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a large-scale dataset for  
end-to-end table recognition  
in the wild
Fan Yang  1, Lei Hu1, Xinwu Liu2, Shuangping Huang1,3 ✉ & Zhenghui Gu4

table recognition (tR) is one of the research hotspots in pattern recognition, which aims to extract 
information from tables in an image. Common table recognition tasks include table detection (tD), 
table structure recognition (tSR) and table content recognition (tCR). tD is to locate tables in the 
image, tCR recognizes text content, and tSR recognizes spatial & ontology (logical) structure. 
Currently, the end-to-end tR in real scenarios, accomplishing the three sub-tasks simultaneously, is 
yet an unexplored research area. One major factor that inhibits researchers is the lack of a benchmark 
dataset. to this end, we propose a new large-scale dataset named table Recognition Set (TabRecSet) 
with diverse table forms sourcing from multiple scenarios in the wild, providing complete annotation 
dedicated to end-to-end TR research. It is the largest and first bi-lingual dataset for end-to-end TR, 
with 38.1 K tables in which 20.4 K are in English and 17.7 K are in Chinese. The samples have diverse 
forms, such as the border-complete and -incomplete table, regular and irregular table (rotated, 
distorted, etc.). the scenarios are multiple in the wild, varying from scanned to camera-taken images, 
documents to Excel tables, educational test papers to financial invoices. The annotations are complete, 
consisting of the table body spatial annotation, cell spatial & logical annotation and text content for 
tD, tSR and tCR, respectively. the spatial annotation utilizes the polygon instead of the bounding 
box or quadrilateral adopted by most datasets. the polygon spatial annotation is more suitable for 
irregular tables that are common in wild scenarios. additionally, we propose a visualized and interactive 
annotation tool named TableMe to improve the efficiency and quality of table annotation.

Background & Summary
Tables are commonly presented in images to organize and present information. To efficiently utilize informa-
tion from table images, computer vision based pattern recognition techniques are used in table recognition 
(TR). It consists of three main tasks, table detection (TD), table structure recognition (TSR) and table content 
recognition (TCR), in relation to the localization of tables, the recognition of their internal structures, and the 
extraction of their text contents correspondingly.

Currently, the end-to-end TR task in real scenarios, with the purpose of fulfilling all three sub-tasks simul-
taneously, is yet unexplored. One major factor that inhibits researchers is the lack of a well-rounded benchmark 
dataset. For instance, as shown in Table 1, early (before 2018) TR datasets, such as UNLV1, ICDAR132 and 
ICDAR173, only contain a few samples (less than 2.5k). Later, large-scale TR datasets4–11 were proposed since 
2019, but the annotations are generated by programs instead of human involved and only scanned regular tables 
are included, hindering the diversity of the datasets due to the monotonous backgrounds and spatial features 
(e.g. without rotation, distortion, etc.). In fact, to enrich the diversity, it is necessary to collect data in various 
real scenarios. For example, Gao et al.12 proposed a dataset named ICDAR19 for TD and TSR tasks. It is the 
first real dataset in the historical document scenario, yet its volume is small (2.4k images). Until recently, Long  
et al.13 proposed a large-scale (14.5k) practical dataset WTW that covers multiple scenarios in the wild. Although 
WTW is the largest and multi-scenario, it is only suitable for the TSR task as it lacks table location and content 
annotations. Furthermore, quadrilateral box is used in the cell location annotation, which is imprecise to distorted 
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(caused by folds and bends in a paper) table images. Overall, we conclude three main drawbacks of these data-
sets as follows: 1. Only provide annotations for sub-tasks (TD, TSR and TCR), which are not complete for the 
end-to-end TR task. 2. Either the scales are small, or scenario diversities are limited. 3. Only have the Bounding 
box (Bbox) or quadrilateral as the spatial annotation that cannot flexibly adapt to the shape changes Table 2.

We propose a dataset named Table Recognition Set (TabRecSet) with samples exhibited in Fig. 1. To the best 
of our knowledge, it is the largest and most well-rounded real dataset, collecting data from various wild sce-
narios with diverse table styles and complete & flexible annotation against for the end-to-end TR task with 
the purpose of filling the gap in this research area. Large Scale: The data volume (including more than 38,100 
real table images) is 2.6 times larger than the largest known dataset WTW. Wild Scenario: Data are collected 
via scanners or cameras in various wild scenarios including documents, Excel tables, exam papers, financial 
invoices, etc. Robust Diversity: It contains different table forms, such as the regular and irregular table (rotated, 
distorted, etc.), border-complete (all-line) and -incomplete table. The distortions of irregular tables may severely 
break the spatial alignment of rows, columns and cells, increasing the difficulty of the TSR task. The recognition 
of border-incomplete tables such as the three-14 and no-line (without borders) tables are also more difficult and 
challenging. Completeness: In order to provide a complete annotation for the TR task, the annotation of every 
table sample in TabRecSet contains its body and cell location as well as its structure and content. Flexibility: In 
order to provide accurate and precise annotations to distorted tables, TabRecSet uses polygons instead of bound-
ing boxes to annotate the outside and inside table borders. Bi-lingual: TabRecSet contains Chinese and English 
tables with a proportion of 46.5% and 53.5% independently Table 3.

