
1Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdata

a large-scale dataset for
end-to-end table recognition
in the wild
Fan Yang 1, Lei Hu1, Xinwu Liu2, Shuangping Huang1,3 ✉ & Zhenghui Gu4

table recognition (tR) is one of the research hotspots in pattern recognition, which aims to extract
information from tables in an image. Common table recognition tasks include table detection (tD),
table structure recognition (tSR) and table content recognition (tCR). tD is to locate tables in the
image, tCR recognizes text content, and tSR recognizes spatial & ontology (logical) structure.
Currently, the end-to-end tR in real scenarios, accomplishing the three sub-tasks simultaneously, is
yet an unexplored research area. One major factor that inhibits researchers is the lack of a benchmark
dataset. to this end, we propose a new large-scale dataset named table Recognition Set (TabRecSet)
with diverse table forms sourcing from multiple scenarios in the wild, providing complete annotation
dedicated to end-to-end TR research. It is the largest and first bi-lingual dataset for end-to-end TR,
with 38.1 K tables in which 20.4 K are in English and 17.7 K are in Chinese. The samples have diverse
forms, such as the border-complete and -incomplete table, regular and irregular table (rotated,
distorted, etc.). the scenarios are multiple in the wild, varying from scanned to camera-taken images,
documents to Excel tables, educational test papers to financial invoices. The annotations are complete,
consisting of the table body spatial annotation, cell spatial & logical annotation and text content for
tD, tSR and tCR, respectively. the spatial annotation utilizes the polygon instead of the bounding
box or quadrilateral adopted by most datasets. the polygon spatial annotation is more suitable for
irregular tables that are common in wild scenarios. additionally, we propose a visualized and interactive
annotation tool named TableMe to improve the efficiency and quality of table annotation.

Background & Summary
Tables are commonly presented in images to organize and present information. To efficiently utilize informa-
tion from table images, computer vision based pattern recognition techniques are used in table recognition
(TR). It consists of three main tasks, table detection (TD), table structure recognition (TSR) and table content
recognition (TCR), in relation to the localization of tables, the recognition of their internal structures, and the
extraction of their text contents correspondingly.

Currently, the end-to-end TR task in real scenarios, with the purpose of fulfilling all three sub-tasks simul-
taneously, is yet unexplored. One major factor that inhibits researchers is the lack of a well-rounded benchmark
dataset. For instance, as shown in Table 1, early (before 2018) TR datasets, such as UNLV1, ICDAR132 and
ICDAR173, only contain a few samples (less than 2.5k). Later, large-scale TR datasets4–11 were proposed since
2019, but the annotations are generated by programs instead of human involved and only scanned regular tables
are included, hindering the diversity of the datasets due to the monotonous backgrounds and spatial features
(e.g. without rotation, distortion, etc.). In fact, to enrich the diversity, it is necessary to collect data in various
real scenarios. For example, Gao et al.12 proposed a dataset named ICDAR19 for TD and TSR tasks. It is the
first real dataset in the historical document scenario, yet its volume is small (2.4k images). Until recently, Long
et al.13 proposed a large-scale (14.5k) practical dataset WTW that covers multiple scenarios in the wild. Although
WTW is the largest and multi-scenario, it is only suitable for the TSR task as it lacks table location and content
annotations. Furthermore, quadrilateral box is used in the cell location annotation, which is imprecise to distorted

1School of Electronic and Information Engineering, South China University of Technology, Guangzhou, 510641,
china. 2Zhuzhou CRRC Times Electric Co., Ltd, Zhuzhou, 412001, China. 3Pazhou Lab, Guangzhou, 510335, China.
4College of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
✉e-mail: eehsp@scut.edu.cn

DaTa DEsCRIpToR

opEN

https://doi.org/10.1038/s41597-023-01985-8
http://orcid.org/0000-0001-5821-021X
mailto:eehsp@scut.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-01985-8&domain=pdf

2Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

(caused by folds and bends in a paper) table images. Overall, we conclude three main drawbacks of these data-
sets as follows: 1. Only provide annotations for sub-tasks (TD, TSR and TCR), which are not complete for the
end-to-end TR task. 2. Either the scales are small, or scenario diversities are limited. 3. Only have the Bounding
box (Bbox) or quadrilateral as the spatial annotation that cannot flexibly adapt to the shape changes Table 2.

We propose a dataset named Table Recognition Set (TabRecSet) with samples exhibited in Fig. 1. To the best
of our knowledge, it is the largest and most well-rounded real dataset, collecting data from various wild sce-
narios with diverse table styles and complete & flexible annotation against for the end-to-end TR task with
the purpose of filling the gap in this research area. Large Scale: The data volume (including more than 38,100
real table images) is 2.6 times larger than the largest known dataset WTW. Wild Scenario: Data are collected
via scanners or cameras in various wild scenarios including documents, Excel tables, exam papers, financial
invoices, etc. Robust Diversity: It contains different table forms, such as the regular and irregular table (rotated,
distorted, etc.), border-complete (all-line) and -incomplete table. The distortions of irregular tables may severely
break the spatial alignment of rows, columns and cells, increasing the difficulty of the TSR task. The recognition
of border-incomplete tables such as the three-14 and no-line (without borders) tables are also more difficult and
challenging. Completeness: In order to provide a complete annotation for the TR task, the annotation of every
table sample in TabRecSet contains its body and cell location as well as its structure and content. Flexibility: In
order to provide accurate and precise annotations to distorted tables, TabRecSet uses polygons instead of bound-
ing boxes to annotate the outside and inside table borders. Bi-lingual: TabRecSet contains Chinese and English
tables with a proportion of 46.5% and 53.5% independently Table 3.

