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Database of daily Lagrangian Arctic 
sea ice parcel drift tracks with 
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Since the early 2000s, sea ice has experienced an increased rate of decline in thickness, extent and 
age. This new regime, coined the ‘New Arctic’, is accompanied by a reshuffling of energy flows at the 
surface. Understanding of the magnitude and nature of this reshuffling and the feedbacks therein 
remains limited. A novel database is presented that combines satellite observations, model output, and 
reanalysis data with sea ice parcel drift tracks in a Lagrangian framework. This dataset consists of daily 
time series of sea ice parcel locations, sea ice and snow conditions, and atmospheric states, including 
remotely sensed surface energy budget terms. Additionally, flags indicate when sea ice parcels travel 
within cyclones, recording cyclone intensity and distance from the cyclone center. The quality of the 
ice parcel database was evaluated by comparison with sea ice mass balance buoys and correlations are 
high, which highlights the reliability of this database in capturing the seasonal changes and evolution 
of sea ice. This database has multiple applications for the scientific community; it can be used to study 
the processes that influence individual sea ice parcel time series, or to explore generalized summary 
statistics and trends across the Arctic.

Background & Summary
Drastic changes occurring in the Arctic sea ice cover in recent years1–4 have been a topic of great concern not 
only for the scientific community and local inhabitants, but also for the general public, policymakers and stake-
holders. This is because ‘what happens in the Arctic does not remain in the Arctic’ but rather is connected to 
areas at lower latitudes5,6. Changes in the Arctic will have profound effects politically, economically, ecologically, 
and climatologically on Earth. The Arctic is experiencing the largest temperature increases on our planet7 due 
to global warming. This process is attributed to Arctic Amplification8–10 and is driving the rapid changes in the 
Arctic. The most striking change is the decline in Arctic sea ice extent since the late 1970s11,12. Since the early 
2000s, sea ice has experienced an increased rate of decline in thickness and volume, and transitioned to a pre-
dominantly seasonal ice cover2,13,14 compared to a perennial ice cover in the 1980–1990s15–17. From 2000 onward, 
observations suggest that the Arctic has become warmer and wetter18, evaporation and turbulent fluxes from the 
ice-free ocean has increased19,20, the surface albedo has darkened21, and cloud cover has also increased22,23. This 
era with these large changes observed in the Arctic climate system has been coined the ‘New Arctic’.

The shift to thinner, seasonal ice in the ‘New Arctic’ is accompanied by a reshuffling of energy flows at the 
surface6. Understanding of the magnitude and nature of the reshuffling of the Arctic surface energy budget 
(SEB) and the feedbacks therein remains limited. This knowledge gap is illustrated by the large spread in cli-
mate model projections of the changes in surface turbulent fluxes, near surface temperatures, and hence 
lower tropospheric stability20,24,25. The temperature structure of the lower atmosphere and changes in the SEB  
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(induced by the changes in the sea ice pack) are leading drivers of Arctic Amplification10,24–26. Therefore, synthe-
sizing observations to better understand the evolution of the lower tropospheric temperature structure and its 
influence on the SEB is critical for improving model predictive capabilities of Arctic Amplification and future 
sea ice change.

Sea ice growth and melt are driven by changes in the SEB, which is influenced by atmospheric forcing and 
climate variability25,27,28. Studies have recently shown that the accumulation of radiative energy at the surface in 
early summer (June, July, and August) is a good predictor of September sea ice extent (i.e., sea ice survival)29. Sea 
ice thickness has been shown to be important for predicting September sea ice area up to 6 months in advance30 
owing to both thickness and extent being influenced by the same thermodynamic and dynamic processes. Thus, 
understanding what drives the year-to-year variability of sea ice thickness and extent, through winter precon-
ditioning and melt season evolution, can help elucidate the drivers behind different projected trends in Arctic 
sea ice loss.

A quantitative understanding of the interaction between sea ice and the atmosphere is important for describ-
ing the coupled Arctic climate system and is necessary for improving model physics, which, in turn, can improve 
seasonal forecasts and climate projections of the fate of the sea ice in the ‘New Arctic’. Previous studies have 
examined and quantified sea ice-atmospheric interactions using an Eulerian framework31–33. However, given sea 
ice mobility, this is a serious limitation to process-oriented understanding by inhibiting the ability to track cumu-
lative effects of atmospheric processes on the SEB and sea-ice mass balance. Studying sea ice from a Lagrangian 
framework has been used for tracing biogeochemical transport34,35, ice volume flux36–38, snow distribution39, 
and for developing a numerical sea ice model40. Lagrangian tracking of coincident sea ice and atmospheric 
conditions has also been done41, which we expand on here with higher temporal resolution (daily) and more 
complete atmospheric conditions including terms for calculating the SEB. In this work, we present the creation 
of a database to monitor the memory of the sea ice parcels using a Lagrangian framework, tracking their daily 
motion, characteristics such as thickness and concentration, SEB, and associated atmospheric conditions as they 
undergo seasonal evolution and drift through the Arctic Ocean between October 2002 and September 2020.  
The database starts in 2002 as this highlights conditions in the ‘New Arctic’ and due to availability of important 
satellite data. This framework will enable the scientific community to effectively monitor and analyze the evo-
lution of the sea ice and SEB over a variety of atmospheric and sea ice conditions. This effort uniquely unifies a 
wide variety of satellite and reanalysis data and can provide crucial knowledge of how the ‘New Arctic’ sea ice 
couples with the atmosphere, and also how a range of atmospheric forcings and episodic weather events influ-
ence the SEB, sea-ice mass balance, and hence seasonal evolution of Arctic sea ice.