In addition, since the process of dataset building is quite time-consuming, we developed a visualized 
and interactive annotation tool named TableMe to speed up the annotation process and ensure data quality.  
We also designed several automatic techniques, such as the auto annotating of table structures and the automatic 
generation of three- and no-line tables, to benefit the end-to-end TR task in wild scenarios.

Methods
In this section, we elaborate on all the details in the TabRecSet creation procedure, which ensures the quality, 
reproducibility, and creation efficiency of the dataset. As Fig. 2 illustrates, this procedure mainly consists of 
four steps. The first three steps, data collection, data cleaning, and data annotation, following a normal and 
standard procedure of building most datasets, output all border-complete table samples. Particularly, to increase 

Dataset #Images #Tables

Task

Multiple Wild 
Scenarios

Spatial Annotation 
Flexibility

Border-incomplete 
Diversity Bi-lingual YearTD TSR TCR

End-to-
End TR

UNLV1 427 558 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2010

ICDAR132 128 156 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2013

ICDAR173 2417 1020 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2017

DeepFigures4 1.67 M 1.4 M ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2018

PubLayNet5 362 K 113 K ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2019

SciTSR6 15 K 15 K ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2019

Table 2Latex7 465 K 465 K ✗ ✓ ✓ ✗ ✗ NA ✗ ✗ 2019

ICDAR1912 2,439 3.6 K ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 2019

TableBank8
278 K 417 K ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2020

145 K 145 K ✗ ✓ ✗ ✗ ✗ NA ✗ ✗

PubTabNet9 568 K 568 K ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2020

TableX10 1 M + 1 M + ✗ ✓ ✓ ✗ ✗ NA ✗ ✗ 2021

PubTables-1M11 1 M + 1 M + ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 2021

WTW13 14.5 K 14.5 K ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ 2021

TabRecSet (Ours) 32.07 K 38.17 K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A statistical summary and comparison between our TabRecSet dataset and the existing datasets. 
End-to-End TR: Extract the table body position, structure, and content simultaneously from a complete 
image. Spatial annotation flexibility: The dataset uses the polygon instead of the Bounding box (Bbox) or 
quadrilateral to annotate the table or cell position. Border-incomplete Diversity: The dataset has multiple types 
of border-incomplete tables. NA: This item for the dataset is not applicable.

Field 
Name Description Field Name Description Field Nme Description

version the version of LabelMe lineColor color of the lines in 
annotation objects imageData encoded image data

flags flags of the image fillColor color of the regions of the 
annotation objects imageHeight height of the image

shapes the annotation objects for the image imagePath file path of the image imageWidth width of the image

Table 2. Fields of LabelMe format framework.

https://doi.org/10.1038/s41597-023-01985-8


3Scientific Data |          (2023) 10:110  | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

the number of samples and the variety of table styles, they are also used to generate border-incomplete tables  
(e.g., three- or no-line tables) in the fourth step. The generation process is automatic and image-based, which 
basically replaces border pixels from border-complete table images with its background pixels.

Data collection. The general purpose of the data collection step is to build a raw data pool by searching and 
downloading enough table-related images through the Internet. Firstly, we randomly pick camera-taken table 
image samples from open source datasets such as WTW or Tal ocr_table15 as search seeds. Then they are input 
into search engines (e.g., Google or Baidu) with the Usage Rights filter enabled and return plenty of similar images 
that comply with the Creative Commons licenses. For the search engine that does not have the Usage Rights filter, 
we manually open the image’s original source to check whether the image complies with the licenses. After that, 
the search results are downloaded via a web page-based image downloader called ImageAssistant16. The whole 
process stops when the total size of the downloaded images exceeds a specified threshold. The advantage of using 
search engines to collect table images is that the search result covers a wide variety of data collection scenarios, 
including reports, exam papers, documents, invoices, books, etc. In addition, to further increase data diversity,  
we use raw images rather than keywords as the search seeds because the image content does not play an important 
role in the way of search by image, and the search engine searches for matched images based on the pixel-level 
similarity of input images. In this way, the search engine will return a large number of table images with a diverse 
range of formats and styles, covering many special cases such as irregular, distorted, and incomplete tables, while 
in the way of search by keyword, the extent and degree of the distortion or the incompleteness are difficult to 

document image ingredients form of foods

invoice tables Excel tables

Fig. 1 Some representative samples in TabRecSet. The scenarios include the document images, ingredients 
form of foods, Excel tables and invoice tables. Because of the page distortions or camera views, most tables are 
irregular, i.e., with rotations, inclinations, concave/convex/wrinkle distortions, etc. Some special table forms 
are exhibited, e.g., the nested table, under- and over-exposed table, border-incomplete table, table with hand-
written contents and hand-drawn table.

Field Name label points group_id shape_type flags

Description class of the 
annotation object

coordinates of 
the annotation

instance id of the 
annotation object

type of the annotation object 
(polygon, circle, line, point)

flags of the 
annotation object

Table 3. The sub-fields of the “shapes” field.
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describe. As shown in Fig. 2, we repeat the search and download process until the data size of the Raw Data Pool 
exceeds the expected dataset scale by a pre-specified margin based on the filtering rate in the cleaning step.

Data cleaning. The data cleaning step in Fig. 2 is a human-involved process of fixing or removing incorrect, 
incomplete, incorrectly formatted, duplicate or irrelevant data within the Raw Data Pool.

