reflected by a comprehensive 
review of experiential semantic attributes by Binder et al.1. Binder et al.1 summarized 65 semantic dimensions 
belonging to 14 domains, among which more than 2/3 of the dimensions belong to the domains of vision, motor, 
socialness, emotion, time, and space. The SSDD treats these six domains as coarse-grained semantic dimensions 
and provides general ratings for each of them.

The SSDD contains two datasets: the first is the subjective ratings for 17,940 commonly used Chinese words 
on the six semantic dimensions. The second is a computational extension of the subjective rating data. We com-
bined the subjective ratings with computational models and then estimated the semantic ratings of 1,427,992 
Chinese and 1,515,633 English words. The SSDD makes it possible to analyze the semantic components of 
various natural language materials, such as natural texts, speeches, and the language produced by neurological 
and psychiatric patients.

Methods
Subjective rating dataset.  Participants.  A total of 85 healthy undergraduate and graduate students (52 women,  
M age = 22.73 years, SD age = 2.24) participated in the rating experiment. All participants were native Chinese 
speakers. No participant had suffered from psychiatric or neurological disorders or sustained a head injury. Each 
participant read and signed the informed consent form before the experiment. All experiments were approved 
by and performed in accordance with guidelines and regulations of the Institutional Ethics Committee at the 
Institute of Psychology of the Chinese Academy of Sciences. Participants were asked to complete at least one 
rating experiment session (see Procedure of the rating experiments) and were compensated with 30 RMB per 
session. Each participant could complete as many sessions as they wanted as they passed the quality evaluation 
every time. Those who failed the quality evaluation once were not allowed to complete more sessions. Following 
exclusions (see Procedure of the rating experiments), the final sample comprised 80 participants (49 women,  
M age = 22.88 years, SD age = 2.21) who provided at least one session of valid data.

Stimuli.  The stimuli were 17,940 items that could be separated into three sets based on their sources. The first 
set of items was 12,814 high-frequency Chinese words selected from the Wikipedia Chinese corpus (https://
dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2). These items were selected based on 
four inclusion criteria: (1) They are the 20,000 most frequent items of the Wikipedia Chinese corpus; (2) they 
are also included in at least one of two supplementary Chinese corpora, that is, the Contemporary Chinese 
Dictionary40 and the Chinese Linguistic Data Consortium (2003) corpus (https://catalog.ldc.upenn.edu/
LDC2003T09); (3) they do not contain any non-Chinese characters; and 4) they were judged as Chinese words 
but not phrases or nonwords and were not judged as proper nouns by at least two of three independent raters 
(two authors, Nan Lin and Weiting Shi, and a graduate volunteer). We used supplementary Chinese corpora and 
subjective assessments because the boundaries between words and phrases in Chinese are vague. There is often 
a discrepancy between different corpora and between corpora and subjective judgments41. We excluded proper 
nouns because participants’ knowledge of them may highly depend on personal experiences and interests.

The second set of items was 4,915 Chinese words selected from the stimuli of two recently published fMRI 
datasets42,43, a published study10, and several unpublished experiments of ours. Items were excluded if they con-
tained non-Chinese characters or were evaluated as nonwords, phrases, or proper nouns by at least two of three 
independent raters.

The last set of items was 211 Chinese translations for the English stimuli of the semantic rating experiments 
from Binder et al.1 and Tamir et al.5. The two studies included 535 and 166 English words, respectively. Most of 
their Chinese translations had already been included in the first two sets of items. The remaining 211 transla-
tions (which include a small number of phrases) were included as the last set of items. The rating data of these 
items were used to validate the results (see Technical Validation).