Methods
Lagrangian tracked sea ice parcels.  Sea ice parcels are tracked in a Lagrangian framework to investi-
gate how sea ice characteristics and their SEB co-evolve and respond to atmospheric conditions. Beginning on  
1 October 2002, sea ice parcels are identified in 25-km grid cells where sea ice concentrations are > 15% and given 
a unique identification number. Adapting the Lagrangian approach41, the location of each sea-ice parcel is tracked 
daily using the weekly Simulated 12-month Ice Parcel Tracks from Gridded Sea Ice Motion Version 142 on the 
25-km Equal-Area Scalable Earth (EASE) Grid. These weekly ice motion data are linearly interpolated to daily 
vectors. Weekly ice motion data are used to reduce uncertainties associated with assimilating daily buoy motion 
in the product (personal communication with W. Meier, 2018). If sea ice concentrations fall below 15%, a parcel’s 
tracking is ceased. If more than 15% sea ice concentration materializes in open water grid cells, a new sea ice par-
cel is identified and tracked. It was found that the sea ice motion product can produce accurate tracking of parcels 
over time with little cumulative errors due to largely unbiased motion evaluations43. When comparing drift tracks 
to the drift of the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp, an error of 27 km over 293 days was 
found41. One study found that the standard deviation of the sampling error in ice motion to be 5 km to 12 km per 
day by comparing ERS-1 synthetic aperture radar (SAR) and drifting buoy motion to Lagrangian parcel tracks44. 
A separate simulation is run for each year, running from the beginning of October to the end of September of the 
following year (i.e., October 2002 - September 2003). Each year, new sea ice parcels are identified at the beginning 
of October. Sea ice parcels that did not melt out by the end of September are “linked” with the sea ice parcels 
identified the following October and are flagged as multiyear ice (see “Outputs from Database” section below for 
more details). At the time of writing, the database includes data through September 2020.

At each time-step, daily averaged variables of interest are incorporated as individual data layers for each sea 
ice parcel including those characterizing sea ice conditions, the SEB terms between the parcel and atmosphere, 
and atmospheric conditions (see Table 1 and Fig. 1). All variables are re-projected to the EASE projection to 
match the coordinate reference system projection of the sea ice trajectories45,46. Along with these data layers, 
flags are given to denote the presence/absence of episodic weather events. Specifically, if a cyclone is present at 
the location of the parcel, the parcel is flagged with unique system identifications along with distance from the 
center of the system, the cyclone area, and several metrics of cyclone intensity. By incorporating synoptic event 
information, users can pinpoint perturbations that may result in propagating effects on the SEB and sea ice mass 
balance. Currently only closed system cyclones are flagged, however future work plans to include other types of 
episodic weather events.

The database is stored in HDF5 file format where an individual file exists for each unique sea ice parcel 
(Fig. 2). The top level contains the geographic location and date of the sea ice parcel at daily time steps. The 
ice parcel group level includes additional start and end regions (see Fig. 3 for a regional map) according to the 
updated region mask provided by the National Snow and Ice Data Center (NSIDC)47. A group exists for each 
data source that has been combined with the sea ice parcel (Atmospheric Infrared Sounder (AIRS), Pan-Arctic 
Ice Ocean Modeling and Assimilation System (PIOMAS), Modern-Era Retrospective Reanalysis Version 2 
(MERRA-2), Cyclones, etc.). Every group contains a dataset for each individual variable, with multiple columns 
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Variable Data Source Resolution

Lagrangian Sea Ice Parcel Tracking

Sea Ice Drift SSM/I PMW, Buoys94 Weekly, 25 km

Sea Ice Trajectories Simulated 12-month Ice Parcel Tracks from 
Gridded Sea Ice Motion, Version 142 Weekly, 25 km

Sea ice conditions

Sea Ice Concentration (%) SSM/I48,49 Daily, 25 km

Sea Ice Thickness (m) PIOMAS54 Daily, 22 km

Snow Depth (cm) and Density (kg/m3) SnowModel-LG39 Daily, 25 km

Surface Energy Budget

Downwelling Shortwave (SW) Radiation (W/m2) CERES68,69,95 Daily, 20 km

Upwelling and Downwelling SW and Longwave (LW) Clear-sky & 
All-sky Radiation (W/m2) CERES68,69,95 Daily, 20 km

Albedo CERES68,69,95 Daily, 20 km

Latent (LH)/Sensible (SH) Heat Flux (W/m2) Derived from AIRS72,73 Daily, 25 km

Atmospheric Conditions and weather event classification and tracking

Clouds fraction (%) and type (low, mid-low, mid-high, high), 
precipitable water (cm), liquid and ice water path (g/m2) CERES-MODIS/ CALIPSO-CloudSat Daily, 20 km

Atmospheric pressure (Pa), temperature (K), specific humidity (kg/
kg), total precipitation (kg/m2), snowfall (kg/m2), total column water 
vapor (kg/m2), wind speed (m/s) & direction (°)

MERRA-257 Hourly/3-hourly, daily, 
1/2° × 5/8°

Atmospheric pressure (Pa), temperature (K), specific humidity (kg/
kg), total precipitation (m), snowfall (m), total column water vapor 
(kg/m2), wind speed (m/s) & direction (°)

ERA558 Hourly, daily, 
1/2° × 1/2°

Atmospheric pressure (hPa), geopotential height (m), temperature 
(K), relative (%) & specific humidity (g/kg), skin temperature (K), 
surface air temperature (K), total precipitable water (kg/m2)

AIRS60,61 Daily, 25 km

Cyclone identification (#), distance from center of cyclone (km), 
cyclone area (km2), maximum Laplacian, maximum wind speed 
(m/s), minimum surface pressure (hPa)

The Melbourne University cyclone tracking 
scheme62,65,66 6-hourly, 1° × 1°

Table 1.  The following data are used for assembling the ice parcel database.