Since the raw data is collected through the Internet in the way of search by image, some images that do 
not include actual table instances may be returned by the search engine. These incorrect and table irrelevant 
data are removed in the first place. Meanwhile, watermarked images are removed because of copyright protec-
tion. In addition, for privacy considerations, we also remove sensitive information, such as location, ID, phone 
number, etc., from those images. In terms of the data format, in order to keep the variety of table format and 
styles, we only fix sideways or upside down images. After that, we detect and remove duplicate images (keep the 
image with the highest image resolution and remove the rest) via Duplicate Image Finder17 software. It helps the 
user identify duplicate images, even if they are resized, edited, flipped, color-corrected, etc., by grouping them 
together. Moreover, samples duplicated from other datasets without a derivative license, e.g. the Tal ocr_table 
dataset, are also entirely removed.

The data cleaning step filters out approximately 30% (based on our experience) of “dirty” data from Raw Data 
Pool to obtain a clean dataset with high-quality data for the annotating process in the following step.

Data annotation. We first introduce the annotation format of TabRecSet ([subsubsec: data annotation 
format]Annotation Format) and our developed annotation tool TableMe ([subsubsec: Data Annotation Tool]
Annotation Tool). Then, we propose a TSR auto-annotating algorithm ([subsubsec: TSR Annotation Generating 
Algorithm]TSR Auto-annotating Algorithm) to automatically generate logical structure annotation based on 
the spatial structure annotation. Finally, in the [subsubsec: data annotation step]Annotation Step subsection, 
we describe the data annotation step for the Clean Dataset, which is mainly performed on our tool, including 
cell polygons drawing, algorithm-assisted logical locations generation, typing in text contents and table body 
polygons generation.
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Fig. 2 The creation flow chart of TabRecSet. The data collection aims to collect raw image samples and outputs 
a Raw Data Pool, which stores candidate data samples. The data cleaning step generates clean samples from  
Raw Data Pool and gathers them into a Clean Dataset. In the data annotation step, we use TableMe to annotate 
the clean sample and save the annotation in the TabRecSet annotation format. This step is aided by several auto-
annotation algorithms to improve efficiency. The border-incomplete table generation step aims to enlarge the 
scale TabRecSet by our proposed three-line table generating algorithm.
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Annotation format. The complete annotation for the end-to-end TR task is complex as it includes table body 
position for the TD task, the cell spatial & logical location for the TSR task and the cell text content for the TCR 
task, covering multiple heterogeneous information from spatial and logical to text data. It is necessary to uti-
lize proper annotation formats to organize the information coherently and concisely. We choose the LabelMe18 
annotation format as the framework for our annotation formats since this framework supports compactly 
organizing the heterogeneous table information. This annotation format framework is defined by the fields and 
sub-fields listed in Tables 2,3.

We form two annotation formats: a table-wise annotation format in which the annotation object is a table 
and a cell-wise one with a cell as the annotation object. The table-wise annotation format is for the TD task 
containing the spatial location information for the table. The cell-wise format contains the spatial & logical loca-
tions and text content information for a cell annotation, and the collection of these cell annotations completely 
describes TSR and TCR annotations for the whole table19.

Concretely, the table-wise annotation format utilizes the “points” field to store the vertexes coordinates of the 
table body polygon and the same “group_id” (an integer) to distinguish different table instances. The cell-wise 
format uses the “label” field to store a text string that encodes the cell’s logical locations and text content, the 
“points” field to store the vertexes coordinates of the polygon along the border of the cell, and the “group_id” 
field as in the table-wise format to mark the cell to which table instance it belongs. The text string in the “label” 
field is in the form of “<Row>-<Column>-<Rowspan>-<Colspan>-<Text content>” in which the <Row> 
(<Column>) means the row (column) number of the cell and the <Rowspan> (<Colspan>) means how 
many rows (columns) the cell spans. The row number, column number, rowspan and colspan are also called 
logical properties for short. Figure 4 gives examples of three cell annotation instances in the cell-wise annotation 
format. The #1 instance indicates the cell annotation object located by polygon [[19,202],[92,204],[391,212], 
[391,227],[168,221],[18,217]], in the tenth row and the first column of Table 1 (group id = 1), spanning three 
columns, with the text content “预计费用总额”. The #2 instance indicates the cell annotation object located by 
polygon [[12,308],[8,402],[121,403], [123,341],[125,310]], in the fourth row and the first column of the table 0, 
spanning five rows, with the text content “担保公司”. The #3 instance indicates the cell annotation object located 
by polygon [[362,298],[363,313],[462,315], [462,299]], in the third row and the fourth column of the table 0, 
with the hand-written “1600” as the text content.

Annotation tool. TableMe originate from the famous annotation tool LabelMe, which is powerful in providing 
the annotation for the image segmentation task, and TableMe completely inherits this feature leading to a great 
capacity for the table or cell’s spatial annotating. Besides, it possesses annotating functions for the table structure 
& content and supports assigning logical properties and “group_id” for a group of selected cell annotations, 
enhancing the structure annotating speed significantly. Most amazingly, it can intuitively visualize the logical 
structure and content of the table, which helps us to transcribe the text content to the annotation straightfor-
wardly and efficiently (as shown in Fig. 3).