Procedure of the rating experiments.  We conducted six rating experiments on the 17,940 items, each focusing 
on one semantic dimension. Each experiment was separated into 18 sessions containing 1,000 words (the last 
session contained 940 words). The data were collected through the free-access online platform “Wen Juan Xing” 
(https://www.wjx.cn/). Except for the rating experiment on the semantic dimension of emotion, which used a 
13-point scale (−6 = very negative, 0 = neutral, and 6 = very positive), all other rating experiments used 7-point 
scales (7 = very high, and 1 = very low). Before each rating session, participants read instructions about the 
working definitions for the semantic dimension to be rated (See Table 1) plus a few example words with high 
and low ratings. For the semantic dimension of motor, we further specify the working definition based on the 
charade/pantomime rating from previous studies:18,44–46 “Please rate the extent to which the meaning of a word 
can easily and quickly trigger corresponding body actions in your mind. Specifically, suppose you were playing 
a pantomime game in which one person had to identify a word based on how another person mimicked various 
actions that might be associated with its meaning. The easier a word is for the game, the higher its rating score 
should be; the harder a word is, the lower its rating score should be.”

To control the quality of the rating data, after each session of rating, we calculated the correlation between 
the ratings of each participant and the mean ratings of the remaining participants using Jamovi (https://www.
jamovi.org/). For a given session, if the correlation between the ratings of a participant and those of the others 
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was lower than 0.5, then the data of this participant would be excluded1, and the participant would be excluded 
from the rest of our experiment. This criterion resulted in the rejection of 28 sessions or 0.87% of the data. If 
the data of a participant were excluded, a new participant was recruited to complete the rating session. For each 
session of each experiment, 30 valid participants were recruited.

Data analysis.  For each experiment, we calculated the average rating for each word to represent its value on the 
rated semantic dimension. In addition to the six rated dimensions, a seventh semantic dimension was obtained 
by calculating the absolute value of the average emotion rating for each word. We believe this dimension  
(i.e. valenced vs. neutral) reflects the relatedness of word meanings to emotion (see Technical Validation for evi-
dence of this argument). We added 1 to this measure to match its scale with that of the five nonemotion ratings.

As shown in Fig. 1, the distributions of the word ratings on all dimensions for the 17940 items are skewed, 
indicating that for each dimension, only a small proportion of words contain rich semantic information. Because 
our experimental stimuli are composed of the most commonly used Chinese words, these distributions should 
represent Chinese vocabulary. Figure 2 shows the correlations between the seven dimensions of rating data. 
Most correlations are low, indicating that the semantic dimensions are mostly independent. The highest corre-
lations were found between the dimensions Vision and Motor (r = 0.49) and Vision and Space (r = 0.40). These 
correlations are reasonable because the visual system plays an important role in perceiving and acquiring motor 
and spatial information.

Computational extension dataset.  Chinese.  By combining the subjective rating data with computa-
tional models, we estimated the semantic ratings of a vocabulary of 1,427,992 Chinese words. This vocabulary was 
constructed by including the words consisting of Chinese characters and with counts no less than 5 in the Xinhua 
news corpus (19.7 GB in total and collected from http://www.xinhuanet.com/whxw.htm).

We first tested a variety of context-insensitive models (GloVe and Word2Vec that their word embeddings are 
static) and context-sensitive models (GPT2, BERT ERNIE, and MacBERT47 that their word embeddings vary 
according to their context) in predicting semantic ratings. Results show that Word2vec and MacBERT achieved 
the best performance in their category in the cross-validation analysis (average Pearson correlation between 
the predicted and actual rating scores across all dimensions: 0.613, 0.782, 0.850, 0.877, 0.881, 0.886, for GloVe, 
Word2Vec, GPT2, BERT, ERNIE and MacBERT). Therefore, in the following experiments, we utilized these two 
representative models to extract word representations for Chinese words. Specifically, for Word2vec, we used the 
default parameters as Skip-Gram architecture with embedding dimensions of 300. To obtain the word embed-
dings from MacBERT, following Chersoni et al.48, we extracted 10 to 1,000 sentences for each word (depending 
on the counts of the word) from the Xinhua corpus and used MacBERT to calculate the representations of the 
sentences. We then calculated the averaged sentence representation and used it as the word representation. We 
obtained 1,427,992 word representations from Word2vec and 900,243 (here, we only use words with counts 
greater than 10) from MacBERT.