In addition, since the process of dataset building is quite time-consuming, we developed a visualized
and interactive annotation tool named TableMe to speed up the annotation process and ensure data quality.
We also designed several automatic techniques, such as the auto annotating of table structures and the automatic
generation of three- and no-line tables, to benefit the end-to-end TR task in wild scenarios.

Methods
In this section, we elaborate on all the details in the TabRecSet creation procedure, which ensures the quality,
reproducibility, and creation efficiency of the dataset. As Fig. 2 illustrates, this procedure mainly consists of
four steps. The first three steps, data collection, data cleaning, and data annotation, following a normal and
standard procedure of building most datasets, output all border-complete table samples. Particularly, to increase

Dataset #Images #Tables

Task

Multiple Wild
Scenarios

Spatial Annotation
Flexibility

Border-incomplete
Diversity Bi-lingual YearTD TSR TCR

End-to-
End TR

UNLV1 427 558 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2010

ICDAR132 128 156 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2013

ICDAR173 2417 1020 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2017

DeepFigures4 1.67 M 1.4 M ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2018

PubLayNet5 362 K 113 K ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2019

SciTSR6 15 K 15 K ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2019

Table 2Latex7 465 K 465 K ✗ ✓ ✓ ✗ ✗ NA ✗ ✗ 2019

ICDAR1912 2,439 3.6 K ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 2019

TableBank8
278 K 417 K ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2020

145 K 145 K ✗ ✓ ✗ ✗ ✗ NA ✗ ✗

PubTabNet9 568 K 568 K ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2020

TableX10 1 M + 1 M + ✗ ✓ ✓ ✗ ✗ NA ✗ ✗ 2021

PubTables-1M11 1 M + 1 M + ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 2021

WTW13 14.5 K 14.5 K ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ 2021

TabRecSet (Ours) 32.07 K 38.17 K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A statistical summary and comparison between our TabRecSet dataset and the existing datasets.
End-to-End TR: Extract the table body position, structure, and content simultaneously from a complete
image. Spatial annotation flexibility: The dataset uses the polygon instead of the Bounding box (Bbox) or
quadrilateral to annotate the table or cell position. Border-incomplete Diversity: The dataset has multiple types
of border-incomplete tables. NA: This item for the dataset is not applicable.

Field
Name Description Field Name Description Field Nme Description

version the version of LabelMe lineColor color of the lines in
annotation objects imageData encoded image data

flags flags of the image fillColor color of the regions of the
annotation objects imageHeight height of the image

shapes the annotation objects for the image imagePath file path of the image imageWidth width of the image

Table 2. Fields of LabelMe format framework.

https://doi.org/10.1038/s41597-023-01985-8

3Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

the number of samples and the variety of table styles, they are also used to generate border-incomplete tables
(e.g., three- or no-line tables) in the fourth step. The generation process is automatic and image-based, which
basically replaces border pixels from border-complete table images with its background pixels.

Data collection. The general purpose of the data collection step is to build a raw data pool by searching and
downloading enough table-related images through the Internet. Firstly, we randomly pick camera-taken table
image samples from open source datasets such as WTW or Tal ocr_table15 as search seeds. Then they are input
into search engines (e.g., Google or Baidu) with the Usage Rights filter enabled and return plenty of similar images
that comply with the Creative Commons licenses. For the search engine that does not have the Usage Rights filter,
we manually open the image’s original source to check whether the image complies with the licenses. After that,
the search results are downloaded via a web page-based image downloader called ImageAssistant16. The whole
process stops when the total size of the downloaded images exceeds a specified threshold. The advantage of using
search engines to collect table images is that the search result covers a wide variety of data collection scenarios,
including reports, exam papers, documents, invoices, books, etc. In addition, to further increase data diversity,
we use raw images rather than keywords as the search seeds because the image content does not play an important
role in the way of search by image, and the search engine searches for matched images based on the pixel-level
similarity of input images. In this way, the search engine will return a large number of table images with a diverse
range of formats and styles, covering many special cases such as irregular, distorted, and incomplete tables, while
in the way of search by keyword, the extent and degree of the distortion or the incompleteness are difficult to

document image ingredients form of foods

invoice tables Excel tables

Fig. 1 Some representative samples in TabRecSet. The scenarios include the document images, ingredients
form of foods, Excel tables and invoice tables. Because of the page distortions or camera views, most tables are
irregular, i.e., with rotations, inclinations, concave/convex/wrinkle distortions, etc. Some special table forms
are exhibited, e.g., the nested table, under- and over-exposed table, border-incomplete table, table with hand-
written contents and hand-drawn table.

Field Name label points group_id shape_type flags

Description class of the
annotation object

coordinates of
the annotation

instance id of the
annotation object

type of the annotation object
(polygon, circle, line, point)

flags of the
annotation object

Table 3. The sub-fields of the “shapes” field.

https://doi.org/10.1038/s41597-023-01985-8

4Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

describe. As shown in Fig. 2, we repeat the search and download process until the data size of the Raw Data Pool
exceeds the expected dataset scale by a pre-specified margin based on the filtering rate in the cleaning step.

Data cleaning. The data cleaning step in Fig. 2 is a human-involved process of fixing or removing incorrect,
incomplete, incorrectly formatted, duplicate or irrelevant data within the Raw Data Pool.

