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A 21-year dataset (2000–2020) of 
gap-free global daily surface soil 
moisture at 1-km grid resolution
Chaolei Zheng   , Li Jia    & Tianjie Zhao   

Global soil moisture estimates from current satellite missions are suffering from inherent discontinuous 
observations and coarse spatial resolution, which limit applications especially at the fine spatial scale. 
This study developed a dataset of global gap-free surface soil moisture (SSM) at daily 1-km resolution 
from 2000 to 2020. This is achieved based on the European Space Agency - Climate Change Initiative 
(ESA-CCI) SSM combined product at 0.25° resolution. Firstly, an operational gap-filling method was 
developed to fill the missing data in the ESA-CCI SSM product using SSM of the ERA5 reanalysis dataset. 
Random Forest algorithm was then adopted to disaggregate the coarse-resolution SSM to 1-km, with 
the help of International Soil Moisture Network in-situ observations and other optical remote sensing 
datasets. The generated 1-km SSM product had good accuracy, with a high correlation coefficent 
(0.89) and a low unbiased Root Mean Square Error (0.045 m3/m3) by cross-validation. To the best of our 
knowledge, this is currently the only long-term global gap-free 1-km soil moisture dataset by far.

Background & Summary
Soil moisture (SM) is a key state variable in the climate system and hydrological cycle, and it controls the 
exchange of water, energy, and carbon fluxes between the land surface and atmosphere1–6. SM datasets are essen-
tial for a wide range of applications in hydrology, meteorology, climatology, and water resource management7–13. 
SM presents high spatial and temporal variability due to the complex interactions among various correlated 
variables such as soil texture and structure, topographic features, land cover patterns, vegetation properties, 
and meteorological forcing14–17. These factors generally are difficult to isolate, and their coupled impacts on SM 
variability vary significantly over time and space domain13,18,19.

Different ground observation techniques have been developed to measure SM, e.g., the gravimetric methods, 
time/frequency domain reflectometry, neutron probes, electrical resistivity measurements, heat pulse sensors, 
fiber optic sensors2,8,11,18. Based on these point-scale ground observations, global SM networks, such as the 
International Soil Moisture Network (ISMN), have been established, and significant progress has been made 
in characterizing the spatial and temporal variation of SM to improve our understanding of the earth system20. 
However, in-situ measurements are limited in terms of spatial representativeness, and extrapolation of such 
point-scale measurements to large spatial scale is usually complex and time-consuming, especially on land sur-
face with high spatial heterogeneity15,21–24. Spatial and temporal quantification of SM distributions at regional 
and global scales based on these ground-observed datasets remains challenging25.

Satellite remote sensing technology can obtain surface SM (SSM) from regional to global scale, and the 
observations from active and passive microwave sensors are considered to be one of the best tools for SSM 
retrieval16,26,27. Various satellites and algorithms have been developed with the ability to map SSM from 
satellite-based microwave sensors28, such as the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) 
and its successor AMSR2, Fengyun-3 MicroWave Radiation Imager (MWRI), the advanced scatterometer 
(ASCAT), Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), and European 
Space Agency Sentinel-1 satellite29–33, and global soil moisture products have been produced accordingly34–39. 
Although significant progress has been made to merge various satellites data to improve the remote sensing SSM 
coverage, there are still many gaps in the daily SSM dataset due to the limited satellite orbit/swath and retrieving 
capability. For example, it is found that the widely used multi-sensor fusion SSM product from European Space  
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Agency - Climate Change Initiative (ESA-CCI) product has a very low spatial coverage (roughly 20%) in the 
central and western Tibetan Plateau40.