Afterward, for each of the seven semantic dimensions and each word embedding method, we trained a ridge 
regression model with a 10-fold cross-validation method to learn the mapping function from word representa-
tions to the mean semantic ratings of corresponding words. We then use the best-trained regression model 
(which achieved the lowest error on the validation set out of 10 models from the 10-fold validation) to estimate 
the semantic ratings for the extended Chinese vocabulary.

English.  We also extended the computational dataset to an English vocabulary. This extension is based on the 
assumption that the Chinese and English semantic spaces share the coarse-grained semantic dimensions that 
we studied. The assumption got direct support from the high cross-language validity of our Chinese dataset: for 
all semantic dimensions, the ratings of Chinese words were strongly correlated with the ratings of their English 
translations from previously published English rating datasets (see Technical Validation). The English vocabu-
lary includes 1,515,633 words. This vocabulary was constructed by including the words with counts no less than 
5 in the Wikipedia corpus (13 G and downloaded from https://dumps.wikimedia.org/enwiki/latest/). Consistent 
with the methods for constructing the extensional Chinese dataset, we utilized Word2vec with default param-
eters and the pretrained BERT model (which has been proven to achieve the best performance at predicting 
semantic features among other variations49) to extract word representations for each English word. Specifically, 
to obtain word embeddings from BERT, we first extract 10 to 1,000 sentences (depending on the word counts) 
from the Wikipedia corpus for each. We use BERT to calculate the sentence representations. We then use the 
averaged sentence representation as the word representation. We obtained 1,515,633 word representations from 
Word2vec and 930,668 (here, we only use words with counts more than 10) from BERT.

Dimension Working definition

Vision the extent to which the meaning of a word can easily and quickly trigger corresponding visual images in your mind

Motor the extent to which the meaning of a word can easily and quickly trigger corresponding body actions in your mind

Socialness the extent to which the meaning of a word relates to relationships or interactions between people

Emotion the extent to which the meaning of a word relates to positive or negative emotions

Time the extent to which the meaning of a word relates to time, including early or late, length, sequence, frequency, etc.

Space the extent to which the meaning of a word relates to spatial information, including location, direction, distance, path, scene, etc.

Table 1.  Working definition of each semantic dimension.

https://doi.org/10.1038/s41597-023-01995-6
http://www.xinhuanet.com/whxw.htm
https://dumps.wikimedia.org/enwiki/latest/


4Scientific Data | (2023) 10:106 | https://doi.org/10.1038/s41597-023-01995-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

To estimate the semantic ratings of English words, we first trained a model to align the English embed-
ding space to the Chinese embedding space. Specifically, we extracted all single word translation pairs (i.e., 
remove Chinese-English pairs in which English is more than one word) from a Chinese to English diction-
ary, the CC-CEDICT, at https://www.mdbg.net/chinese/dictionary?page=cc-cedict, which is the largest 
open-sourced Chinese to English dictionary to our knowledge, and obtained a Chinese-English bilingual lexi-
con of 19,424-word pairs. Next, we trained a ridge regression model to learn the mapping between the English 
embeddings and Chinese embeddings based on the bilingual word pairs.

Fig. 1  Distribution of ratings for the seven semantic dimensions.

Fig. 2  Pearson correlation coefficients between the seven semantic dimensions of ratings.
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Finally, the semantic ratings for the English words were estimated in two steps. First, we projected each 
English word representation from the English semantic space to the Chinese semantic space. Second, the pro-
jected word representation was taken as the input word representation for the semantic rating prediction models 
for Chinese words. Then the output of the model was taken as the estimated semantic rating for the English 
word.

Data Records
The SSDD16 is available on the OSF repository at https://doi.org/10.17605/OSF.IO/N5VKE. The data are sorted 
into two main folders. The first main folder is “Main_Data,” in which we provided the final subjective and esti-
mated rating results. The second main folder is called “Supplementary_Data,” in which we provided the infor-
mation of participants, the instructions for the rating experiments, the raw rating data, the validation data for 
the subjective ratings and computational extension ratings, the word embeddings, and the code for calculating 
and validating the estimated ratings. More details about the data are provided below.