Since the raw data is collected through the Internet in the way of search by image, some images that do
not include actual table instances may be returned by the search engine. These incorrect and table irrelevant
data are removed in the first place. Meanwhile, watermarked images are removed because of copyright protec-
tion. In addition, for privacy considerations, we also remove sensitive information, such as location, ID, phone
number, etc., from those images. In terms of the data format, in order to keep the variety of table format and
styles, we only fix sideways or upside down images. After that, we detect and remove duplicate images (keep the
image with the highest image resolution and remove the rest) via Duplicate Image Finder17 software. It helps the
user identify duplicate images, even if they are resized, edited, flipped, color-corrected, etc., by grouping them
together. Moreover, samples duplicated from other datasets without a derivative license, e.g. the Tal ocr_table
dataset, are also entirely removed.

The data cleaning step filters out approximately 30% (based on our experience) of “dirty” data from Raw Data
Pool to obtain a clean dataset with high-quality data for the annotating process in the following step.

Data annotation. We first introduce the annotation format of TabRecSet ([subsubsec: data annotation
format]Annotation Format) and our developed annotation tool TableMe ([subsubsec: Data Annotation Tool]
Annotation Tool). Then, we propose a TSR auto-annotating algorithm ([subsubsec: TSR Annotation Generating
Algorithm]TSR Auto-annotating Algorithm) to automatically generate logical structure annotation based on
the spatial structure annotation. Finally, in the [subsubsec: data annotation step]Annotation Step subsection,
we describe the data annotation step for the Clean Dataset, which is mainly performed on our tool, including
cell polygons drawing, algorithm-assisted logical locations generation, typing in text contents and table body
polygons generation.

Data Collection Data Cleaning

Exisiting Open Source

Datasets

Image Search Engines

Web Picture Batch

Downloader

search

seeds

web

pages

Is the Pool
Large

Enough?

N Y

Raw Data
Pool

Raw Data
Pool

Remove Watermarked Samples, Irrelevant Samples,

Sensitive Samples, and Turn Over Upside-down

Pictures Using the Program

Clean
Dataset
Clean

Dataset

Remove Duplicate Images Among the Raw Data Pool
Itself Using the Duplicate Image Finder Software

Data Annotation

Annotate Each Cell

the Spatial Location

Annotation and

Assign "group_id"

Generate and Revise the TD

Annotation

Automatically Assign the

Logical Properties for Each

Cell and Manually Revise

the Assigning Errors

Border-incomplete Table Generation

Generation Algorithm:

Erase Target Rule Lines of All-

line Tables to Generate Border-

incomplete Table

TabRecSetTabRecSet

three- and

no-line

tables

real table samples

raw

samples

Type in the Text

Content for

Each Cell

Data Collection Data Cleaning

Exisiting Open Source

Datasets

Image Search Engines

Web Picture Batch

Downloader

search

seeds

web

pages

Is the Pool
Large

Enough?

N Y

Raw Data
Pool

Remove Watermarked Samples, Irrelevant Samples,

Sensitive Samples, and Turn Over Upside-down

Pictures Using the Program

Clean
Dataset

Remove Duplicate Images Among the Raw Data Pool
Itself Using the Duplicate Image Finder Software

Data Annotation

Annotate Each Cell

the Spatial Location

Annotation and

Assign "group_id"

Generate and Revise the TD

Annotation

Automatically Assign the

Logical Properties for Each

Cell and Manually Revise

the Assigning Errors

Border-incomplete Table Generation

Generation Algorithm:

Erase Target Rule Lines of All-

line Tables to Generate Border-

incomplete Table

TabRecSet

three- and

no-line

tables

real table samples

raw

samples

Type in the Text

Content for

Each Cell

Remove Duplicate Images

between the Raw Data Pool
and Other Datasets

Using the Duplicate Image
Finder Software

clean

samples

clean

samples

Fig. 2 The creation flow chart of TabRecSet. The data collection aims to collect raw image samples and outputs
a Raw Data Pool, which stores candidate data samples. The data cleaning step generates clean samples from
Raw Data Pool and gathers them into a Clean Dataset. In the data annotation step, we use TableMe to annotate
the clean sample and save the annotation in the TabRecSet annotation format. This step is aided by several auto-
annotation algorithms to improve efficiency. The border-incomplete table generation step aims to enlarge the
scale TabRecSet by our proposed three-line table generating algorithm.

https://doi.org/10.1038/s41597-023-01985-8

5Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Annotation format. The complete annotation for the end-to-end TR task is complex as it includes table body
position for the TD task, the cell spatial & logical location for the TSR task and the cell text content for the TCR
task, covering multiple heterogeneous information from spatial and logical to text data. It is necessary to uti-
lize proper annotation formats to organize the information coherently and concisely. We choose the LabelMe18
annotation format as the framework for our annotation formats since this framework supports compactly
organizing the heterogeneous table information. This annotation format framework is defined by the fields and
sub-fields listed in Tables 2,3.

We form two annotation formats: a table-wise annotation format in which the annotation object is a table
and a cell-wise one with a cell as the annotation object. The table-wise annotation format is for the TD task
containing the spatial location information for the table. The cell-wise format contains the spatial & logical loca-
tions and text content information for a cell annotation, and the collection of these cell annotations completely
describes TSR and TCR annotations for the whole table19.