Another key limitation is that most of these global SSM products are at relative coarse spatial resolution, e.g., 
tens of kilometers, which limits the applications in regional hydrological and agricultural studies. Several down-
scaling approaches have been proposed to improve the spatial resolution of SSM product by considering the 
impacts of different environmental variables25. The idea behind these downscaling methods is to establish either 
a statistical function or a physically based model between coarse-resolution SSM and fine-resolution auxiliary 
variables41–47. However, several limitations were found for these downscaling methods, including the linear or 
nonlinear assumption to define the impact of spatial heterogeneity42–44, the error of input fine-resolution data, 
the uncertainties associated with the model parameter estimates45–47, and these may introduce large uncertainty. 
These downscaling methods generally use complex and computationally intensive disaggregation algorithms 
that are generally unsuitable for a global implementation due to complex and varying nonlinear relationships 
between soil moisture and the determinant variables used for downscaling48. Consequently, the high-resolution 
SSM dataset with global coverage is still lacking. Machine learning algorithms are increasingly used to extract 
patterns and insights of different geospatial variables from the ever-increasing stream of Earth system science 
data49, and have been proved to be a feasible method to disaggregate SSM (capture the complex nonlinear rela-
tionships) at coarse resolution hence to generate high resolution SSM at global scale50–55.

Considering the importance of high-resolution gap-free SSM data, this study aims at generating a 
high-resolution SSM dataset at global scale with continuity at both space and time scales by developing a SSM 
downscaling algorithm based on machine learning method. A global gap-free SSM dataset at daily scale and 
1-km spatial resolution from 2000 to 2020 is finally generated.

Methods
Experimental design.  Previous studies on the evaluation of different soil moisture products56–58 conclude 
that ESA-CCI SSM has high accuracy and shows the best consistence with the ground observations. The top layer 
SM data from the European Centre for Medium-Range Weather Forecasts reanalysis v5 (ERA5) product shows 
good temporal correlation with ground observation, but with systematically large bias57. Hence, it’s reasonable to 
merge these two datasets by utilizing the high accuracy of ESA-CCI SM and good temporal variation and global 
gap-free coverage of ERA5 SM to generate a gap-free SSM dataset. The global daily gap-free SSM dataset at 1-km 
resolution was achieved by the following two steps in this study (Fig. 1). First, the ESA-CCI SSM product was 
gap-filled using ERA5 reanalysis product, and we achieved a daily gap-free SSM data at 0.25° resolution. Then, 

Fig. 1  Schematic overview of the methodology and data products for generating the daily gap-free SSM dataset 
at 1-km resolution.
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machine learning models were trained to downscale the daily gap-free SSM data at 0.25° resolution to 1-km reso-
lution with the help of fine-resolution auxiliary data. We will introduce the data and algorithm used in this study 
in the following sections.

Satellite and auxiliary data.  The ESA-CCI SSM product is currently the available dataset of satellite-based 
soil moisture with the longest data record to date. The ESA-CCI SSM v06.1 product at coarse resolution was 
adopted in current study for further gap-filling and downscaling. The ESA-CCI SSM products was obtained using 
various satellite-based observations from microwave sensors since 1978, with 0.25° grid resolution at daily inter-
val. It provides three SSM datasets: the merged dataset from observations by active microwave sensors (“Active 
Product”), the merged dataset from observations by passive microwave sensors (“Passive Product”), and the com-
bined dataset. The “Active Product” and the “Passive Product” were created by fusing soil moisture products from 
scatterometer and radiometer observations, respectively. The combined SM product was obtained by merging 
all active and passive SSM observations directly through temporal resampling, spatial resampling, Cumulative 
Distribution Function (CDF) -based rescaling, and triple collocation analysis-based merging algorithm. We 
selected the combined dataset in this study since it was supposed to inherit the advantages of both active and 
passive microwave observations, and it generally outperformed the products using single-sensor observation as 
input59. Although enormous efforts have been conducted to obtain SSM at daily scale with global coverage, the 
daily ESA-CCI SSM products still could not fully cover the global land surface. The missing data percentage range 
from 21.8% to 94.41% at daily step from 2000 to 2020 according to our statistics, with an averaged value of 58.17% 
(Fig. 2). Even the global missing data percentage decreased dramatically with the increase of available satellite 
data after 2007, the minimum missing values of daily ESA-CCI SSM could still count for 21.8% of global land sur-
face (Antarctica excluded). (Fig. 2). Large gaps are especially in winter time for the northern hemisphere due to 
frozen water content in soil, which is difficult to be detected by microwave bands60,61. Studies intended to exclude 
the densely vegetated regions, since the retrieval errors are relatively large in these regions because the sensitivity 
of the radiometer to SSM is reduced due to the strong attenuation of the ground emission signal by vegetation62. 
Missing data days per year were also high in high elevations regions, e.g., the missing observation days was found 
larger than 200 days per year in the Tibetan Plateau.