Main Data.  The average ratings across participants for the 17,940 Chinese words on the six rated semantic 
dimensions are provided in the file “Rated_semantic_dimensions.csv.” Additionally, we also provided the absolute 
value of the average emotion rating for each word as the seventh dimension, which is called “emotion_abs + 1” 
in the file. The estimated semantic ratings for extensional Chinese and English vocabularies using different 
computational models are provided in four files named “Estimated_semantic_dimensions_word2vec_Chinese.
csv”, “Estimated_semantic_dimensions_macbert_Chinese.csv”, “Estimated_semantic_dimensions_word2vec_
English.csv”, and “Estimated_semantic_dimensions_bert_English.csv”.

Supplementary data.  Information of participants.  The file named “Information_Participants.xlsx” pro-
vides the age and sex of the participants, the number of valid and invalid sessions and words that the participants’ 
data contain, and which of the six experiments the participants participated in and provided valid data.

Instructions for the rating experiments.  At the start of each session of each rating experiment, participants were 
provided an instruction that contained the working definition of the semantic dimension and a few examples. 
These instructions are provided in the file named “Instructions.docx.”

Raw rating data.  The raw data of the 6 rating experiments are provided under the subfolder named “Raw_
rating_data.” The data are sorted into six folders named by the rated dimensions (Vision, Motor, Socialness, 
Emotion, Time, and Space). Under each folder, 18 files (named “session*.csv,” in which * is 1 to 18) correspond 
to the 18 sessions. In each file, the column named “Word” provides the items for which the semantic ratings were 
collected, for example, ‘花朵’ (meaning “Flower” in English). The remaining columns are named by the initials 
of 30 participants who rated the words and show the rating scores from each participant.

Vision Motor Socialness Emotion Time Space

0.954 0.937 0.966 0.974 0.976 0.964

Table 2.  ICCs for each experiment (One-Way Random).

Vision Motor Socialness Emotion Time Space

Session1 0.979 0.981 0.962 0.975 0.980 0.977

Session2 0.975 0.976 0.957 0.973 0.981 0.962

Session3 0.965 0.972 0.956 0.974 0.973 0.979

Session4 0.969 0.976 0.961 0.973 0.974 0.979

Session5 0.967 0.968 0.961 0.974 0.979 0.976

Session6 0.972 0.972 0.961 0.973 0.976 0.980

Session7 0.970 0.973 0.961 0.972 0.977 0.976

Session8 0.971 0.969 0.952 0.971 0.974 0.980

Session9 0.972 0.972 0.953 0.970 0.975 0.974

Session10 0.969 0.971 0.956 0.971 0.975 0.981

Session11 0.969 0.970 0.956 0.971 0.977 0.980

Session12 0.970 0.968 0.954 0.968 0.973 0.979

Session13 0.970 0.972 0.958 0.969 0.974 0.976

Session14 0.968 0.968 0.958 0.970 0.975 0.983

Session15 0.971 0.968 0.959 0.969 0.975 0.984

Session16 0.971 0.970 0.943 0.967 0.975 0.980

Session17 0.970 0.969 0.947 0.970 0.975 0.981

Session18 0.971 0.970 0.952 0.966 0.975 0.983

Table 3.  ICCs for each session of each experiment (Two-Way Random, consistency).
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Validation data for the subjective ratings.  In the file “Validation_Ratings.xlsx,” we provided the data and results 
of the validation analyses for our ratings. In addition to the validation analyses and results mentioned in the sec-
tion “Validity of the subjective rating dataset” for each dimension of ratings, we also provided the correlations of 
our ratings to several fine-grained semantic dimensions of ratings provided by Binder et al.1.

Validation data for the computational extension ratings.  In the file “Validation_Computational_Ratings.xlsx,” 
we provided the data and results of the validation analyses for our computational extension dataset.

Word embeddings.  The word vectors used to compute the computational extension datasets are provided in the 
subfolder named “Word embeddings,” including the Word2vec and MacBERT embeddings for Chinese words 
and the Word2vec and BERT embeddings for English words.