Concretely, the table-wise annotation format utilizes the “points” field to store the vertexes coordinates of the
table body polygon and the same “group_id” (an integer) to distinguish different table instances. The cell-wise
format uses the “label” field to store a text string that encodes the cell’s logical locations and text content, the
“points” field to store the vertexes coordinates of the polygon along the border of the cell, and the “group_id”
field as in the table-wise format to mark the cell to which table instance it belongs. The text string in the “label”
field is in the form of “<Row>-<Column>-<Rowspan>-<Colspan>-<Text content>” in which the <Row>
(<Column>) means the row (column) number of the cell and the <Rowspan> (<Colspan>) means how
many rows (columns) the cell spans. The row number, column number, rowspan and colspan are also called
logical properties for short. Figure 4 gives examples of three cell annotation instances in the cell-wise annotation
format. The #1 instance indicates the cell annotation object located by polygon [[19,202],[92,204],[391,212],
[391,227],[168,221],[18,217]], in the tenth row and the first column of Table 1 (group id = 1), spanning three
columns, with the text content “预计费用总额”. The #2 instance indicates the cell annotation object located by
polygon [[12,308],[8,402],[121,403], [123,341],[125,310]], in the fourth row and the first column of the table 0,
spanning five rows, with the text content “担保公司”. The #3 instance indicates the cell annotation object located
by polygon [[362,298],[363,313],[462,315], [462,299]], in the third row and the fourth column of the table 0,
with the hand-written “1600” as the text content.

Annotation tool. TableMe originate from the famous annotation tool LabelMe, which is powerful in providing
the annotation for the image segmentation task, and TableMe completely inherits this feature leading to a great
capacity for the table or cell’s spatial annotating. Besides, it possesses annotating functions for the table structure
& content and supports assigning logical properties and “group_id” for a group of selected cell annotations,
enhancing the structure annotating speed significantly. Most amazingly, it can intuitively visualize the logical
structure and content of the table, which helps us to transcribe the text content to the annotation straightfor-
wardly and efficiently (as shown in Fig. 3).

As illustrated in Fig. 5, TableMe is mainly composed of three parts: an image panel (upper-left), a setting
panel for polygon properties (structure logical & “group_id”) (lower-right) and an annotation visualization
region (lower-left). The image panel is a feature originated from the LabelMe, which not only inherits the con-
venient polygons drawing functions of LabelMe for the table/cell position annotating but also supports selecting
these polygons in a group for the setting of polygon properties in the setting panel.

1. Draw polygons &

assign Group IDs

2. Generate TSR

annotations and

revise them
3. Type in

the table content

Annotation

visualization

from the tool

4. Generate TD

annotations

<Row>-

<Column>-

<Rowspan>-

<Colspan>

(<Group ID>)

Fig. 3 An intuitive illustration of the data annotation step showed in Fig. 2. Please zoom in for details.

https://doi.org/10.1038/s41597-023-01985-8

6Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

The properties setting panel includes five options, i.e., the row, column, rowspan, colspan and “group_id”, and
two widgets, i.e., an editable text for the option value input and an “Apply” button. For example, for the setting
of the row property, the annotator can first select the polygons on the same row in the image panel, choose the
“row” option, input the row number, and click the “Apply” button to confirm. The other properties can be set
with totally the same operations. With this feature, TableMe enables an intuitive annotating way for the table
structure, which is high-efficiency and has less error tendency when people annotate.

The annotation visualization region supports two functions: visualizing the table structure and content anno-
tation in a digital table form and annotating the table content directly in the digital table. After annotating the
table/cell position in the image panel and table structure in the properties setting panel, this region will immedi-
ately show digitalized tables with the same logical structure as the tables in the image. Amazingly, as these digital
tables are interactable, it allows users to annotate the text content of a cell simply by clicking that digital cell in

A visualized instance

of the annotation.

Each table cell can be

directly typed in the

text content.

Image Panel: Similar to LabelMe, this part

can draw polygons as the spatial

information annotation for each cell.

Properties Setting Panel: All selected

polygons can be assign the four logical

properties and "group_id" in a group.

Annotation Visualization Region

Check
Box

A visualized instance

of the annotation.

Each table cell can be

directly typed in the

text content.

Image Panel: Similar to LabelMe, this part

can draw polygons as the spatial

information annotation for each cell.

Properties Setting Panel: All selected

polygons can be assign the four logical

properties and "group_id" in a group.

Annotation Visualization Region

Check
Box

Fig. 5 The main interface of TableMe. Please zoom in for details.

cell annotation

Instance #2

cell annotation

instance #1

cell annotation

Instance #3

Fig. 4 Three annotation instances in the cell-wise annotation format.

https://doi.org/10.1038/s41597-023-01985-8

7Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

this region and typing in the text string directly. This feature, on the one hand, increases the speed of annotating
the text content and, on the other hand, provides an effective way for users to check whether the manually or
automatically generated structure annotations are correct or not.

In the multiple tables case, the annotator can set the polygons in the same table with the same “group_id” and
ensure polygons in different tables have different “group_id” by operating the widgets on the properties setting
panel. When finished setting the “group_id” for each polygon, as shown in the figure, the annotation of multiple
tables will be visualized in the annotation visualization region and distinguished from each other via table num-
bers that are equal to the “group_id”s.

Besides above mentioned three parts, there is a check box named “Checked” on the right side of the inter-
face. When an image is annotated, we can check this box to mark the image as annotated, and the value of the
“flags” field in 4 will be set to “true”. The annotation is saved as a LabelMe JSON file in the TabRecSet annotation
format with the same filename of the image but a different file extension. After finishing annotating all images in
Clean Dataset, a folder has paired JSON files and JPG files can be obtained, which contains the complete TR
annotation for each image.