As illustrated in Fig. 5, TableMe is mainly composed of three parts: an image panel (upper-left), a setting 
panel for polygon properties (structure logical & “group_id”) (lower-right) and an annotation visualization 
region (lower-left). The image panel is a feature originated from the LabelMe, which not only inherits the con-
venient polygons drawing functions of LabelMe for the table/cell position annotating but also supports selecting 
these polygons in a group for the setting of polygon properties in the setting panel.
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assign Group IDs 

2. Generate TSR 

annotations and 

revise them
3. Type in 

the table content

Annotation 

visualization 

from the tool

4. Generate TD 

annotations

<Row>-

<Column>-

<Rowspan>-

<Colspan>

(<Group ID>)

Fig. 3 An intuitive illustration of the data annotation step showed in Fig. 2. Please zoom in for details.
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The properties setting panel includes five options, i.e., the row, column, rowspan, colspan and “group_id”, and 
two widgets, i.e., an editable text for the option value input and an “Apply” button. For example, for the setting 
of the row property, the annotator can first select the polygons on the same row in the image panel, choose the 
“row” option, input the row number, and click the “Apply” button to confirm. The other properties can be set 
with totally the same operations. With this feature, TableMe enables an intuitive annotating way for the table 
structure, which is high-efficiency and has less error tendency when people annotate.

The annotation visualization region supports two functions: visualizing the table structure and content anno-
tation in a digital table form and annotating the table content directly in the digital table. After annotating the 
table/cell position in the image panel and table structure in the properties setting panel, this region will immedi-
ately show digitalized tables with the same logical structure as the tables in the image. Amazingly, as these digital 
tables are interactable, it allows users to annotate the text content of a cell simply by clicking that digital cell in 
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directly typed in the 

text content.

Image Panel: Similar to LabelMe, this part 

can draw polygons as the spatial 

information annotation for each cell.
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properties and "group_id" in a group.

Annotation Visualization Region

Check
Box
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Annotation Visualization Region

Check
Box

Fig. 5 The main interface of TableMe. Please zoom in for details.

cell annotation

Instance #2

cell annotation
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Fig. 4 Three annotation instances in the cell-wise annotation format.
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this region and typing in the text string directly. This feature, on the one hand, increases the speed of annotating 
the text content and, on the other hand, provides an effective way for users to check whether the manually or 
automatically generated structure annotations are correct or not.

In the multiple tables case, the annotator can set the polygons in the same table with the same “group_id” and 
ensure polygons in different tables have different “group_id” by operating the widgets on the properties setting 
panel. When finished setting the “group_id” for each polygon, as shown in the figure, the annotation of multiple 
tables will be visualized in the annotation visualization region and distinguished from each other via table num-
bers that are equal to the “group_id”s.

Besides above mentioned three parts, there is a check box named “Checked” on the right side of the inter-
face. When an image is annotated, we can check this box to mark the image as annotated, and the value of the 
“flags” field in 4 will be set to “true”. The annotation is saved as a LabelMe JSON file in the TabRecSet annotation 
format with the same filename of the image but a different file extension. After finishing annotating all images in  
Clean Dataset, a folder has paired JSON files and JPG files can be obtained, which contains the complete TR 
annotation for each image.

In conclusion, in terms of functionality, TableMe is dedicated to annotating the end-to-end TR task in the 
wild scenario as it supports annotating table position, structure and content in multiple tables and irregular table 
cases. In terms of efficiency, it highly improves the speed of table annotating, annotation checking and revising, 
especially when the image contains many tables and the table has a large cell number, as it avoids trivially treating  
each table cell one by one.

TSR Auto-annotating algorithm. The TSR annotation generating algorithm consists of two parts: 1) A table 
image rectification process to eliminate the irregularity of tables (distortions, rotations, etc.) and 2) a logical 
property computing process to compute the logical properties for each cell. Without the table irregularities, the 
logical property computing process can get the most out of it, thus making this algorithm has a high computing 
accuracy, essentially preventing us from manually annotating these properties and improving efficiency.

The rectification process uses the cell location annotation to remove the distortions by Thin-Plate Spline 
(TPS)20 transformation and remove the rotations and inclinations of the table by Affine transformation21. Fig. 6 
illustrates the main steps of the algorithm. Firstly, we generate a binary map of each cell based on the spatial 
annotations of a table and apply the morphological closure operation, a classical image processing algorithm, 
to fill the gap between each cell to obtain a table-region based binary map. Secondly, find the table outline 
by tracing the border of the binary map via the findContour API in OpenCV. Then we find the corner points 
of the outline (red points in Fig. 6e) and link the corner points to obtain the corner lines (red dashed lines).  
The TPS control points (blue points) are the equal-division points of the corner lines. Make lines pass through 
target points and are perpendicular to the corner lines, and we obtain the normal lines (blue lines) whose inter-
sections with the table outline are exactly the source points (orange points). The next step uses the TPS trans-
formation to minimize the distances between target points and source points with the smallest bending energy 
and establishes a coordinate map between the original table image and the transformed table image of which the 
curvature distortion is eliminated. With the four corner points, the algorithm computes the Affine parameters 
to transform the image, which can remove the rotation and inclination of the table, and finally, we obtain the 
rectified table image.