Fig. 1  A schematic and details of the information associated with the Lagrangian tracked sea ice parcel 
#2018–2019_50537. Each sea ice parcel, on each day of the year, contains sea ice characteristics, atmospheric 
characteristics, SEB, and episodic weather cyclone event flags at a specific date and location. In the schematic, 
MY is multi-year sea ice, FY is first-year sea ice, LWP is liquid water path, SW is shortwave radiation, LW is 
longwave radiation, and LH is latent heat flux and SH is sensible heat flux.

https://doi.org/10.1038/s41597-023-01987-6


4Scientific Data |           (2023) 10:73  | https://doi.org/10.1038/s41597-023-01987-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

denoting pressure levels when applicable. The files are grouped by year (“year” here is from October 1 to the 
following September 30) and for each year a metadata file exists summarizing key characteristics of each sea 
ice parcel which can be used to filter sea ice parcels that meet certain criteria. Because the tracking algorithm 
is restarted each year at the beginning of October, parcel ID numbers do not carry over from September into 

Fig. 2  File structure for individual trajectories in the database.

Fig. 3  Database domain uses the 25-km polar stereographic grid EASE from NSIDC. Each number 
corresponds to a different region. These are, 1: Open Ocean, 2: Sea of Okhotsk, 3: Bering Sea, 4: Hudson Bay, 5: 
North Atlantic, 6: Baffin Bay/Labrador Sea, 7: E. Greenland Sea, 8: Barents Sea, 9: Kara Sea, 10: Laptev Sea, 11: 
E. Siberian Sea, 12: Chukchi Sea, 13: Beaufort Sea, 14: Canadian Archipelago, 15: Central Arctic, 20: Land, and 
21: Coasts. These numbers are included in the metadata for each parcel.
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October. Instead, an additional metadata file is included linking all parcels that survived summer melt (e.g., did 
not melt out by the end of September) with the nearest parcel at the beginning of the following October so that 
it is possible to track parcels across multiple years.

Sea Ice conditions.  Sea Ice concentration.  Two sea ice concentration data products are included in this 
database, the Sea Ice Concentration Climate Data Record (CDR)48 (https://nsidc.org/data/G02202/versions/4| 
National Snow and Ice Data Center) and the Sea Ice Index product housed at the NSIDC49 (https://nsidc.org/data/
G02135/versions/3). Both datasets are derived from two sources: (1) the Near-Real-Time Daily Polar Gridded Sea 
Ice Concentrations (NRTSI) from the Special Sensor Microwave Imager/Sounder (SSMI/S) on board the Defense 
Meteorological Satellite Program (DMSP) satellites50 and (2) the DMSP Special Sensor Microwave/Imager 
(SSM/I, 1987–2007), and the Special Sensor Microwave Imager/Sounder (SSMI/S, 2007 to 2019). The Sea Ice 
Index uses the NASA Team Algorithm51 for sea ice concentration estimates, while the CDR is a rule-based com-
bination of the NASA Team Algorithm and the NASA Bootstrap algorithm52. Sea ice concentrations derived from 
the NASA Team algorithm are used to determine when to start/stop the Lagrangian tracking method described 
above. Multiple sources of sea ice concentration are included as different algorithms perform better than others 
in certain conditions (i.e., low ice concentrations), although the trends in sea ice area and extent tend to agree53.

Sea Ice thickness.  Continuous, daily sea ice thickness estimates from observations are lacking for 2002–2020. 
Therefore, daily sea ice thickness is obtained from the Pan-Arctic Ice-Ocean Modeling and Assimilation 
System (PIOMAS), a coupled ocean and sea ice model that focuses on the Arctic Ocean54 (http://psc.apl.
uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid). PIOMAS is driven by National 
Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanaly-
sis data and is formulated in a generalized orthogonal curvilinear coordinate system which is used for bilin-
ear interpolation with every sea ice parcel location. This grid has a mean horizontal resolution of 22 km for 
the Arctic Ocean. Sea ice thickness values produced by PIOMAS compare favorably with Ice, Cloud, and land 
Elevation Satellite (ICESat) measurements, with a correlation of 0.83 and root mean squared error of 0.61 m 
for spring (February-March), and a correlation of 0.65 and root mean squared error of 0.76 m for autumn 
(October-November)55.

Snow depth and density.  As with sea ice thickness, continuous, daily snow depth estimates from observations are 
not available for incorporation into this product. Daily, pan‐Arctic snow depth and density on a 25-km × 25‐km  
grid are obtained from the Lagrangian snow-evolution model (SnowModel-LG)39 (https://nsidc.org/data/
NSIDC-0758/versions/1). The model is forced with NASA’s Modern Era Retrospective‐Analysis for Research 
and Applications‐Version 2 (MERRA‐2) and European Centre for Medium‐Range Weather Forecasts (ECMWF) 
ReAnalysis‐5th Generation (ERA5) atmospheric reanalysis products, providing two individual sets of snow 
properties. By performing full surface and internal energy balances and mass balances within a multilayer snow-
pack evolution system, SnowModel-LG accounts for rainfall, snowfall, sublimation from static‐surfaces and 
blowing‐snow, snow melt, snow density evolution, snow temperature profiles, energy and mass transfers within 
the snowpack, superimposed ice, and ice dynamics. The redistribution of snow particles due to wind is not 
included in SnowModel-LG as the sea ice parcel sizes (14 × 14 km in SnowModel-LG) are too large to simulate 
snow erosion and deposition. Other possibly important processes that are not incorporated in SnowModel-LG 
include snow blowing into leads and snow-ice formation (when seawater floods the snowpack and refreezes due 
to a heavy snow load that submerges the ice surface below sea level). SnowModel-LG outputs have shown rea-
sonable agreement with ice mass balance (IMB) buoys and measurements from the Surface Heat Budget of the 
Arctic Ocean (SHEBA) experiment and the Norwegian young sea ICE (N-ICE2015) measurements56.

Atmospheric conditions.  Inclusion of both Modern Era Retrospective Analysis for Research and 
Applications (MERRA-2)57 (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/) and ECMWF 
Reanalysis 5th Generation (ERA5)58 (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5) varia-
bles provides more flexibility in research applications, such as relating the database to output from models forced 
by different reanalyses. For instance, SnowModel-LG produces two sets of snow characteristics, one forced with 
MERRA-2 and one forced with ERA5. Inclusion of atmospheric variables from each reanalysis model enables 
consistency for snow-atmosphere comparisons.