In conclusion, in terms of functionality, TableMe is dedicated to annotating the end-to-end TR task in the
wild scenario as it supports annotating table position, structure and content in multiple tables and irregular table
cases. In terms of efficiency, it highly improves the speed of table annotating, annotation checking and revising,
especially when the image contains many tables and the table has a large cell number, as it avoids trivially treating
each table cell one by one.

TSR Auto-annotating algorithm. The TSR annotation generating algorithm consists of two parts: 1) A table
image rectification process to eliminate the irregularity of tables (distortions, rotations, etc.) and 2) a logical
property computing process to compute the logical properties for each cell. Without the table irregularities, the
logical property computing process can get the most out of it, thus making this algorithm has a high computing
accuracy, essentially preventing us from manually annotating these properties and improving efficiency.

The rectification process uses the cell location annotation to remove the distortions by Thin-Plate Spline
(TPS)20 transformation and remove the rotations and inclinations of the table by Affine transformation21. Fig. 6
illustrates the main steps of the algorithm. Firstly, we generate a binary map of each cell based on the spatial
annotations of a table and apply the morphological closure operation, a classical image processing algorithm,
to fill the gap between each cell to obtain a table-region based binary map. Secondly, find the table outline
by tracing the border of the binary map via the findContour API in OpenCV. Then we find the corner points
of the outline (red points in Fig. 6e) and link the corner points to obtain the corner lines (red dashed lines).
The TPS control points (blue points) are the equal-division points of the corner lines. Make lines pass through
target points and are perpendicular to the corner lines, and we obtain the normal lines (blue lines) whose inter-
sections with the table outline are exactly the source points (orange points). The next step uses the TPS trans-
formation to minimize the distances between target points and source points with the smallest bending energy
and establishes a coordinate map between the original table image and the transformed table image of which the
curvature distortion is eliminated. With the four corner points, the algorithm computes the Affine parameters
to transform the image, which can remove the rotation and inclination of the table, and finally, we obtain the
rectified table image.

The logical property computing process computes the logical properties by analysing the spatial relationships
among cells on the rectified table and assigns the logical properties to the cell on the original table according to
the coordinate map from the rectification process. Figure 7 shows key steps to analyse the spatial relationship
and compute the logical properties:

closure

operation

closure

operation
Affine

Transformation

Affine

Transformation

(a) cell binary map from

cell location annotation

(a) cell binary map from

cell location annotation
(b) table region binary

map

(b) table region binary

map

(f) curvature eliminated

table

(e) TPS control points (g) rectified table image(g) rectified table image(d) table outline(d) table outline(c) original table image(c) original table image

TPSTPS

Fig. 6 The table image rectification algorithm. The blue, red, orange points, blue lines and two red dashed lines
in Fig. (e,f) are the TPS target points, TPS source points, corner points of the table outline, normal lines and
corner lines, respectively. A purple line is drawn horizontally in the middle of Fig. (e) and is distorted in Fig. (f),
visualizing the extent and direction of the TPS transformation.

https://doi.org/10.1038/s41597-023-01985-8

8Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Step (a), we choose the left-top corner point of a Bbox to represent a cell. The algorithm first finds an initial
point P1 of which the y-coordinate is the smallest.

Step (b), find all the points satisfying the restriction − < × .∣ ∣P P min H{ } 0 4y y
Bbox1 2 which ensures they are

in the same row. The Py is the y-coordinate, min{HBbox} is the height of the shortest Bbox in the table, and the
parameter 0.4 is an empirical constant. Then, we can obtain all cells with the 1st start-row (or the 1st row in short)
and remove them from the table for the next step.

Step (c), repeat Step (a)-(b) until there is no point left on the table, and all cells are assigned with the start-row
property.

Step (d), to obtain the end-row property, we can use the right-bottom corner point to represent each cell and
do steps (a)-(c).

Step (e), the rowspan of each cell is computed via the formula: rowspan = end-row - start-row + 1.
Step (f), symmetrically, the colspan of each cell is computed via the formula: colspan (= end-column -

start-column + 1) after obtaining the start- and end-column of the cells by following (a–d) steps on the
x-coordinate.

Annotation step. According to the data annotation step shown in Fig. 2 and the intuitive illustration shown in
Fig. 3, we first draw polygons along the cell borders in the image panel to annotate each cell the spatial location
and assign “group_id”s to these polygons for distinguishing table instances using the properties setting panel.

For the efficiency consideration, we apply the TSR auto-annotating algorithm (see the [subsubsec: TSR
Annotation Generating Algorithm]TSR Annotation Generating Algorithm subsection) to generate the logical prop-
erties for each cell automatically, then detect the occasional generating errors in the annotation visualization region
and manually revise the errors via the properties setting panel. This algorithm has approximately 80% accuracy, so
we only needed to fix the remained 20% of the annotations, which significantly improved our annotation efficiency.

As shown in Fig. 3, for text content transcription, we can directly type in the text for each cell in the digital
table shown in the annotation visualization region, and the tool will store the text in the <Text content> part of
the encoded string in the “label” field. Note that for an indistinguishable blurred character, we replace its actual
annotation with the # symbol to indicate its existence. For a cell with multiple text lines, we use the\n escape
symbol to separate each line and concatenate the text lines to a single text string.