The logical property computing process computes the logical properties by analysing the spatial relationships 
among cells on the rectified table and assigns the logical properties to the cell on the original table according to 
the coordinate map from the rectification process. Figure 7 shows key steps to analyse the spatial relationship 
and compute the logical properties:
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closure

operation
Affine 

Transformation

Affine 

Transformation

(a) cell binary map from 

cell location annotation

(a) cell binary map from 

cell location annotation
(b) table region binary 

map
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map

(f) curvature eliminated 

table

(e) TPS control points (g) rectified table image(g) rectified table image(d) table outline(d) table outline(c) original table image(c) original table image

TPSTPS

Fig. 6 The table image rectification algorithm. The blue, red, orange points, blue lines and two red dashed lines 
in Fig. (e,f) are the TPS target points, TPS source points, corner points of the table outline, normal lines and 
corner lines, respectively. A purple line is drawn horizontally in the middle of Fig. (e) and is distorted in Fig. (f), 
visualizing the extent and direction of the TPS transformation.
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Step (a), we choose the left-top corner point of a Bbox to represent a cell. The algorithm first finds an initial 
point P1 of which the y-coordinate is the smallest.

Step (b), find all the points satisfying the restriction − < × .∣ ∣P P min H{ } 0 4y y
Bbox1 2  which ensures they are 

in the same row. The Py is the y-coordinate, min{HBbox} is the height of the shortest Bbox in the table, and the 
parameter 0.4 is an empirical constant. Then, we can obtain all cells with the 1st start-row (or the 1st row in short) 
and remove them from the table for the next step.

Step (c), repeat Step (a)-(b) until there is no point left on the table, and all cells are assigned with the start-row 
property.

Step (d), to obtain the end-row property, we can use the right-bottom corner point to represent each cell and 
do steps (a)-(c).

Step (e), the rowspan of each cell is computed via the formula: rowspan = end-row - start-row + 1.
Step (f), symmetrically, the colspan of each cell is computed via the formula: colspan (= end-column -  

start-column + 1) after obtaining the start- and end-column of the cells by following (a–d) steps on the 
x-coordinate.

Annotation step. According to the data annotation step shown in Fig. 2 and the intuitive illustration shown in 
Fig. 3, we first draw polygons along the cell borders in the image panel to annotate each cell the spatial location 
and assign “group_id”s to these polygons for distinguishing table instances using the properties setting panel.

For the efficiency consideration, we apply the TSR auto-annotating algorithm (see the [subsubsec: TSR 
Annotation Generating Algorithm]TSR Annotation Generating Algorithm subsection) to generate the logical prop-
erties for each cell automatically, then detect the occasional generating errors in the annotation visualization region 
and manually revise the errors via the properties setting panel. This algorithm has approximately 80% accuracy, so 
we only needed to fix the remained 20% of the annotations, which significantly improved our annotation efficiency.

As shown in Fig. 3, for text content transcription, we can directly type in the text for each cell in the digital 
table shown in the annotation visualization region, and the tool will store the text in the <Text content> part of 
the encoded string in the “label” field. Note that for an indistinguishable blurred character, we replace its actual 
annotation with the # symbol to indicate its existence. For a cell with multiple text lines, we use the\n escape 
symbol to separate each line and concatenate the text lines to a single text string.

Finally, we auto-generate the TD annotation for the whole table based on the spatial cell annotations via an 
image processing program. The program process is as follows: (1) convert spatial annotations (i.e. polygon list) 
to binary maps, then concatenate them together to obtain a single segmentation map22; (2) use the morpholog-
ical closure operation on the segmentation map to fill the gaps between each cell’s binary region; (3) convert the 
segmentation map to the polygon along the map contour via the findContour API in OpenCV. After the genera-
tion, we refine the generated annotation manually in the image panel to ensure the rightness of the annotation.

Border-incomplete table generation. As shown in Fig. 2, this border-incomplete table generation step 
aims to produce the three-line and no-line table by erasing the target rule lines of the annotated all-line table.

A table rule line is composed of the edges of the cells on the same row or column, and thus we can erase a 
table rule line by erasing the cell edges. Since the cell-wise polygons along the cell borders are annotated, we 
apply an image processing program using these polygon annotations to find the cell edges in the image and 
remove these edges. Figure 8 shows how the program process erases a single cell edge. Given a table image and 
the cell border from the annotation, the first step of erasing a cell edge is to obtain all pixel points on the edge 
(red line) by extracting the sorted points on the cell border bounded by two adjacent corner points (red points). 

P2P1P1 P3P4

P1 P2 P3P4

P4 P5 P6

P7 P8 P9 P10 P11

2nd start-row

P'1 P'2 P'3

P'5 P'6 P'7

P'8 P'9 P'10 P'11 P'12

P'4

Step (a) Find a corner point in 1st row as the initial vertex. Step (b) Find all corner points of row 1.

Step (c) Assign each cell the start-row. Step (d) Use the right-bottom corner of the Bbox to represent 

the cell. Then, apply steps (a) and (b) to assign each cell the 

end-row.

1st start-row

3rd start-row

1st start-row 1st start-row

1st start-row

2nd start-row 2nd start-row

3rd start-row 3rd start-row 3rd start-row 3rd start-row

1st end-row 1st end-row 1st end-row

2nd end-row
2nd end-row 2nd end-row 2nd end-row

3rd end-row 3rd end-row 3rd end-row 3rd end-row 3rd end-row

Fig. 7 The key steps of our logical property computing algorithm on the rectified table image. We use a regular 
table on a plain white background to represent the rectified table image.
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For example, the upper edge is a sorted point list starting with the upper-left corner point and ending with the 
upper-right corner point. The second step is to replace each pixel on the edge with the median pixel of a kernel 
(orange square), which is centered on the pixel (orange point). Because the median pixel of the kernel mainly 
refers to the background color, this step actually replaces the border pixel with the background color. When all 
pixels on the edge are replaced, this edge can be regarded as removed from the image.