European centre for medium-range weather forecasts (ecmwf) reanaylsis 5th Generation (ERA5).  ERA5 was 
produced using 4D-Var data assimilation in CY41R2 of ECMWF’s Integrated Forecast System (IFS), with 137 
hybrid sigma/pressure (model) levels in the vertical, with the top level at 0.01 hPa. Values have a spatial reso-
lution of 0.25° latitude by 0.25° longitude. Surface values used here include total precipitation, snowfall, skin 
temperature, surface pressure, 2-meter air temperature, total column water vapor, and 10-meter wind speed and 
direction. Specific humidity, air temperature, and wind speed and direction at four pressure levels (1000hPa, 
925hPa, 850hPa, & 500hPa) are also available. Although atmospheric data from ERA5 correlates well with in 
situ measurements taken during the N-ICE2015 campaign, ERA5 was found to have a large positive bias in 2 m 
temperature in winter and spring59.

Modern era retrospective reanalysis - version 2 (MERRA-2).  MERRA-2 uses the Goddard Earth Observing 
System, Version 5.12.4 (GEOS-5) atmospheric model and Global Statistical Interpolation (GSI) analysis scheme 
and has an approximate spatial resolution of 0.5° latitude by 0.625° longitude. Surface values used here include 
total precipitation, snowfall, skin temperature, 2-meter air temperature, surface pressure, total column water 
vapor, 10-meter wind speed and direction, total precipitable water, and total precipitable snow. Specific humidity 

https://doi.org/10.1038/s41597-023-01987-6
https://nsidc.org/data/G02202/versions/4
https://nsidc.org/data/G02135/versions/3
https://nsidc.org/data/G02135/versions/3
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
https://nsidc.org/data/NSIDC-0758/versions/1
https://nsidc.org/data/NSIDC-0758/versions/1
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5


6Scientific Data |           (2023) 10:73  | https://doi.org/10.1038/s41597-023-01987-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

and air temperature at two pressure levels (850hPa & 500hPa) and wind speed and direction at three pressure 
levels (850hPa, 500hPa, & 250hPa) are also available. Although atmospheric variables from MERRA-2 correlate 
well with in situ measurements during the N-ICE2015 campaign, MERRA-2 was found to have large biases in 
the total column water vapor in spring and summer59.

Atmospheric infrared sounder (AIRS).  NASA’s AIRS onboard the Aqua satellite was launched in May 2002 and 
has been collecting twice daily, global data ever since. AIRS has 2378 infrared channels and a 13.5 km spatial 
resolution. The AIRS instrument was designed to produce highly accurate temperature and humidity profiles 
globally60,61 (https://airs.jpl.nasa.gov/data/get-data/standard-data/), which is important in the Arctic where data 
are sparse and clouds are prevalent. AIRS Version 6 temperatures and humidity products have been compared 
with a variety of in-situ data and have shown to have modest errors in skin temperature (+/−2.3 K), 2 m air 
temperature (+/−3.41 K) and specific humidity (+/−0.55 g/kg)19,25. Version 7, AIRS-only atmospheric variables 
are used and include single level values of skin temperature, surface air temperature, and total column precipi-
table water as well as air temperature, geopotential height, and relative and specific humidity at 6 pressure levels 
(1000hPa, 925hPa, 850hPa, 700hPa, 600hPa, & 500hPa). Some of these variables are also provided by MERRA-2 
and ERA5, but AIRS provides an observational perspective to complement the model derived variables.

Cyclones.  The Melbourne University cyclone tracking scheme62 is used for identifying closed cyclone systems 
due to its consistency in capturing cyclone events, its broad agreement in results with other cyclone tracking 
algorithms63,64, and the availability of methodology from Webster et al.65. To describe the tracker briefly, sea level 
pressure (SLP) fields from ERA5 reanalysis are regridded and smoothed to 1-degree resolution on the polar ste-
reographic grid as described by Murray and Simmonds66. The Laplacian (LP) of the SLP fields is then calculated 
to determine the local maxima of LP relative to eight neighboring grid cells. Once these local maxima are identi-
fied, a set of criteria are imposed: (a) the second derivative of the SLP in the x- and y-directions must be positive, 
and (b) the mean LP in the immediate vicinity of the maxima must meet the “concavity criterion” where LP is 
equal to or greater than 0.2 hPa per degree latitude squared. At every 6-hourly time-step, the cyclone centers are 
determined through an iterative approach that finds the minimum first derivatives (in x and y) within the local 
area of a center candidate, identifying both open and closed systems. The cyclone area is determined by fitting 
an ellipse to the near-zero LP values in eight opposing directions from the cyclone center. For the purpose of 
the ice parcel database, only closed systems are included and given unique identifiers representing individual 
systems. All points within the cyclone area are flagged as the same cyclone event, and if multiple cyclones over-
lap in a given area, those points are flagged with each cyclone ID. Along with the cyclone ID, the minimum SLP, 
maximum LP, maximum wind speed, distance to cyclone center, and cyclone area information are included in 
the ice parcel database as a group.

Surface energy budget.  Clouds and earth’s radiant energy system (CERES).  The CERES instru-
ment is used by the Radiation Budget Science Project at NASA Langley to produce surface, atmosphere, and 
top-of-atmosphere radiative fluxes. These data products range from the instantaneous fluxes for each ~20 km 
CERES footprint to monthly, gridded radiative fluxes. This product incorporates CERES radiances, Moderate 
Resolution Imaging Spectroradiometer (MODIS) cloud properties, surface albedo retrievals, and meteorologi-
cal information from the Global Modeling and Assimilation Office (GMAO) to produce 1-hourly resolved sur-
face, atmosphere, and top-of-atmosphere radiative fluxes. Comparisons between the CERES longwave (LW) and 
shortwave (SW) surface fluxes and surface radiometer observations show uncertainties ~6% in the longwave and 
23% in the shortwave at the hourly, regional time scale over global ocean and land67. Clear-sky/all-sky surface and 
top-of-atmosphere radiative fluxes are obtained from the CERES CERES-SYN1DEG product68,69 (https://ceres.
larc.nasa.gov/data/#syn1deg-level-3).