Finally, we auto-generate the TD annotation for the whole table based on the spatial cell annotations via an
image processing program. The program process is as follows: (1) convert spatial annotations (i.e. polygon list)
to binary maps, then concatenate them together to obtain a single segmentation map22; (2) use the morpholog-
ical closure operation on the segmentation map to fill the gaps between each cell’s binary region; (3) convert the
segmentation map to the polygon along the map contour via the findContour API in OpenCV. After the genera-
tion, we refine the generated annotation manually in the image panel to ensure the rightness of the annotation.

Border-incomplete table generation. As shown in Fig. 2, this border-incomplete table generation step
aims to produce the three-line and no-line table by erasing the target rule lines of the annotated all-line table.

A table rule line is composed of the edges of the cells on the same row or column, and thus we can erase a
table rule line by erasing the cell edges. Since the cell-wise polygons along the cell borders are annotated, we
apply an image processing program using these polygon annotations to find the cell edges in the image and
remove these edges. Figure 8 shows how the program process erases a single cell edge. Given a table image and
the cell border from the annotation, the first step of erasing a cell edge is to obtain all pixel points on the edge
(red line) by extracting the sorted points on the cell border bounded by two adjacent corner points (red points).

P2P1P1 P3P4

P1 P2 P3P4

P4 P5 P6

P7 P8 P9 P10 P11

2nd start-row

P'1 P'2 P'3

P'5 P'6 P'7

P'8 P'9 P'10 P'11 P'12

P'4

Step (a) Find a corner point in 1st row as the initial vertex. Step (b) Find all corner points of row 1.

Step (c) Assign each cell the start-row. Step (d) Use the right-bottom corner of the Bbox to represent

the cell. Then, apply steps (a) and (b) to assign each cell the

end-row.

1st start-row

3rd start-row

1st start-row 1st start-row

1st start-row

2nd start-row 2nd start-row

3rd start-row 3rd start-row 3rd start-row 3rd start-row

1st end-row 1st end-row 1st end-row

2nd end-row
2nd end-row 2nd end-row 2nd end-row

3rd end-row 3rd end-row 3rd end-row 3rd end-row 3rd end-row

Fig. 7 The key steps of our logical property computing algorithm on the rectified table image. We use a regular
table on a plain white background to represent the rectified table image.

https://doi.org/10.1038/s41597-023-01985-8

9Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

For example, the upper edge is a sorted point list starting with the upper-left corner point and ending with the
upper-right corner point. The second step is to replace each pixel on the edge with the median pixel of a kernel
(orange square), which is centered on the pixel (orange point). Because the median pixel of the kernel mainly
refers to the background color, this step actually replaces the border pixel with the background color. When all
pixels on the edge are replaced, this edge can be regarded as removed from the image.

To generate a three-line table, we should erase the horizontal (row) rule lines, ranging from the third to the
last but one, and all vertical (column) rule lines. Concretely, we erase the left and right edges of the cells on the 1st
row and erase all cell edges on other rows except the upper edge on the 2nd row and the bottom edge on the last
row. As for the no-line table generation, we should erase all target rule lines, and thus we simply erase all edges
of every cell in the table. Figure 9 illustrates the generating performance.

Note that the border-incomplete table shares the same cell location annotation with the original all-line table.
The polygon annotation is originally drawn along the cell border in the all-line table, while these borders may
be erased in the border-incomplete table, so the spatial annotation for a cell is a loose polygon relative to the text
content in the border-incomplete table case. Though existing datasets6,9 use a compact Bbox for the text content
as the cell location annotation, we insist on our loose annotation because of the existence of the cell borders
even though they are invisible (erased). The insight is that a human can somehow infer where are the invisible
borders in the image by visual cues or semantic meanings and this insight means the existence and uniqueness of
invisible borders in the border-incomplete table. We believe that providing polygon annotation for the invisible
borders can facilitate the emergence and development of the cell invisible border recovery task.

Summary of tools. Table 4 is a complete summary of the tools we used during the dataset creation proce-
dure. In the table, we describe the primary uses of these tools and their advantages compared to the alternatives.
The last column of the table lists the tool versions, which sometimes matter during the creation procedure.

Data Records
Directory structure of TabRecSet. TabRecSet is publicly available in figshare23. Its directory structure is
shown in Fig. 10. The image folder contains original and generated table images in JPG format in which tables
with different languages and border-incomplete types are separated into corresponding sub-folders. Each image
is one-to-one mapped to a unique TD annotation (JSON files in the TD_annotation folder) and TSR/TCR

a cell border

from the annotation

obtain all pixel points on the

target edge (e.g. the upper edge)

use the median pixel of the

kernel to replace the

pixel on the target edge erased target edge

Fig. 8 The key steps of erasing a target cell edge. Red points: Two corner points of the cell border. Red line: A
target edge of a cell. Orange square: A kernel centered on a pixel (the orange point) on the target edge.

all-

line

three-

line

no-

line

Fig. 9 Generated three-line table examples.

https://doi.org/10.1038/s41597-023-01985-8

1 0Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

annotation (JSON files in the TSR_TCR_annotation folder) according to its filename, and each JSON file is also
divided into different sub-folders by their language. Note that an original all-line table shares the same filename
and annotations with its generated border-incomplete tables since the annotations for the all-line table are also
valid for the generated images. In the README.md file, we summarise the meta information, such as the dataset
license, download links, description of the file format and a link to the source code repository, etc.