To generate a three-line table, we should erase the horizontal (row) rule lines, ranging from the third to the 
last but one, and all vertical (column) rule lines. Concretely, we erase the left and right edges of the cells on the 1st 
row and erase all cell edges on other rows except the upper edge on the 2nd row and the bottom edge on the last 
row. As for the no-line table generation, we should erase all target rule lines, and thus we simply erase all edges 
of every cell in the table. Figure 9 illustrates the generating performance.

Note that the border-incomplete table shares the same cell location annotation with the original all-line table. 
The polygon annotation is originally drawn along the cell border in the all-line table, while these borders may 
be erased in the border-incomplete table, so the spatial annotation for a cell is a loose polygon relative to the text 
content in the border-incomplete table case. Though existing datasets6,9 use a compact Bbox for the text content 
as the cell location annotation, we insist on our loose annotation because of the existence of the cell borders 
even though they are invisible (erased). The insight is that a human can somehow infer where are the invisible 
borders in the image by visual cues or semantic meanings and this insight means the existence and uniqueness of 
invisible borders in the border-incomplete table. We believe that providing polygon annotation for the invisible 
borders can facilitate the emergence and development of the cell invisible border recovery task.

Summary of tools. Table 4 is a complete summary of the tools we used during the dataset creation proce-
dure. In the table, we describe the primary uses of these tools and their advantages compared to the alternatives. 
The last column of the table lists the tool versions, which sometimes matter during the creation procedure.

Data Records
Directory structure of TabRecSet. TabRecSet is publicly available in figshare23. Its directory structure is 
shown in Fig. 10. The image folder contains original and generated table images in JPG format in which tables 
with different languages and border-incomplete types are separated into corresponding sub-folders. Each image 
is one-to-one mapped to a unique TD annotation (JSON files in the TD_annotation folder) and TSR/TCR 

a cell border

from the annotation

obtain all pixel points on the 

target edge (e.g. the upper edge)

use the median pixel of the 

kernel to replace the

pixel on the target edge erased target edge

Fig. 8 The key steps of erasing a target cell edge. Red points: Two corner points of the cell border. Red line: A 
target edge of a cell. Orange square: A kernel centered on a pixel (the orange point) on the target edge.

all-

line

three-

line

no-

line

Fig. 9 Generated three-line table examples.
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annotation (JSON files in the TSR_TCR_annotation folder) according to its filename, and each JSON file is also 
divided into different sub-folders by their language. Note that an original all-line table shares the same filename 
and annotations with its generated border-incomplete tables since the annotations for the all-line table are also 
valid for the generated images. In the README.md file, we summarise the meta information, such as the dataset 
license, download links, description of the file format and a link to the source code repository, etc.

Statistics of TabRecSet. To quantitatively verify the data quality and challenge of TabRecSet for each sub-task, 
we analyse its overall size and several instance-wise (e.g., table-wise, cell-wise) statistical characteristics and draw 
their distributions in Fig. 11 and Table 5. The instance-wise statistical characteristics include the table number of each 
cell (Fig. 11a), cell number of each table (Fig. 11b), rowspan/colspan of each cell (Fig. 11c,d), vertex number of each 
cell (Fig. 11e), content length of each cell (Fig. 11f), word frequency (Fig. 11g,h) and character frequency (Table 5).

In the aspect of overall size, TabRecSet contains 32,072 images and 38,177 tables in total among which 16,530 
images (17,762 tables) are in Chinese, 15,542 images (20,415 tables) are in English and 21,228 images (25,279 
tables) are generated (three-line and no-line). The generated table subset (border-incomplete folder in Fig. 10) 
contains 5,113 images and 6728 tables (both three- and no-line tables) in English, 5,501 images and 5,911 tables 
in Chinese (both three- and no-line tables).

We count the table number for every image, which is an image-wise indicator to measure the difficulty of the 
TD task, and draw the distribution over images in Fig. 11a. According to the statistical result, approximately 300 
images in the English subset contain multiple tables, and 1,000 images in the Chinese subset contain multiple tables. 
The maximum number of tables in an image on English and Chinese subsets are 7 and 4, respectively. We believe 
that our dataset can benchmark the performance of the TD model in the case that the image contains many tables.

The difficulty of TSR for a table varies with the table size and structure complexity. We choose the cell num-
ber as the table-wise indicator and the number of spanning cells as the cell-wise indicator to reflect the two 
respects, respectively. Figure 11b shows the cell number distribution of which the average number is 29 for the 
English subset, 18 for the Chinese subset, and the maximum number is 351 for the English subset, 207 for the 
Chinese subset. The spanning cell refers to the cell of which the rowspan or colspan is larger than one, so we 
summarize the rowspan/colspan of each cell in Fig. 11c,d to indicate the structure complexity of the dataset. 
The spanning cell number of the English subset is more than 6,600, and the Chinese subset is more than 2,200. 
The maximum rowspan and colspan are 41 and 24 for the English subset; 22 and 24 for the Chinese subset.  
These statistics show that our dataset contains a great number of large tables and has a high overall structure 
complexity. TSR not only needs to recognize the logical relation among cells but also needs to locate the cell 
position in the image. The vertex number of a cell polygon reflects the curvature of the cell, which affects how 
difficult to segment the cell, so we count the distribution of the vertex number for each polygon annotation to 
verify the challenge of our dataset in cell locating. As shown in Fig. 11e, thousands of cell polygons have more 

Name Description Advantages Version

TableMe
It is our proposed tool for table-specific annotating, 
which supports annotation for multiple task types, 
such as table detection, table segmentation, table 
structure, and table content recognition tasks.