AIRS-derived turbulent fluxes.  The turbulent flux terms of sensible (SH) and latent (LH) heat are produced 
using AIRS Version 7 Level 3 data products of skin temperature, 925 and 1000 hPa air temperature, relative 
humidity, and geopotential height (https://airs.jpl.nasa.gov/data/get-data/standard-data/), MERRA-2 10 m wind 
speed and passive microwave sea ice concentration produced using the NASA Team algorithm70. Turbulent 
fluxes are estimated using the bulk aerodynamic method with the Monin-Obukhov Similarity Theory and an 
iterative calculation based on Launiainen & Vihma71 on the 25km2 polar stereographic grid. These fluxes are 
derived with a few modifications that were tailored specifically to capture the unique conditions of the boundary 
layer and roughness of the Arctic sea ice (see for more information72,73). The Arctic sea ice specific changes made 
to this algorithm have not been adapted or included in any other climate models or reanalysis products and 
are better suited to simulate turbulent fluxes from the Arctic Ocean. In fact, when compared with in situ data 
from the N-ICE2015 campaign, AIRS LH and SH fluxes had errors of 0.74 W/m2 and 5.32 W/m2, respectively25. 
Overall, these comparisons produce an error of ~20% in the AIRS-derived surface turbulent fluxes, but provide 
the most complete picture of Arctic surface turbulent fluxes over a 20-year period, in the absence of in situ data.

The database presented in this work is the first to incorporate the CERES surface radiative fluxes68 and AIRS 
surface turbulent flux data19,25. This enables the complete characterization of the SEB evolution of sea ice parcels 
across the Arctic domain.

Data Record
The dataset is available at the National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/
NJRT1HKVTFAQ74. This dataset contains yearly directories for 2003–2020, where each year begins on October 
1 of the previous year (start year) and ends on September 30 of the year (end year). In each of these directories 
there is one file for each sea ice parcel in HDF5 format. Each file name is ‘TrajD_SYYY-EYYY_XXXXX.hf ’, 
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where SYYY is the start year and EYYY is the end year, and XXXXX is the unique trajectory number. Each tra-
jectory file has information of the parcel’s latitude and longitude location at each day of its lifetime. Each file also 
contains sub folders for AIRS, CERES, ERA5, MERRA-2, PIOMAS, sea ice concentration, snow, and cyclone 
information for that particular parcel at each day of the parcel’s lifetime. Information about each variable in each 
subfolder is contained in the files, with long name and unit descriptors. There is also information on each parcel 
in the ICE-PARCEL subfolder which contains information on the duration, start and end regions and dates, and 
if it survives the summer melt or not.

Validation of remote observations.  Data from sea ice mass balance (IMB) buoys is obtained from the 
CRREL-Dartmouth Mass Balance Buoy Program75. These buoys were deployed in various regions throughout the 
Arctic Ocean and recorded sea ice thickness, snow depth, and air temperature and pressure along with GPS loca-
tions. IMB buoys provide 4-hourly data that are aggregated here to daily means. The ice mass balance buoy data 
are incorporated into the ice motion data42 of the ice parcel database and do not provide independent validation 
of drift location. However, the drift location of the buoys is useful for evaluating the derived Langragian sea ice 
parcel tracks. Additionally, comparing sea ice parcels with these buoys provides independent validation of key sea 
ice/snow/atmospheric variables.

Technical Validation
Trajectory evaluation.  The modeled sea ice parcel trajectories are assessed by comparing them to sea ice 
mass balance buoys that have been deployed throughout the Arctic Ocean75. Although IMB buoys are not an 
independent validation of the sea ice parcel drift locations, they are a useful tool for evaluating the results of the 
Lagrangian methodology. After removing buoys that do not match the time frame of our database and those 
that contain erroneous location data, we are left with 74 buoys that are used for comparison. Figure 4a shows the 
tracks of five buoys (blue) and the track of the closest ice parcel at the time of the buoy deployment (green). There 
are differences in daily positions, but overall, the derived trajectories closely match the buoy tracks. Sea ice parcels 
generally remain within 100 km of the corresponding buoy (Fig. 4c), with distances often much shorter (mean: 
83 km, median: 54 km).

The buoy/parcel pairs originating in the Central Arctic and drifting south through Fram Strait show the larg-
est discrepancy in ending locations, with the buoy traveling further south than the sea ice parcel (the date of the 
end point locations are the same for buoys and sea ice parcels as buoy drifts tend to last longer than that of the ice 
parcels). While many trajectories remain within 100 km of the associated buoy (Fig. 4c), those buoys deployed 
in the Central Arctic occasionally gain greater separation from the ice parcel, upwards of ~1,500 km. The buoy/
parcel pairs that have distances greater than 500 km between them (Fig. 4d) are trajectories that begin in the 

Fig. 4  Comparison of ice mass balance buoy tracks and simulated sea ice parcel tracks. (a) Sample of buoy 
tracks (blue) and the closest ice parcel at time of deployment (green). The black/red dots represent beginning/
ending locations. (b) Map of Arctic Ocean regions. (c) Histogram of the daily distance between buoys and 
ice parcel track by deployment region. Vertical dotted red lines indicate 25 km. (d) Buoy tracks (blue) and 
corresponding sea ice parcel trajectories (green) where the distance between tracks exceeds 500 km. Black/
red dots indicate beginning/ending locations. (e) Selected example parcel drift tracks. Black/red dots indicate 
starting/ending locations.
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Atlantic sector of the Central Arctic and drift south through the Fram Strait (only buoy locations with valid ice 
thickness measurements are shown as buoys can sometimes float in open water after the ice pack has melted). 
The buoys drift faster and further south along Greenland’s east coast than the simulated ice parcels, indicating 
that the ice motion vectors in Fram Strait do not capture the true ice velocities76.