Statistics of TabRecSet. To quantitatively verify the data quality and challenge of TabRecSet for each sub-task,
we analyse its overall size and several instance-wise (e.g., table-wise, cell-wise) statistical characteristics and draw
their distributions in Fig. 11 and Table 5. The instance-wise statistical characteristics include the table number of each
cell (Fig. 11a), cell number of each table (Fig. 11b), rowspan/colspan of each cell (Fig. 11c,d), vertex number of each
cell (Fig. 11e), content length of each cell (Fig. 11f), word frequency (Fig. 11g,h) and character frequency (Table 5).

In the aspect of overall size, TabRecSet contains 32,072 images and 38,177 tables in total among which 16,530
images (17,762 tables) are in Chinese, 15,542 images (20,415 tables) are in English and 21,228 images (25,279
tables) are generated (three-line and no-line). The generated table subset (border-incomplete folder in Fig. 10)
contains 5,113 images and 6728 tables (both three- and no-line tables) in English, 5,501 images and 5,911 tables
in Chinese (both three- and no-line tables).

We count the table number for every image, which is an image-wise indicator to measure the difficulty of the
TD task, and draw the distribution over images in Fig. 11a. According to the statistical result, approximately 300
images in the English subset contain multiple tables, and 1,000 images in the Chinese subset contain multiple tables.
The maximum number of tables in an image on English and Chinese subsets are 7 and 4, respectively. We believe
that our dataset can benchmark the performance of the TD model in the case that the image contains many tables.

The difficulty of TSR for a table varies with the table size and structure complexity. We choose the cell num-
ber as the table-wise indicator and the number of spanning cells as the cell-wise indicator to reflect the two
respects, respectively. Figure 11b shows the cell number distribution of which the average number is 29 for the
English subset, 18 for the Chinese subset, and the maximum number is 351 for the English subset, 207 for the
Chinese subset. The spanning cell refers to the cell of which the rowspan or colspan is larger than one, so we
summarize the rowspan/colspan of each cell in Fig. 11c,d to indicate the structure complexity of the dataset.
The spanning cell number of the English subset is more than 6,600, and the Chinese subset is more than 2,200.
The maximum rowspan and colspan are 41 and 24 for the English subset; 22 and 24 for the Chinese subset.
These statistics show that our dataset contains a great number of large tables and has a high overall structure
complexity. TSR not only needs to recognize the logical relation among cells but also needs to locate the cell
position in the image. The vertex number of a cell polygon reflects the curvature of the cell, which affects how
difficult to segment the cell, so we count the distribution of the vertex number for each polygon annotation to
verify the challenge of our dataset in cell locating. As shown in Fig. 11e, thousands of cell polygons have more

Name Description Advantages Version

TableMe
It is our proposed tool for table-specific annotating,
which supports annotation for multiple task types,
such as table detection, table segmentation, table
structure, and table content recognition tasks.

1. It uses interactive visualization to execute the
annotation process effectively.
2. Compared to alternatives, it supports the table
segmentation task.

1.0.0

Duplicate Image Finder17

Duplicate Image Finder “looks” at your images to
find look-alike images in a folder. It can identify
similar and duplicate images even if they are edited,
rotated or flipped.

1. It can identify rotated at 90°, 180°, 270°,
flipped horizontally and/or vertically duplicate
images.
2. It can show all the duplicate images in groups
and mark the smaller resolution and/or smaller
file size (lower quality ones) images to be
deleted.

4.8.0

Image-Assistant16

ImageAssistant is an extension software running in
Chrome and its derivative browsers to analyze and
extract pictures in web pages and provide multiple
filtering methods to assist users in selecting and
downloading.

Different from browser extensions that provide
similar functions in the past, this extension
combines multiple data extraction methods to
ensure that the images that have appeared can be
extracted as comprehensively as possible from
various complex structure pages.

1.66.6

Table 4. Summary of the tools we used during the dataset creation procedure.

One-to-one
mapping

Fig. 10 Structure of the data included in TabRecSet dataset.

https://doi.org/10.1038/s41597-023-01985-8

1 1Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

than five vertexes, and hundreds of polygons have more than nine vertexes, which is an extremely distorted case,
indicating a high challenge for our dataset in the cell locating task.

Table 5 exhibits the occurring frequency of commonly used characters in the English and Chinese sub-
sets, which shows the coverage of characters. The commonly used characters include the upper and lower case
English letter, digit, English and Chinese punctuation mark, and the most commonly used thirty-two Chinese
characters24 (last three rows). Note that we give the frequency of the Chinese character for the English subset
and that of the English letter for the Chinese subset because we differ the English and Chinese tables not by the
language of the table content but the context, so an English table may contain Chinese characters and vice-versa.
Besides the character-wise data for the table content annotation, we also summarize the first thirty-five most
occurred words in two subsets, as shown in Fig. 11g,h. Unsurprisingly, the most frequently occurring word in
the English subset is mainly prepositions, while the one in the Chinese subset mainly depends on the domain.
Table 5 and Fig. 11g,h manifest the completeness of the table content annotation, while Fig. 11f illustrates the
content length of each cell, which manifests the difficulty of our dataset in the TCR task.