1. It uses interactive visualization to execute the 
annotation process effectively.
2. Compared to alternatives, it supports the table 
segmentation task.

1.0.0

Duplicate Image Finder17

Duplicate Image Finder “looks” at your images to 
find look-alike images in a folder. It can identify 
similar and duplicate images even if they are edited, 
rotated or flipped.

1. It can identify rotated at 90°, 180°, 270°, 
flipped horizontally and/or vertically duplicate 
images.
2. It can show all the duplicate images in groups 
and mark the smaller resolution and/or smaller 
file size (lower quality ones) images to be 
deleted.

4.8.0

Image-Assistant16

ImageAssistant is an extension software running in 
Chrome and its derivative browsers to analyze and 
extract pictures in web pages and provide multiple 
filtering methods to assist users in selecting and 
downloading.

Different from browser extensions that provide 
similar functions in the past, this extension 
combines multiple data extraction methods to 
ensure that the images that have appeared can be 
extracted as comprehensively as possible from 
various complex structure pages.

1.66.6

Table 4. Summary of the tools we used during the dataset creation procedure.

One-to-one 
mapping

Fig. 10 Structure of the data included in TabRecSet dataset.
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than five vertexes, and hundreds of polygons have more than nine vertexes, which is an extremely distorted case, 
indicating a high challenge for our dataset in the cell locating task.

Table 5 exhibits the occurring frequency of commonly used characters in the English and Chinese sub-
sets, which shows the coverage of characters. The commonly used characters include the upper and lower case 
English letter, digit, English and Chinese punctuation mark, and the most commonly used thirty-two Chinese 
characters24 (last three rows). Note that we give the frequency of the Chinese character for the English subset 
and that of the English letter for the Chinese subset because we differ the English and Chinese tables not by the 
language of the table content but the context, so an English table may contain Chinese characters and vice-versa. 
Besides the character-wise data for the table content annotation, we also summarize the first thirty-five most 
occurred words in two subsets, as shown in Fig. 11g,h. Unsurprisingly, the most frequently occurring word in 
the English subset is mainly prepositions, while the one in the Chinese subset mainly depends on the domain. 
Table 5 and Fig. 11g,h manifest the completeness of the table content annotation, while Fig. 11f illustrates the 
content length of each cell, which manifests the difficulty of our dataset in the TCR task.

Fig. 11 Statistics data of TabRecSet.
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technical Validation
Cross-check. A total of five qualified persons (including part of the authors) were involved in the dataset 
creation procedure. We were responsible for data collection, cleaning, annotating, and cross-checking the anno-
tations. As shown in Fig. 3, there are four annotating steps in total. Whenever an annotator finishes an annotating 
step and is about to move to the next step, he will first exchange his assigned sub-dataset with another annotator 
and cross-check the annotations.

proofreading. After TabRecSet was created, a qualified checker (one of the annotators) was designated to 
filter out or revise bad samples missed to be dealt with during the creation procedure via TableMe. There were two 
types of bad samples to be checked, dirty images (watermarks, sensitive information, etc.) and incorrect annota-
tion, and the checker cancelled the Check Box in TableMe for the dirty image and revised the incorrect annota-
tion by the tool. After checking a round, the checker filtered out the images for which the Check Boxes were not 
checked by a program. Note that we regard the wrongly generated border-incomplete tables, for example, the not 
fully erased no-line table, as a type of dirty image, so we directly deleted these border-incomplete tables instead 
of fixing them. Through this round of checking and programming-based filtering procedure, the two types of bad 
samples were finally cleaned.

Usability validation. To validate the usability of TabRecSet, we train or fine-tune a few state-of-the-art 
methods on our training set (80% of the whole TabRecSet) and evaluate them on the test set (20%) and record the 
evaluation results in Tab. 16. There is no end-to-end TR model yet, so we validate the usability as completely as 
possible by covering all sub-tasks.

For the topology structure recognition and content recognition tasks, we choose EDD9 as the baseline 
model, which is only the model that supports TCR so far. It predicts tables’ Hyper Text Markup Language 
(HTML) sequences as the results. This HTML sequence contains the table’s topology structure (without cell 
location) and text content information and can be obtained by converting our annotation19. We choose 
Tree-Edit-Distance-based Similarity (TEDS)9 as the metric, which compares the similarity between two tables’ 
HTML sequences. This metric supports evaluating topology structure or content recognition performance 
according to whether the sequence contains the text content. Tab. 16 shows that EDD fine-tuned on TabRecSet 
can achieve significantly higher TEDS scores on structure (72.34%→ 90.68%) and content recognition (50.93%→ 
70.70%). This result illustrates that our training set can help EDD improve the performances and thus validate the 
usability of TabRecSet for these two sub-tasks. As for direct training on our dataset, the performances of EDD are 
limited (51.75%, 17.04%), which reveals that the TSR and TCR tasks on TabRecSet are challenging.