Code for calculating and validating the estimated ratings.  See the section “Code Availability.”

Technical Validation
Reliability of the subjective rating dataset.  We examined the reliability of the ratings by computing the 
intraclass correlation coefficients (ICCs) for each experiment and each session. For each experiment, we calcu-
lated the one-way random ICC because different participants rated different items; for each session, we calculated 
the two-way random ICC because there were always 30 consistent participants who rated all items50,51. The results 
are summarized in Tables 2, 3. For all experiments and all sessions, the ICCs were above 0.9, which indicates good 
reliability of the ratings. In addition, in the SSDD, we rerated the socialness of 945 words from a prior study of us10 
and obtained a cross-study correlation of 0.955.

Validity of the subjective rating dataset.  We examined the validity of the ratings by calculating the 
correlations between the ratings obtained in the current study and those provided in several previous studies. The 
results are shown in Table 4. The full set of validation data is provided in the Supplementary Data of the database.

For the semantic dimension of vision (visual imageability), the ratings were validated based on Binder et al.1,  
Liu et al.22, and Su et al.52. The rating instructions used in the 4 studies are similar. Binder et al.1, Liu et al.22, 
and Su et al.52 obtained their ratings using English words, single-character Chinese words, and two-character 
Chinese words, respectively. Their correlations to the current study are 0.756, 0.627, and 0.821. The relatively 
lower correlation to Liu et al.22 than to Su et al.52 might be due to that many Chinese characters have multiple 
meanings so that single-character words are more often ambiguous in their semantics than two-character words.

For the semantic dimension of motor, the ratings were validated based on Heard et al.45 and Binder et al.1. 
The rating instructions used in the current study and Heard et al.45 are very similar, both focusing on how eas-
ily a word’s referent can be pantomimed. Similar motor-semantic ratings have been used to reflect the general 
impact of motor-semantic representation on cognition and neural activities in several previous studies18,44,46,53,54. 
The correlation between Heard et al.45 and the current study is 0.806. Binder et al.1 did not set any general rat-
ing for the motor dimension. We therefore correlated our ratings with the four fine-grained motor ratings of 
Binder et al.1, i.e., Head, UpperLimb, LowerLimb, and Practice. The correlations are in the range of 0.133 to 0.342.  

Study1 Dimension1 Study2 Dimension2 df r

Current_study (Chinese) Vision Binder et al.1 (English) Vision 533 0.756

Current_study (Chinese) Vision Liu et al.22 (Chinese) Imageability 1323 0.627

Current_study (Chinese) Vision Su et al.52 (Chinese) Imageability 6976 0.821

Current_study (Chinese) Motor Binder et al.1 (English) Motor_General 533 0.426

Current_study (Chinese) Motor Heard et al.45 (English) Pantomime 207 0.806

Current_study (Chinese) Socialness Binder et al.1 (English) Social 533 0.724

Current_study (Chinese) Socialness Diveica et al.3 (English) Socialness 2007 0.724

Current_study (Chinese) Emotion Binder et al.1 (English) Pleasant_minus_Unpleasant 533 0.795

Current_study (Chinese) Emotion Xu et al.55 (Chinese) Valence 6087 0.935

Current_study (Chinese) Emotion_abs + 1 Binder et al.1 (English) Arousal 533 0.532

Current_study (Chinese) Emotion_abs + 1 Tamir et al.5 (English) Emotion 164 0.617