The top layer SM data from the ERA5 product was downloaded from the Copernicus Climate Data Store 
(https://cds.climate.copernicus.eu/) and used to fill the missing values in ESA-CCI SSM dataset. The ERA5 
was built upon its predecessor (ERA-Interim), and it combined more historical observations and run on finer  
resolutions63. The ERA5 SSM has a globally spatial-temporal continuous coverage, with a spatial resolution of 0.25° 
and temporal resolution of 1 hr. In this study, daily ERA5 SSM was calculated by averaging the hourly ERA5 SSM.  
The ERA5 SSM has better performance in terms of correlation with ground observations than some other soil 

Fig. 2  Statistics of missing data in the original ESA-CCI SSM products. (A) Percentage of missing data globally 
in ESA-CCI SSM dataset from 2000 to 2020. (B) Missing days per year in the original ESA-CCI SSM dataset 
averaged over multi-years (from 2000 to 2020).

https://doi.org/10.1038/s41597-023-01991-w
https://cds.climate.copernicus.eu/


4Scientific Data |          (2023) 10:139  | https://doi.org/10.1038/s41597-023-01991-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

moisture reanalysis products56, and it could reasonably regenerate the monthly dynamics and annual cycles, 
especially the timings of the strong dry-wet transition57.

The predictors used in the machine learning algorithm for downscaling SSM includes Normalized Difference 
Vegetation Index (NDVI), surface albedo, digital elevation model (DEM), and saturated soil moisture. To obtain 
the 1-km resolution SSM data, different optical remote sensing datasets at high resolution were collected and 
processed to obtain daily values of these predictor variables at 1-km resolution. The monthly NDVI data with 
1-km resolution were from MOD13A2 product64. The monthly 0.05° resolution NDVI from MOD13C165 were 
used and aggregated to 0.25° resolution to match the spatial resolution of ESA-CCI SSM data in the downscaling 
model. They were further interpolated linearly to daily temporal resolution to match the temporal resolution of 
SSM. The albedo data was from the Global LAnd Surface Satellite (GLASS) product66,67, and it was reconstructed 
to daily step by linear interpolation for further application. The topographic information was retrieved from the 
SRTM30 DEM68, and the DEM at 1-km resolution was retrieved from its native 30 Arc Seconds resolution using 
bilinear interpolation method. The global 1-km saturated soil moisture was obtained from previous study that 
produce a high-resolution global map of soil hydraulic properties by a hierarchical parametrization of a physi-
cally based water retention model69, using the surface soil of SoilGrids dataset as input70.

Ground observation data.  The in-situ soil moisture observations datasets from ISMN were collected to 
train the machine learning method for SSM downscaling and validate the results. The ISMN is a soil moisture 
dataset network established and maintained through international cooperation. The SM observations have been 
collected around the world by different research teams and harmonized to make the data available for public 
research, through the coordination by the Global Energy and Water Exchanges Project20. To date, the ISMN data 
consists of measurements from 2,879 sites in 68 networks (last access on February 10, 2022). These in-situ SM 
observations play an increasingly substantial role in evaluating satellite and model products2,20,71–74. The ISMN 
data adopted in current study is listed in Supplementary Table S1. Further details about the instruments and the 
data quality control of the observations can be found in the network reports and references therein (available 
from https://ismn.geo.tuwien.ac.at).

ESA-CCI SSM gap-filling at 0.25° resolution.  The applicability of SSM data is often hindered by spatio-
temporal gaps. Global reanalysis data are featured by high spatial coverage and high temporal resolution, which 
could be used to fill the gaps in remote sensing SSM dataset. However, in many regions, global reanalysis data lack 
of accuracy and are biased from ground true or satellite retrievals62,64,74. One solution is to make use of the con-
sistency of temporal variation between the remote sensing SSM time series and the SSM of reanalysis data, while 
re-scale (or adjust) the magnitude of the reanalysis SSM according to the remote sensing SSM. In current study, 
the missing values in ESA-CCI SSM was gap-filled by using the ERA5 SSM to obtain daily gap-free ESA-CCI SSM 
at 0.25° resolution. To avoid the inconsistency between the ESA-CCI SSM and the ERA5 SSM, the daily ERA5 
SSM was re-scaled (adjusted) according to the ESA-CCI SSM before it was used for gap-filling. The re-scaling of 
ERA5 SSM was done by establishing a linear relationship for each 0.25° grid between these two SSM time series 
using daily data on the overlapped days. A simple linear relationship between the ERA5 SSM and ESA-CCI SSM 
on overlapped days for each 0.25° grid could be built as below