Character A B C D E F G H I J K L M

Count 34,067 
1,318 13,002 989 25,970 

1,499 18,093 672 27,634 372 10,560 423 9,072 369 13,034 774 23,148 296 3,011 171 5,444 233 15,630 598 9,880 448

Character N O P Q R S T U V W X Y Z

Count 22,473 645 18,390 811 19,722 492 1,196 131 21,210 256 32,312 616 25,946 373 8,149 122 5,923 304 6,378 213 2,249 171 5,151 163 951 155

Character a b c d e f g h i j k l m

Count 125,450 
1,436

25,272 
3,285

50,562 
1,105 49,910 542 167,771 

998 23,973 233 33,306 
1,826 42,310 423 105,066 

773 2,024 29 12,292 491 68,205 
1,014

43,042 
3,023

Character n o p q r s t u v w x y z

Count 102,827 
1,122

111,618 
931

38,488 
2,912 2,101 142 97,500 577 100,944 

6,096
110,944 
1,210

60,738 
5,641 13,722 169 14,070 133 5,661 868 24,943 467 2,255 144

Character 0 1 2 3 4 5 6 7 8 9 ~ ‘ !

Count 72,091 
29,532

50,827 
22,881

40,859 
17,216

23,530 
11,122

19,493 
9,532

23,627 
12,093

15,235 
7,452

13,832 
5,595

13,950 
6,871

14,121 
5,102 65 551 3,184 1 253 2

Character @ # $ % ^ & * ( ) - _ = +

Count 489 13 34,674 
2,289 1,955 7 2,058 

1,577 22 5 1,917 356 1,341 129 12,959 
3,216

13,420 
3,221

21,091 
4,141 1,749 439 1,407 414 2,426 

1,362

Character { } [ ] | \ / < > , . ? ,

Count 61 7 64 7 461 120 464 76 282 24 241 74 19,707 
7,816

14,948 
5,818

14,886 
5,782

16,895 
1,076

46,387 
11,730 1,485 43 75 1,598

Character ° ! ¥ ( ) 、 : ; “ ” ? << >>

Count 14 543 7 20 1 82 77 2,657 104 2,696 41 1,785 8,547 
2,014 0 195 55 128 20 124 14 56 0 132 1 128

Character 的 一 是 在 不 了 有 和 人 这 中 大 为

Count 5 2,818 11 1,677 1 294 3 366 5 726 1 152 3 627 2 416 1 1,892 1 64 3 924 1 758 0 297

Character 上 个 国 我 以 要 他 时 来 用 们 生 到

Count 8 830 4 639 1 299 0 170 9 520 3 297 1 161 7 1,385 1 107 1 890 0 70 0 935 3 291

Character 作 地 于 出 就 分 对 成 会 可 主 发 年

Count 0 467 2 665 0 235 2 565 2 63 0 1,863 0 285 2 619 1 256 5 254 2 288 0 378 4 1,147

Table 5. Occurring frequency of the most commonly used characters. Each counting data has two values: the 
upper one is the frequency of the English subset, and the lower one is the Chinese subset.
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For the TSR task (spatial & topological structure), we choose TableMaster25 and TGRNet19 as baselines. Both 
TableMaster and TGRNet output Bboxes as cell detection results, so we use Bbox precision26 to evaluate the per-
formance of spatial structure recognition. As for the topology structure, there is a difference between the output 
of the two models. TableMaster output the tables’ HTML sequence as the topology structure prediction, while 
the TGRNet model formulates the TSR task as a classification problem for each graph node and outputs the Table 
Graph as the prediction result. In other words, TableMaster and TGRNet represent two different categories of 
methods to deal with this task, i.e., sequence-based and graph-based methods. The metrics for these two kinds 
of models are different. The sequence-based model uses TEDS, and the graph-based model uses classification 
accuracy of the logical properties. As illustrated in Tab. 16, TGRNet can achieve moderately high performance on 
TSR (74.82% & 65.66%). TableMaster with fine-tuning can achieve much higher TSR performance than without 
fine-tuning (55.52%→ 93.13%, 2.974%→ 11.00%). These experiment results are strong evidence of usability for 
the TSR sub-task. TableMaster without pre-training has a TEDS score of 16.61%, which reveals the challenge of our 
dataset for sequence-based methods on topology structure recognition. Note that the performances of TableMaster 
for spatial structure recognition are low (2.974%, 0.3524% and 11.00%) because TableMaster belongs to the 
regression-based method, which cannot precisely predict the cell location when the table has a large distortion.

CDeC-Net27 is used to verify the usability of our dataset for the TD task. Table 6 illustrates that the Average 
Precision26 (AP) is high enough (92.8%) to prove the usability for table detection and segmentation.

Usage Notes
The data is organized as shown in Fig. 10. We provide a Python script to load the samples from TabRecSet and 
organize them in a proper data structure. For deep learning research, it is suggested to combine and mix differ-
ent types or scenarios of tables at first, according to the task needs, and divide the mixed datasets into training, 
validation, and testing sets for model training, validating, and testing.

Code availability
A link to the dataset, along with Python codes that are used to create the dataset, statistical analysis and plots, is 
released and publicly available at https://github.com/MaxKinny/TabRecSet.
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