Mass balance and atmosphere comparison.  Comparisons of the properties observed by sea ice mass 
balance buoys and those derived from the sea ice parcel Lagrangian framework are shown in Fig. 5. Sea ice thick-
ness and snow depth show the greatest variability compared to buoys (Fig. 5a). This can in part be explained by the 
spatial variability of these variables within each 25 km by 25 km grid cell. Because PIOMAS and SnowModel-LG 
provide averaged values for each grid cell, discrepancies between these values and in situ point sources (buoys) are 
expected. Using NASA’s Operation IceBridge77 as a reference, the standard deviation of sea ice thickness within 
a 25 km by 25 km grid cell on a given day ranges from 0.01–5.67 m, with a mean of 1.44 m and median of 1.43 m 
(data obtained from NSIDC’s IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness, Version 178). Smaller 
differences in air temperature and pressure are expected as these values have less spatial variability.

Comparing the sea ice parcel values with buoy data (Fig. 5b) provides an evaluation of the data set utility for 
addressing science related to the sea ice parcel evolution. All values show good correlation overall with a greater 
spread for sea ice thickness and snow depth. The mean correlation coefficients are 0.53 for sea ice thickness, 0.56 
for snow depth, 0.95 for air temperature, and 0.96 for air pressure. Although there are some negative correlations 
for sea ice thickness and snow depth for individual parcels, collectively the sea ice parcels largely capture the 
evolution of the ice pack and are therefore a good source of information on assessing the evolution of the sea ice 
and snowpack along their drift trajectories annually.

To evaluate how much of the discrepancies in the variables between the buoys and the dataset are due to 
errors in the Lagrangian tracking differences, due to deviating trajectories, are compared to differences arising 
from modeling/retrievals/sampling scale. This is done using the same methodology used for the Lagrangian 
tracked ice parcel database where common parameters from the input datasets are interpolated to the locations 
of the IMB buoys and averaged over the parcel area. This results in parameters produced in our Lagrangian 
tracks database (Ldata), parameters produced with the same methodology but with the buoy locations (Bdata), 
and the in-situ observations from the buoys themselves (Bobs). Figure 6 shows Ldata-Bdata vs Ldata-Bobs 
with points colored by distance between the Lagrangian track and the buoy. For air pressure, when ice parcels 
are large distances away from the buoy the primary driver of the difference is the distance between Lagrangian 
tracks and true locations as indicated by the points on the 1-to-1 line. Otherwise, when the points are not 

Fig. 5  Comparison between buoys and tracked ice parcels of ice thickness, snow depth (from SnowModel-LG 
forced with MERRA-2), and air temperature and pressure (parcel air temperature and pressure are from 
MERRA-2). (a) Difference between buoy and ice parcel (buoy - ice parcel value), and (b) correlation between 
buoys and ice parcels (vertical dotted red line at 0 for both difference and correlation).
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separated by large distances, the main source of error is due to modeling/sampling. For sea ice thickness and 
snow depth, inaccuracy of parcel location does contribute to parameter discrepancies, but this is true even at 
small distances as indicated by the roughly linear relationship regardless of distance. This suggests that the 
spatial variability of these variables is so large that some error will be present due to discrepancies in spatial 
sampling between a grid cell average and point measurement. Most of the difference in air temperature is due 
to modeling/sampling errors as indicated by the wide horizontal spread, little vertical spread, and well mixed 
distances. Therefore, we can conclude that location errors between the buoy and Lagrangian tracks are not the 
primary source of errors in the parameters.

The database trajectories and sea ice and atmospheric characteristics have been compared to data collected 
from sea ice mass balance buoys from the CRREL-Dartmouth Mass Balance Buoy Program75 by identifying the 
closest ice parcel to the deployment location. Results show ice parcels generally remain within 100 km of the 
corresponding buoy (Fig. 4c). The largest discrepancies are found near the Fram Strait where observed sea ice 
velocities tend to be much higher. Compared to the IMB data, the mean error of the ice parcel ice thickness and 
snow depth are typically greater than that of air temperature and pressure; this may be attributed to high spatial 
variability of the former two quantities when compared to a point measurement from a buoy. The overall high 
correlation coefficients between buoys and sea ice parcels show that changes in these quantities over time are in 
good agreement, suggesting the ice parcel database is useful for assessing sea ice evolution.

Climatological studies.  In addition to tracking the location and atmospheric - sea ice interactions for indi-
vidual parcels, this database can be used to assess characteristics of sea ice parcels collectively. With declining 
sea ice cover in recent years, a reasonable expectation would be a decreasing number of sea ice parcels as well. 
However, the total number of sea ice parcels per year is increasing at a rate of 365.5 parcels or 228,437 km2 per 
year (Fig. 7a, blue). At the same time, the average duration (in days) of individual sea ice parcels is decreasing at a 
rate of -1.2 days per year (Fig. 7a, green). This demonstrates that the Arctic sea ice cover is transitioning to a more 
seasonal state with increased freezing and melting events, accounting for both the shorter duration of ice parcels 
and the increase in the total number of unique ice parcels. This result is consistent with the observed transition 
towards a seasonal sea ice dominated Arctic2.

To examine ice parcel freezing/melting events further, Fig. 7b shows the total count of parcel generation 
(freezing, blue) and extinguishing (melting, red) events by month and year. Except for freezing in October and 
melting in April, all trends are positive which can in part explain the simultaneous increase in sea ice parcels and 
decrease in sea ice parcel duration. Melting trends of 96.5 parcels (~60,312 km2) per year and 153 parcels (~95,625 
km2) per year in May and June, respectively, are indicative of an earlier open water season in recent years83.  