Current_study (Chinese) Emotion_abs + 1 Xu et al.55 (Chinese) Arousal 6087 0.585

Current_study (Chinese) Time Binder et al.1 (English) Time_General 533 0.715

Current_study (Chinese) Space Binder et al.1 (English) Space_General 533 0.716

Table 4.  Results of the validation analysis. The language of the stimuli rated in each study is indicated in 
parentheses. Note: The following dimensions are calculated based on the original ratings from Binder et al.1. 1)  
The scores of Motor_General are calculated by averaging the ratings of the dimensions belonging to the domain 
of Motor, which include Head, UpperLimb, LowerLimb, and Practice. 2) The scores of Pleasant_minus_
Unpleasant are calculated by subtracting the ratings of Unpleasant from those of Pleasant. 3) The scores of 
Time_General are calculated by averaging the ratings of Time and Duration. 4) The scores of Space_General 
are calculated by averaging the ratings of the dimensions belonging to the domain of Spatial, which include 
Landmark, Path, Scene, Near, Toward, and Away.
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We further correlated our ratings with the mean of the four motor ratings and obtained a correlation of 0.426. 
These relatively low correlations indicate that the four motor dimensions rated by Binder et al.1 may not be able 
to fully explain the content of our ratings. It is likely that our ratings reflect more dimensions of motor knowledge 
than those included in Binder et al.1, such as postures and gestures. For example, the word ‘怀孕’ meaning “preg-
nant” was rated as high-socialness. Being pregnant is associated with specific postures and whole-body motor 
features but not with specific motor features of the head, feet, or hands. In addition, people often use gestures to 
represent some particular concepts, especially when performing pantomimes or playing charades.These gestures 
should also be viewed as a type of motor knowledge as long as people can reach a consensus on their meanings. 
The motor-rating instructions used in Heard et al.45 and the current study should be more sensitive in detecting 
these additional types of motor knowledge than those used by Binder et al.1.

For the semantic dimension of socialness, the ratings were validated based on Diveica et al.3 and Binder et al.1.  
The core ideas of the instructions used in the 3 studies are all centered on interpersonal interactions and rela-
tionships. However, the instructions used in the current study and Binder et al.1 were both brief, while those 
used by Diveica et al.3 were much more detailed, that is, “a social characteristic of a person or group of people,  
a social behavior or interaction, a social role, a social space, a social institution or system, a social value or ideol-
ogy, or any other socially relevant concept.” The correlations of our ratings to those of Diveica et al.3 and Binder 
et al.1 are both 0.724.

For the semantic dimension of emotion (valence), the ratings were validated based on Xu et al.55 and Binder 
et al.1. The instructions used in the current study and Xu et al.55 are similar, and the correlation between the 
two studies is 0.935. The emotion ratings of the current study are closely associated with two dimensions of 
Binder et al.1, that is Pleasant and Unpleasant. Therefore, we calculated composite scores of the two dimensions 
by subtracting the ratings of Unpleasant from those of Pleasant and correlated the scores with our ratings. The 
correlation is 0.795.

We also validated the absolute values of our emotion ratings. As mentioned above, this measure, which can 
be referred to as the dimension of “valenced vs. neutral”, can reflect the relatedness of word meanings to emo-
tion. To validate this measure, we correlate the absolute values with the emotion ratings collected by Tamir et al.5.  
The correlation is 0.617, indicating that the absolute values of our emotion ratings can reflect the general emo-
tional relatedness of words. Additionally, the absolute value of valence is also related to another important 
dimension of emotion, called arousal. Arousal increases as a function of both positive and negative valence56. 
The absolute value of valence rating has been used to represent arousal in some previous studies57. We correlated 
the absolute values of our emotion ratings with the arousal ratings provided in Xu et al.55 and Binder et al.1. The 
correlations are 0.585 and 0.532, respectively, which is consistent with the findings in the literature.

Finally, for the semantic dimensions of time and space, we validated the ratings based on Binder et al.1. 
Binder et al.1 did not set any general rating for these dimensions. Therefore, we averaged the ratings of two 
time-related dimensions (Time and Duration) to correspond to our time ratings and averaged the ratings of six 
space-related dimensions (Landmark, Path, Scene, Near, Toward, and Away) to correspond to our space ratings. 
The correlations are 0.715 and 0.716 for time and space ratings, respectively.

Vision Motor Socialness Emotion Emotion_abs + 1 Time Space

Word2vec (Chinese) 0.849 0.755 0.829 0.773 0.749 0.694 0.823

MacBERT (Chinese) 0.913 0.836 0.895 0.894 0.861 0.892 0.910

Table 5.  Results of the cross-validation analysis for the estimated ratings of Chinese words.