SSM a SSM b (1)ESA CCI ERA5= +−

where a and b were fitting parameters. Once the coefficients a and b are defined in Eq. (1), the re-scaled (or 
adjusted) ERA5 SSM, SSMERA5, adjusted, could be obtained as

SSM a SSM b (2)ERA adjusted ERA5, 5= +

Assuming the adjusted daily ERA5 SSM and the original daily ERA5 SSM depart the same way from their 
mean values of time series (μESA-CCI and μERA5) with the same standard deviations (σESA-CCI and σERA5), the  
following equations could be obtained,

μ μ− = −−SSM SSM (3a)ERA adjusted ESA CCI ERA ERA5, 5 5

SSM SSM( ) / ( ) / (3b)ERA adjusted ESA CCI ESA CCI ERA ERA ERA5, 5 5 5μ σ μ σ− = −− −

Equation (3b) could be rearranged as

SSM SSM/ / (4)ERA adjusted ESA CCI ERA ERA ESA CCI ERA ESA CCI ERA5, 5 5 5 5σ σ μ μ σ σ= ⋅ + − ⋅− − −

Hence, the pixel-wise a and b in Eq. (2) were obtained, and SSMERA5, adjusted was estimated using the averaged 
values and standard deviation values of ERA5 SSM and ESA-CCI SSM over the overlapped days. SSMERA5, adjusted 
estimated by Eq. (4) was then adopted to fill the missing values in the ESA-CCI SSM for each 0.25° grid. For the 
0.25° grids where no overlapped data were found (roughly 10% of global land surface), mainly in the tropical 
rainforest regions, the ERA5 SSM was directly adopted to fill the missing values in the ESA-CCI SSM dataset. 
Even it may be controversy, ERA5 also gives the SSM value for the water and snow/ice covered pixels, and it was 
directly used to fill the missing values of water and snow/ice covered pixels during the SSM gap-filling phase in 
this study. Finally, the global daily gap-free SSM at 0.25° resolution was achieved.

Spatial downscaling.  The daily gap-free ESA-CCI SSM at 0.25° resolution was disaggregated to 1-km using 
machine learning method. The disaggregation strategy first learns the nonlinear relationships between the in-situ 

https://doi.org/10.1038/s41597-023-01991-w
https://ismn.geo.tuwien.ac.at


5Scientific Data |          (2023) 10:139  | https://doi.org/10.1038/s41597-023-01991-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

observations of SSM and the ESA-CCI soil moisture at 0.25° resolution and NDVI at both 0.25° and 1-km resolu-
tions, to predict the fine resolution (1-km) SSM. The ISMN observation data were adopted to train the machine 
learning model for SSM downscaling. We also tested the performance of different machine learning methods and 
different combinations of explanatory variables, which allowed us to select the most suitable model and explana-
tory variables for SSM downscaling.

We first explored the performances of using different explanatory variables, several tests were conducted with 
different variables included in the machine learning models (Table 1). The SSM25km, NDVI25km and NDVI1km was 
employed in Test1. The surface albedo (α1km), digital elevation model (DEM1km), and surface saturated soil mois-
ture (θS,1km), were added successively from Test2 to Test8. These variables were selected because of their physical 
relationships with the spatial variation of SSM. For instance, high SSM values generally associated with good 
vegetation conditions (high NDVI and low albedo). The NDVI both at coarse and fine resolutions were used 
in previous studies51. The albedo showed exponential relationship with SSM and systematic decrease in albedo 
in response to rainfall were observed widely75,76. DEM1km and θS,1km somehow related to the soil water holding 
capacity40. Land surface temperature (LST) was highly related to SSM, but it was not selected for SSM downscal-
ing since the gap-free LST at moderate (e.g., 1-km) resolution were not available due to the impact of cloudiness. 
It’s also noted that precipitation was not selected as an explanatory variable considering that the global moderate 
resolution precipitation dataset was not available. We will consider to update the auxiliary datasets in the future 
when they are available.