Fig. 6  Influence of location errors on parameter errors. Color bar shows the distance between the Lagrangian 
track and the buoy (on logarithmic scale for clarity). Gray dotted lines mark zero for each axis, red dotted line 
shows the 1-to-1 line.
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Similarly, a negative trend in freezing sea ice parcels in October along with increasing trends in freezing in 
November (−50.4 (−31,500 km2) and 92.8 (58,000 km2) parcels per year, respectively) are representative of a 
later end to the open water season79.

With the shift from a predominantly multiyear ice (MYI) pack to a predominantly first year ice (FYI) pack 
in the ‘New Arctic’, the survivability of each of these ice classifications is of keen interest and can be observed as 
in Fig. 8a. The majority of FYI melts out every year while the majority of MYI survives the summer melt season. 
The interannual variability suggests this database can be used for case studies of particular sea ice years, such as 
the record low September 2012 extent, where there was a decrease in FYI and MYI that survived the summer 
melt.

The inclusion of CERES and AIRS data with these sea ice parcel trajectories provides opportunities to exam-
ine connections between the SEB and the fate of sea ice. As mentioned earlier, studies have shown that the SEB 
in June, July, and August can be a good predictor of September sea ice extent29,80. The SEB is calculated primarily 
with NASA remotely sensed observations of the radiative component from CERES and the turbulent flux com-
ponent derived from AIRS:

Fr FL FE FS Fe SEB (1)+ + + + =

Where, Fr is the net absorbed SW flux, FL is the downwelling LW flux, FE is the upwelling LW flux, FS is the 
sensible heat flux and Fe is the latent heat flux. The conductive flux from the ocean through the sea ice is omitted 
here due to the lack of observational data. Figure 8b shows the daily averaged SEB for all sea ice parcels for these 
summer months, split by whether the sea ice parcel melted out (red) or survived the melt season (blue). In each 
region, the SEB was greater for sea ice parcels that melted out on average than those that survived. The greatest 
differences in SEB occurred between days 175 and 200 (late June through mid-July) which coincides with peak 
insolation.

Case studies.  Time-series of select variables relating to the SEB are shown in Fig. 9 for the light green trajec-
tory seen in Fig. 4e that is advected from the northern Chukchi Sea into the East Siberian Sea. At the beginning 
of the second week in June (vertical dotted red line), after about a two-week period of consistently high down-
welling longwave radiation, the skin temperature rises above the melting point and corresponds with a decrease 
in snow depth and albedo, and an increase in snow density. This could be an indicator of a melt onset event and 

Fig. 7  Yearly summaries of sea ice parcels. (a) Yearly total number of sea ice parcels (blue) and average duration 
of sea ice parcels (green). Both values are normalized for ease of comparison. Dotted lines are the linear fit.  
(b) Yearly number of sea ice parcels that melt (red) and freeze (blue) by month.
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the beginning of the melt season. Similar quick comparisons like this can easily be performed using this database 
of sea ice parcels and corresponding atmospheric conditions from October 2002 to September 2018. However, 
given the uncertainties of the input datasets, caution should be used in small scale (e.g., daily changes) analyses. 
This dataset is better used for larger temporal experiments, for example the cumulative effects of atmosphere-sea 
ice interactions over weeks/months/seasons.

Cyclone flags can be a useful tool for analysis of snow depth changes, precipitation events, and changes 
to sea ice concentration induced by sea ice thermodynamics. Figure 10 shows a sample time series from the 
CRREL-Dartmouth Mass Balance Buoy Program75 (buoy ID 2004D) and the nearest sea ice parcel at time of 
deployment (sea ice parcel ID 2003–2004_19893) where vertical lines indicate the presence of cyclones. As 
buoys/sea ice parcels can be influenced by multiple cyclones on the same day, only the nearest cyclone (distance 
from buoy/ice parcel to cyclone center) is shown. Because the buoy and sea ice parcel locations differ slightly 
they often experience different cyclone events (in Fig. 10a, blue/green circles & triangles show characteristics of 
the nearest cyclone to the buoy/ice parcel). Cyclones with large daily snowfall in spring after early June coincide 
with a slowdown of the generally decreasing snow thickness, while cyclones precipitating snowfall in the autumn 
are followed by a sharp increase in snow depth (Fig. 10a). Sea ice concentration tends to fluctuate regardless of 
whether a cyclone is in the vicinity, but rarely stays unchanged when a cyclone is present (Fig. 10b). Further 
analysis can examine relationships between changes to sea ice snow depth/density and sea ice concentration 
and the distance and direction of cyclones from sea ice parcels, and whether these relationships depend on the 
time of year.

General characteristics of collections of sea ice parcels can be determined with this database in addition to 
analyses of individual sea ice parcel time series. In recent years there has been an increase in the number of sea 
ice parcels that are formed and a decrease in the average duration of sea ice parcels suggesting more melt and 
freeze events (i.e., extinguishing and generation of sea ice parcels, respectively) and a transition to a seasonal sea 
ice cover. The survivability of sea ice parcels is linked to the June, July, and August summed SEB, where parcels 
that experience a larger flux of energy at the surface are less likely to survive the summer melt season. This can 
be expanded upon in future work by exploring the impact of individual components contributing to the SEB and 
the influence of SEB on autumn ice growth.

Future additions.  A ‘New Arctic’ sea ice parcel database has been presented which combines satellite obser-
vations and reanalysis data with daily sea ice parcel drift tracks produced in a Lagrangian framework. This novel 
dataset contains daily sea ice parcel locations, sea ice and snow conditions, and atmospheric states and fluxes from 

Fig. 8  Survivability of sea ice parcels. (a) Percentage of first year (FYI) and multiyear (MYI) sea ice parcels 
that melt/survive (red/blue) the summer melt season. (b) Daily averaged net SEB for June-August, grouped by 
region where ice parcels end. Sea ice parcels that melted out are in red, sea ice parcels that survived the melt 
season are in blue. Lines are the locally estimated scatterplot smoothing (LOESS) curve fit.
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2002–2019. Building on previous work81, this dataset includes drivers of surface energy fluxes from which the SEB 
can be calculated. Additionally, flags have been included to identify when sea ice parcels are potentially influenced 
by synoptic events such as cyclones. The dataset records distance from the center of the system as well as cyclone 
intensity. This dataset allows users to track the movement and evolution of sea ice parcels and the associated 
atmospheric state as they advect throughout the Arctic Ocean.