Study1 Dimension1 Study2 Dimension2 df r

Word2vec (Chinese) Vision Binder et al.1 (English) Vision 517 0.700

Word2vec (Chinese) Vision Liu et al.22 (Chinese) Imageability 1323 0.511

Word2vec (Chinese) Vision Su et al.52 (Chinese) Imageability 6975 0.755

Word2vec (Chinese) Motor Binder et al.1 (English) Motor_General 517 0.479

Word2vec (Chinese) Motor Heard et al.45 (English) Pantomime 206 0.634

Word2vec (Chinese) Socialness Binder et al.1 (English) Social 517 0.635

Word2vec (Chinese) Socialness Diveica et al.3 (English) Socialness 2003 0.682

Word2vec (Chinese) Emotion Binder et al.1 (English) Pleasant_minus_Unpleasant 517 0.741

Word2vec (Chinese) Emotion Xu et al.55 (Chinese) Valence 6087 0.828

Word2vec (Chinese) Emotion_abs + 1 Binder et al.1 (English) Arousal 517 0.563

Word2vec (Chinese) Emotion_abs + 1 Tamir et al.5 (English) Emotion 159 0.607

Word2vec (Chinese) Emotion_abs + 1 Xu et al.55 (Chinese) Arousal 6087 0.573

Word2vec (Chinese) Time Binder et al.1 (English) Time_General 517 0.603

Word2vec (Chinese) Space Binder et al.1 (English) Space_General 517 0.666

Table 6.  Results of the validation analysis for the estimated ratings of Chinese words by Word2vec.
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The validation results indicate good validity of our ratings. They also indicate that the semantic ratings of 
the current study can be to a large extent generalized from Chinese to English. As shown in Table 4, for all 
6 original ratings, the cross-language correlations can reach above 0.7. The only low correlation is with the 
“Motor_General” measure of Binder et al.1, which has been explained above. The absolute values of our emotion 
ratings also have a correlation of 0.617 with the emotion ratings of Tamir et al.5. These cross-language correla-
tions are close to some of the reported correlations between English studies. For example, as reported by Diveica 
et al.3, their correlation with Binder et al.1 is 0.76, which is only slightly higher than ours. Therefore, although 
it should be noted that language and cultural differences should have impacts on semantic ratings, there is still 
high cross-language validity of our ratings to support computational estimations on English words.

Validity of the computational extension dataset.  We conducted two validation analyses to test the 
validity of the estimated ratings for the extensional vocabulary. The first analysis aimed to examine the internal 
validity of the outputs of our computational predictive models. To this end, we calculated the average correlation 
between the predicted and actual ratings for Chinese words across the 10-fold cross-validation training. Specifically, 
the 10-fold cross-validation training first split all dataset into 10 folds, then used 9 folds to train the model and the 
predicted semantic ratings for words in the left one fold, then calculated the correlation of the predicted semantic 
ratings with the actual ratings to evaluate the model. The results are shown in Table 5. For both word embedding 
methods, the models performed well for all semantic dimensions, indicating good internal validity.

The second analysis aimed to examine the external validity of the estimated/predicted ratings for the 
extended Chinese and English words. To this end, we conducted a validation analysis following the same 
method that we used for validating the subjective ratings. The results are shown in Tables 6–9. For all dimen-
sions, the estimated/predicted ratings of all models showed good external validity, which is very close to that of 
the subjective ratings (see Table 4).