We tested and compared four machine learning algorithms to select the most accurate algorithm for 
SSM downscaling, including the Random Forest (RF), the Support Vector Machine (SVM), the Tree-based 
Regression (TR), and the Artificial Neural Networks (ANN). We used k-fold (k = 10 in current study) cross 
validation to validate and compare the downscaled SSM by different models and tests. The SSM observation 
data from ISMN was divided into k-fold (or groups) randomly, with one of the folds (10% of the observation 
data) was left as ‘unmeasured’ and the remaining k-1 folds (90% of the observation data) were used for training 
the models. The trained models were validated based on the ‘unmeasured’ data. The training and validation 
procedures were repeated 10 times, using a different fold as the holdout set for each time; hence all data was 
selected for validation. This validation could explore the transferability of the downscaling model from known 
in-situ SSM observation sites to any other sites for global applications. The correlation coefficient (R) and unbi-
ased root-mean-square error (ubRMSE) were used to evaluate the performances of the four different machining 
learning methods.

Figure 3 illustrated the performance of different machine learning models using different combinations of 
explanatory variables by cross validation. Generally, with the inclusion of more explanatory variables in all the 
four models, R was increasing, and ubRMSE was decreasing. Best performance (with high R and low ubRMSE) 
was found in Test8, when all six explanatory variables were selected. This indicated that the SSM can be predicted 
accurately when all the selected explanatory variables were included in the downscaling model. Hence, all six 
explanatory variables (SSM25km, NDVI25km, NDVI1km, DEM1km, α1km, θS, 1km) were adopted in the SSM downscaling 
model. All these four machine learning algorithms showed good performance in predicting SSM (R > 0.6 for all).  
The Tree and RF methods showed much better performance than ANN and SVM, the best results were given 
by the RF method with the highest R (0.89) and lowest ubRMSE (0.05 m3/m3) than the other three algorithms 
(Fig. 3). Based on the performance analyzed above, the RF model was applied to downscale SSM product and 
to generate global daily/1-km resolution SSM product using the explanatory variables in Test8, i.e., SSM and 
NDVI at 25-km resolution, NDVI, surface albedo, DEM and surface saturated soil moisture at 1-km resolution.

Data Records
The final daily/1-km SSM product accounts for more than 1 TB of data capacity. Due to the storage limitation of the 
online repositories, we provide the monthly averaged 1-km SSM data for download from the data portal of National 
Tibetan Plateau/Third Pole Environment Data Center77 (https://doi.org/10.11888/RemoteSen.tpdc.272760)  
after user registration. Data are freely available in this data portal. For easy read and manipulation, the monthly 
1-km SSM data are stored in geotiff format with one file for each month with global coverage. Users can use most 
Geographic Information Systems (GIS) and remote sensing software packages to read and manipulate the data. 
The file names follow the structure of “SM.1km.Month.YYYYMM.Global.v001.tif ”, where “SM.Month.1km.” 
represents the 1-km monthly averaged SSM product, “YYYY” is the year, “MM” represents the month, “Global” 
represents the global coverage, and “v001” indicates the product version.