Current work is underway to include additional data layers to the Lagrangian ice parcel database for enabling 
studies of atmosphere-ice interactions; these data layers include: a daily surface melt and freeze product, indi-
cators for extreme moisture and warm/cold air intrusions, and flags for polar low systems. Additional data sets 
may be added in the future where applicable, and the database will be updated yearly with current data.

The timing of melt onset and freeze up throughout the melt season is important for sea ice survivability 
throughout the year and in understanding the Arctic climate system18,32,78,82,83. Throughout the summer melt 
season, air temperatures tend to oscillate around the freezing point and there are multiple melt and refreezing 
events that occur at the surface84. A new daily melt onset data product (under development) can be incorporated 
to assess the amount of melt/freeze events that occur for individual sea ice parcels along with atmospheric and 
snow/sea ice conditions.

Future work will involve creating a database of extreme moisture and temperature intrusions and polar lows, 
and then applying these flags to the sea ice parcel Lagrangian database using a similar methodology to that used 
for cyclone events laid out in this paper. Extreme temperature and moisture intrusions will be identified using 
ERA5 and MERRA-2 atmospheric variables. Moisture intrusion events that enter the Arctic (crossing 70° N) 
are of interest as that energy can have significant impacts on the Arctic surface energy budget of the tracked sea 
ice parcels. To identify these events, a modified version of the methodology in Woods et al.84,85. and Woods & 
Caballero86 will be developed. This same criterion will also be used to identify warm and cold air outbreaks.

A database of polar lows will be created using ERA5 data and an adaptation of the cyclone tracking algo-
rithm62,65. Polar lows are intense, mesoscale cyclones that are associated with fast propagation speeds; strong 
winds; high intensity precipitation as snowfall, hail, and/or rainfall; high waves; and freezing sea-spray87,88. 
Interactions between polar lows and the sea ice/ocean surface remain poorly understood and these events may 
have important implications for sea ice mass balance. Similar to the cyclone database, polar low flags will be 
added as a data layer to the sea ice parcels if they coincide with an event.

As satellite data of sea ice thickness have become more reliable, some of these datasets could also be 
incorporated into this data base. These include but are not limited to: the Soil Ocean and Ocean Salinity 

Fig. 9  Variable time-series for the light green trajectory seen in Fig. 3e. Horizontal dotted red line indicates 
0 °C. Vertical grey lines indicate cyclone flags. Vertical dotted red lines indicate the date skin temperature first 
rises above the freezing point. Sea ice concentration is from the sea ice concentration CDR, sea ice thickness is 
from PIOMAS, snow depth and density are from SnowModel-LG forced with MERRA-2, downward longwave 
and shortwave radiation and albedo are from CERES, and skin temperature is from AIRS.
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(SMOS)-CryoSat289, CryoSat-290, and the Ice, Cloud and land Elevation Satellite-2 (ICESat-2)91 thickness prod-
ucts to supplement the PIOMAS thickness data.

Once data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expe-
dition has been quality checked and processed, MOSAiC datasets will present a unique opportunity to use in situ 
Lagrangian data to validate and interpret the snow depth and sea ice thickness results from the remotely-sensed 
ice parcel database presented here. MOSAiC was a year-long field campaign in the central Arctic where the R/V 
Polarstern was frozen into the pack ice92. The overarching objective of the MOSAiC expedition was to collect 
process-oriented, continuous field observations of the Arctic climate system year-round to advance understand-
ing centered on Arctic system science in the ‘New Arctic’. The field experiments encompassed nested spatial 
scales up to 50 km and continuously drifted with the wind and ocean currents between Oct. 2019 – Oct. 2020.

The results shown here are just the ‘tip of the iceberg’ in the amount of new research and scientific results that 
this database will enable. This database has vast applications for the wider scientific community to utilize and to 
better understand sea ice-atmospheric interactions in the ‘New Arctic’ and to explore what atmospheric factors and 
their timing might hinder or aid in the survivability of sea ice throughout the year. It also enables process-oriented 
research when compared to previous Eulerian based investigations. This database could also be used to assess climate 
model simulations of Arctic variables and processes to evaluate and improve model physics. Currently, this dataset 
is expected to be hosted by the National Snow and Ice Data Center, where it will be available for public download.

Code availability
Code used for creating the Lagrangian sea ice parcel database were created using R coding software. This code can be  
accessed here: https://doi.org/10.5281/zenodo.7554521.

Ice Mass Balance Buoy data which were used to assess the trajectories can be found here: https://imb-crrel- 
dartmouth.org/.

Buoy Langrangian trajectories made with the database can be found here: https://doi.org/10.5281/zenodo. 
755452193.
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Fig. 10  Comparison of buoy ID 2004D with the nearest sea ice parcel ID 2003–2004_19893 (orange trajectory 
in Fig. 3e). Blue/green represents values from the buoy/sea ice parcel database. Vertical lines indicate the 
presence of cyclones. (a) Snow depth measurements (sea ice parcel values from SnowModel-LG with MERRA2 
forcing). Circles show daily total snowfall, triangles show daily total rainfall, both from the cyclone database.  
(b) Sea ice concentration (CDR). (c) Distance between the buoy/sea ice parcel and the center of the nearest 
cyclone. Black line indicates the distance between the buoy and sea ice parcel. The data gap at the end of 
September is the restart of the tracking algorithm.
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