Note that the semantic ratings in the computational extension dataset are calculated using distributional lan-
guage models, which may not give ratings as accurate as human annotations. Existing work has proven that word 
embeddings from Word2vec, BERT and other language models encode rich semantic information. However, it 
is unclear what exact semantic feature it encodes; that is, word embeddings may not encode all information in 
the semantic dimensions of vision, motor, socialness, emotion, time, and space. Moreover, word embeddings 
are calculated by counting word cooccurrence in a large corpus, which is different from how humans learn and 
understand word meaning. Therefore, the computational extension dataset may show different patterns than 

Study1 Dimension1 Study2 Dimension2 df r

MacBERT (Chinese) Vision Binder et al.1 (English) Vision 532 0.713

MacBERT (Chinese) Vision Liu et al.22 (Chinese) Imageability 1323 0.505

MacBERT (Chinese) Vision Su et al.52 (Chinese) Imageability 6976 0.796

MacBERT (Chinese) Motor Binder et al.1 (English) Motor_General 532 0.444

MacBERT (Chinese) Motor Heard et al.45 (English) Pantomime 207 0.689

MacBERT (Chinese) Socialness Binder et al.1 (English) Social 532 0.679

MacBERT (Chinese) Socialness Diveica et al.3 (English) Socialness 2007 0.712

MacBERT (Chinese) Emotion Binder et al.1 (English) Pleasant_minus_Unpleasant 532 0.781

MacBERT (Chinese) Emotion Xu et al.55 (Chinese) Valence 6087 0.894

MacBERT (Chinese) Emotion_abs + 1 Binder et al.1 (English) Arousal 532 0.549

MacBERT (Chinese) Emotion_abs + 1 Tamir et al.5 (English) Emotion 164 0.681

MacBERT (Chinese) Emotion_abs + 1 Xu et al.55 (Chinese) Arousal 6087 0.577

MacBERT (Chinese) Time Binder et al.1 (English) Time_General 532 0.668

MacBERT (Chinese) Space Binder et al.1 (English) Space_General 532 0.607

Table 7.  Results of the validation analysis for the estimated ratings of Chinese words by MacBERT.

Study1 Dimension1 Study2 Dimension2 df r

Word2vec (English) Vision Binder et al.1 (English) Vision 531 0.719

Word2vec (English) Motor Binder et al.1. (English) Motor_General 531 0.405

Word2vec (English) Motor Heard et al.45 (English) Pantomime 207 0.701

Word2vec (English) Socialness Binder et al.1 (English) Social 531 0.597

Word2vec (English) Socialness Diveica et al.3 (English) Socialness 2007 0.704

Word2vec (English) Emotion Binder et al.1 (English) Pleasant_minus_Unpleasant 531 0.766

Word2vec (English) Emotion_abs + 1 Binder et al.1 (English) Arousal 531 0.557

Word2vec (English) Emotion_abs + 1 Tamir et al.5 (English) Emotion 161 0.552

Word2vec (English) Time Binder et al.1 (English) Time_General 531 0.640

Word2vec (English) Space Binder et al.1 (English) Space_General 531 0.685

Table 8.  Results of the validation analysis for the estimated ratings of English words by Word2Vec.
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human annotated data. Furthermore, the mismatch between English and Chinese semantic spaces is a potential 
limitation of our method because we projected English words from the English semantic space to the Chinese 
semantic space to accomplish our estimation.

Code availability
The codes for calculating and evaluating computational extension scores are available in the subfolder named 
“Code” under the folder named “Supplimentary_Data” at https://doi.org/10.17605/OSF.IO/N5VKE16. Specifically, 
to estimate the semantic ratings of Chinese words, we first used “train_decode.py” to learn a mapping function from 
the Chinese embedding space to semantic ratings based on the 17,940 subjective ratings with their corresponding 
word embeddings. We then utilized “predict.py” to generate the semantic ratings of all extensional Chinese words.

To estimate the semantic ratings for English words, we need to align the mapping relations between the English 
and Chinese embedding spaces beforehand. To achieve that, we first used “extract_en.py” and “extract_zh.py” to 
extract word representations that are in the Chinese-English bilingual lexicon and then used “match.py” and “train_
align.py” to learn the mapping function from English to Chinese word representations. Finally, based on the two 
mapping functions, including English-Chinese mapping and Chinese to semantic ratings, we used “predict.py” to 
project English embedding peace to that of Chinese to generate the semantic ratings of all extensional English words.

To validate the above results, we used “corr_binder.py” and “corr_binder_cn.py” to compute correlations 
between the extensional ratings and corresponding scores in Binder et al.1.
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