Test Explanatory variables

Test1 SSM25km, NDVI25km, NDVI1km

Test2 SSM25km, NDVI25km, NDVI1km, α1km

Test3 SSM25km, NDVI25km, NDVI1km, DEM1km

Test4 SSM25km, NDVI25km, NDVI1km, θS, 1km

Test5 SSM25km, NDVI25km, NDVI1km, α1km, DEM1km

Test6 SSM25km, NDVI25km, NDVI1km, α1km, θS, 1km

Test7 SSM25km, NDVI25km, NDVI1km, DEM1km, θS, 1km

Test8 SSM25km, NDVI25km, NDVI1km, DEM1km, α1km, θS, 1km

Table 1.  Experiment design to explore the performances by using different explanatory variables for SSM 
downscaling.
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Daily SSM in customized regions are available on request to the corresponding author (zhengcl@aircas.ac.cn)  
with details of the intended and desired spatial and temporal resolution, domain, and period of interest in user’s 
request. The detailed information of the daily SSM product is shown in Table 2. The daily 1-km SSM data are 
stored in hdf5 format (https://www.hdfgroup.org/), and global data was divided into tiles with sinusoidal grid 
projection following the data structure of MODIS products. Each file covers roughly 10° × 10° area, and more 
details on the tiles and projection could be seen from https://modis-land.gsfc.nasa.gov/MODLAND_grid.html.  
The file names of daily 1-km SSM data follow the structure of “SM.1km.Daily.YYYYDOY.tiles.v001.h5”, 
where“SM.Daily.1km” represents the daily 1-km SSM product,“YYYY” is the year,“DOY” represents the day 
of the year (from 001 to 365 or 366),“tiles” represents the tile number (e.g., h24v05) according to the MODIS 
sinusoidal grid, and “v001” indicates the product version. A quality flag was provided in the daily SSM dataset, 
ranging from 0 to 8 (0: original ESACCI SSM was used; 1: original ESA-CCI SSM was not available and the 
gap-filled SSM was used; 2 ~ 3: RF algorithm was failed, and value was from simple linear or nearest interpola-
tion; 4 ~ 7: input data was missing, e.g. albedo, NDVI; 8: non-soil pixels). It should be noticed that SSM retrieval/
downscaling is not available for water and snow/ice surfaces, and those pixels with NDVI below zero were set as 
non-soil pixels and marked in quality flag for the 1-km SSM. Users can use Python, IDL, MATLAB, etc., to read 
and manipulate the data.

Technical Validation
Validation of the gap-filled SSM at resolution of 0.25°.  Theoretically, the percentage of SSM data gaps 
can be reduced to zero after the gap-filling procedure in this study. Figure 4 shows the examples of the gap-filled 
SSM on typical winter and summer days. Given that SSM does not apply to non-soil pixels such as water and 
snow/ice cover surfaces, these pixels are masked in Fig. 4. Generally, the gap-filled SSM data could capture the 
global SSM spatial variation while retaining the original information of ESA-CCI SSM.

Figure 5 represents the temporal behaviours of the original ESA-CCI SSM and the gap-filled ESA-CCI SSM 
in 0.25° grids at selected ISMN sites. Large gaps could be found in the early years of the time series of the orig-
inal ESA-CCI SSM in some selected grids. The average and standard deviation values of ESA-CCI SSM and 
ERA5 SSM during their overlapped days are also shown in Fig. 5. Although relatively large difference could 
be found between ESA-CCI SSM and ERA5 SSM in some sites grids, their temporal variations are generally 
consistent with each other. The gap-filled ESA-CCI SSM followed the temporal variation of ERA5 SSM and orig-
inal ESA-CCI SSM, and showed consistent magnitude with the original ESA-CCI SSM. The averaged values of 
gap-filled ESA-CCI SSM are also stable, and systematic error introduced by the gap-filling method is negligible.

To validate the reasonability of the gap-filling method, a k-fold (k = 10 in current study) validation was con-
ducted. The daily ESA-CCI SSM values in each 0.25° grid in 2000–2020 were randomly divided into 10 folds, 
and each fold of the 10-folds was taken out and predicted by the remaining 9 folds. This procedure was repeated 
10 times until all the 10 folds of ESA-CCI SSM data were traversed (predicted). All the predicted SSM values 
were gathered to compare with the original ESA-CCI SSM series, the results were shown in Fig. 6. It generally 
shows the reliability of the gap-filled ESA-CCI SSM with overall high R values (0.98) and low bias (0.001 m3/m3) 
globally between the gap-filled ESA-CCI SSM and the original ESA-CCI SSM (Fig. 6A). The temporal variation 
of annual global mean values of the predicted SSM showed very close pattern to the original ESA-CCI SSM 
(Fig. 6B). Lower R was found in high-latitude cold regions in the northern hemisphere and the extreme arid 
region (e.g. the Sahel desert and the western Tibetan Plateau) (Fig. 6C). There were more missing data in the 

Fig. 3  Comparison of the performance of SSM1km predictions based on the four machine learning models using 
different explanatory variables.

Data Long name Number type Unit Fill value
Scale 
factor

Added 
offset

Valid 
range

SM Daily soil moisture Int16 m3/m3 −1 0.001 0 0 ~ 1000

flag Flag of daily soil moisture Int8 None −1 none none 0 ~ 8

Table 2.  Detailed information about the Scientific DataSet in the daily SSM product.
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ESA-CCI SSM dataset in the high-latitude cold regions in the northern hemisphere, which partly explained the 
lower R and larger bias (Fig. 6C and Fig. 6D). In the desert regions, SSM was very low, and low R was anticipated 
due to larger uncertainty in the retrieved SSM under very dry condition.

Validation of the downscaled SSM at 1-km resolution based on ISMN observation.  As demon-
strated in the Method section, the RF model outperformed other methods, it was therefore used to produce 
global daily/1-km SSM from 2000 to 2020. Figure 7 presents some examples of monthly averaged downscaled 
SSM at 1-km resolution in January, April, July, and October of 2018. For better illustration of the regional SSM 
distribution, zoom-in views of different selected sub-regions are also shown in Fig. 7. The selected sub-regions 
in Fig. 7 cover roughly 5° × 5° with ISMN network included, which are 1) USDA-ARS network of America, 2) 
SMOSMANIA network in Europe, 3) AMMA-CATCH network in Africa, 4) OZNET network in Australia, and 5)  
HiWATER-EHWSN in China. The global 1-km SSM can capture well the overall spatial variations of global SSM, 
and the spatial features of SSM are well illustrated by the high-resolution SSM as shown in the sub-region maps.

Supplementary Table S2 lists the accuracy metrics of the downscaled 1-km SSM in each ISMN network 
compared with the ISMN observations. The overall bias of the downscaled 1-km SSM is 0 m3/m3 with the range 
from −0.065 to 0.015 m3/m3, R is 0.89 with the range from 0.325 to 0.962, ubRMSE is 0.045 m3/m3 with the range 
from 0.015 m3/m3 to 0.069 m3/m3.

Figure 8 shows the temporal variation of downscaled 1-km SSM at selected ISMN sites. The 1-km SSM are 
very close to the ground observations, and it can trace the seasonal variation of SSM very well. Although the 
ground measured data used in Fig. 8 were included in training the models (hence not independent), it is accept-
able to take them as reference for evaluation of the performance of the downscaled SSM. The results demon-
strated the prediction ability of the RF model used for downscaling of SSM. Meanwhile, to illustrate the ability of 
the 1-km soil moisture data to detect rainfall events, precipitation information was also shown in Fig. 8. Clearly, 
the soil moisture fluctuates with precipitation, especially in the arid land, e.g., the OZNET Yanco-Research 
station, where the dry-down process (soil moisture depletes following the precipitation event) could be well 
captured by the 1-km soil moisture data.

Usage Notes
In this study, we provided a dataset of global spatiotemporally continuous daily surface soil moisture at 1-km 
resolution from 2000 to 2020 for various applications and studies. The 1-km SSM dataset generated in this 
study has several potential applications. For example, it was successfully applied to ETMonitor model for global 
high-resolution evapotranspiration estimation78, in which soil moisture was used to parametrize soil surface 
resistance to soil evaporation and canopy resistance to plant transpiration, so as to better consider the influence 
of soil moisture on land surface evapotranspiration. Compared with those evapotranspiration dataset that did 
not use soil moisture information, e.g., the MOD16 evapotranspiration product, the error of estimated evapo-
transpiration by ETMonitor decreased significantly after using SM information at 1-km resolution, e.g., RMSE 
of global 8-days evapotranspiration decreased from 1.34 mm/d by MOD16 to 0.83 mm/d by ETMonitor78.

The high-resolution SSM dataset also has the potential in distinguishing irrigated fields, inferring irrigation 
water use, improving wildfire danger prediction, etc. However, the size of farmland is generally small, and higher 
spatial resolution (e.g., 30-m) may be more appropriate for distinguishing irrigation and non-irrigation fields. 
Furthermore, it is not practical to assess the performance of identifying irrigation fields using the 1-km SM data 
due to lack of in-situ irrigation information. Further evaluation will be needed to assess the capability of the down-
scaled 1-km SSM for distinguishing between irrigated and non-irrigated fields. An alternative way is that the irri-
gation information could be achieved by comparing satellite derived and modelled SM (the latter does not include 

Fig. 4  Global map examples of the original ESA-CCI SSM product and gap-filled ESA-CCI SSM on January 1st 
and July 1st, 2018 (m3/m3).
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irrigation information)79, or by inverting soil water balance equation to derive the total in-flow water in the soil80. 
However, we should notice these retrieve algorithms need to be calibrated carefully to achieve good accuracy81.

Notably, the 1-km resolution SSM in this study is obtained by downscaling the low-resolution SSM data, 
which is essentially to spatially redistributed microwave-based soil moisture in the coarse grid (0.25°) to 
enclosed pixels (grids) at high resolution (1-km in this study), hence the high-resolution SSM inherits the uncer-
tainty of the low-resolution SSM product. Although comparison with the in-situ observations from the ISMN 
at global scale shows satisfactory accuracy, considering that the in-situ observation sites used for validation are 
relatively sparse and the distribution of ISMN is extremely uneven, it is impossible to guarantee the same quality 

Fig. 5  Examples of the time series of the gap-filled ESA-CCI SSM and the original ESA-CCI SSM product, 
ERA5 SSM products in 0.25° grids at the selected ISMN sites in 2000–2020.
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in different regions of the world. Moreover, one should be aware of the limitation of machine-learning-based 
model, which cannot always correctly capture the variations in SM. Previous study has reported that 
machine-learning-based model failed to track the ‘tipping points’ (where a slowly changing soil moisture trig-
gered a sudden shift to a new soil moisture) when applied to SSM prediction82. In additions to the inherent 
capability of machine-learning-based models, the choice of explanatory variables has a significant impact on 
the results, and the uncertainty in the employed input datasets will certainly be propagated into the downscaled 

Fig. 6  Results of k-fold cross-validation of the gap-filled ESA-CCI SSM: (A) Scatterplot of the predicted ESA-
CCI SSM against the original ESA-CCI SSM; (B) Temporal variation of annual mean values of the predicted 
ESA-CCI SSM, original ESA-CCI SSM, and ERA5 SSM; (C) R of predicted ESA-CCI SSM, (D) Bias of predicted 
ESA-CCI SSM.
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1-km SSM. The temporal resolution of the dataset is achieved by our method using ERA5 dataset for day-by-day 
filling. However, it is difficult to analyse the actual physical spatial resolution, which can be very complex and 
related to all microwave and optical datasets used in the study. It can be inferred that the actual physical reso-
lution would vary from location to location. Therefore, cautions should be paid when applying the downscaled 
SSM dataset for further analysis, e.g., for detection of convective rainfall events, for prediction of flood and 
landslide risk at high resolution.

Fig. 7  Global distribution of monthly averaged SSM at 1-km resolution in January, April, July and October of 
2018. The zoom-in views of the selected sub-regions cover different ISMN networks: (1) USDA-ARS network of 
America, (2) SMOSMANIA network in Europe, (3) AMMA-CATCH network in Africa, (4) OZNET network in 
Australia, and (5) HiWATER-EHWSN in China.
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All the monthly 1-km SSM data are stored in geotiff in the data portal of National Tibetan Plateau/Third Pole 
Environment Data Center77 (https://doi.org/10.11888/RemoteSen.tpdc.272760). The daily 1-km SSM data, stored 
in hdf5 format, are available on request to the corresponding author (zhengcl@aircas.ac.cn). Users can freely choose 
the spatial and temporal coverage of SSM dataset according to their specific research objectives. Users can use 
Python, IDL, MATLAB, and popular Geographic Information Systems (GIS) or remote sensing software packages 
to read and manipulate the data. It should be noted that the data must be multiplied by their corresponding scale fac-
tors (in Table 2). Instructions for data post-processing (converting to geographic coordinates, etc.) is provided with 
the data upon request. The dataset will be updated in the future when new or better input data become available.

Code availability
The codes used in this study will be available at https://github.com/zhengchaolei/GlobalSSMGapfillDownscaling.git  
after this work is accepted.
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