Fig. 11 Statistics data of TabRecSet.

https://doi.org/10.1038/s41597-023-01985-8

1 2Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

technical Validation
Cross-check. A total of five qualified persons (including part of the authors) were involved in the dataset
creation procedure. We were responsible for data collection, cleaning, annotating, and cross-checking the anno-
tations. As shown in Fig. 3, there are four annotating steps in total. Whenever an annotator finishes an annotating
step and is about to move to the next step, he will first exchange his assigned sub-dataset with another annotator
and cross-check the annotations.

proofreading. After TabRecSet was created, a qualified checker (one of the annotators) was designated to
filter out or revise bad samples missed to be dealt with during the creation procedure via TableMe. There were two
types of bad samples to be checked, dirty images (watermarks, sensitive information, etc.) and incorrect annota-
tion, and the checker cancelled the Check Box in TableMe for the dirty image and revised the incorrect annota-
tion by the tool. After checking a round, the checker filtered out the images for which the Check Boxes were not
checked by a program. Note that we regard the wrongly generated border-incomplete tables, for example, the not
fully erased no-line table, as a type of dirty image, so we directly deleted these border-incomplete tables instead
of fixing them. Through this round of checking and programming-based filtering procedure, the two types of bad
samples were finally cleaned.

Usability validation. To validate the usability of TabRecSet, we train or fine-tune a few state-of-the-art
methods on our training set (80% of the whole TabRecSet) and evaluate them on the test set (20%) and record the
evaluation results in Tab. 16. There is no end-to-end TR model yet, so we validate the usability as completely as
possible by covering all sub-tasks.

For the topology structure recognition and content recognition tasks, we choose EDD9 as the baseline
model, which is only the model that supports TCR so far. It predicts tables’ Hyper Text Markup Language
(HTML) sequences as the results. This HTML sequence contains the table’s topology structure (without cell
location) and text content information and can be obtained by converting our annotation19. We choose
Tree-Edit-Distance-based Similarity (TEDS)9 as the metric, which compares the similarity between two tables’
HTML sequences. This metric supports evaluating topology structure or content recognition performance
according to whether the sequence contains the text content. Tab. 16 shows that EDD fine-tuned on TabRecSet
can achieve significantly higher TEDS scores on structure (72.34%→ 90.68%) and content recognition (50.93%→
70.70%). This result illustrates that our training set can help EDD improve the performances and thus validate the
usability of TabRecSet for these two sub-tasks. As for direct training on our dataset, the performances of EDD are
limited (51.75%, 17.04%), which reveals that the TSR and TCR tasks on TabRecSet are challenging.

Character A B C D E F G H I J K L M

Count 34,067
1,318 13,002 989 25,970

1,499 18,093 672 27,634 372 10,560 423 9,072 369 13,034 774 23,148 296 3,011 171 5,444 233 15,630 598 9,880 448

Character N O P Q R S T U V W X Y Z

Count 22,473 645 18,390 811 19,722 492 1,196 131 21,210 256 32,312 616 25,946 373 8,149 122 5,923 304 6,378 213 2,249 171 5,151 163 951 155

Character a b c d e f g h i j k l m

Count 125,450
1,436

25,272
3,285

50,562
1,105 49,910 542 167,771

998 23,973 233 33,306
1,826 42,310 423 105,066

773 2,024 29 12,292 491 68,205
1,014

43,042
3,023

Character n o p q r s t u v w x y z

Count 102,827
1,122

111,618
931

38,488
2,912 2,101 142 97,500 577 100,944

6,096
110,944
1,210

60,738
5,641 13,722 169 14,070 133 5,661 868 24,943 467 2,255 144

Character 0 1 2 3 4 5 6 7 8 9 ~ ‘ !

Count 72,091
29,532

50,827
22,881

40,859
17,216

23,530
11,122

19,493
9,532

23,627
12,093

15,235
7,452

13,832
5,595

13,950
6,871

14,121
5,102 65 551 3,184 1 253 2

Character @ # $ % ^ & * () - _ = +

Count 489 13 34,674
2,289 1,955 7 2,058

1,577 22 5 1,917 356 1,341 129 12,959
3,216

13,420
3,221

21,091
4,141 1,749 439 1,407 414 2,426

1,362

Character { } [] | \ / < > , . ? ,

Count 61 7 64 7 461 120 464 76 282 24 241 74 19,707
7,816

14,948
5,818

14,886
5,782

16,895
1,076

46,387
11,730 1,485 43 75 1,598

Character ° ! ¥ () 、 : ; “ ” ? << >>

Count 14 543 7 20 1 82 77 2,657 104 2,696 41 1,785 8,547
2,014 0 195 55 128 20 124 14 56 0 132 1 128

Character 的 一 是 在 不 了 有 和 人 这 中 大 为

Count 5 2,818 11 1,677 1 294 3 366 5 726 1 152 3 627 2 416 1 1,892 1 64 3 924 1 758 0 297

Character 上 个 国 我 以 要 他 时 来 用 们 生 到

Count 8 830 4 639 1 299 0 170 9 520 3 297 1 161 7 1,385 1 107 1 890 0 70 0 935 3 291

Character 作 地 于 出 就 分 对 成 会 可 主 发 年

Count 0 467 2 665 0 235 2 565 2 63 0 1,863 0 285 2 619 1 256 5 254 2 288 0 378 4 1,147

Table 5. Occurring frequency of the most commonly used characters. Each counting data has two values: the
upper one is the frequency of the English subset, and the lower one is the Chinese subset.

https://doi.org/10.1038/s41597-023-01985-8

13Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

For the TSR task (spatial & topological structure), we choose TableMaster25 and TGRNet19 as baselines. Both
TableMaster and TGRNet output Bboxes as cell detection results, so we use Bbox precision26 to evaluate the per-
formance of spatial structure recognition. As for the topology structure, there is a difference between the output
of the two models. TableMaster output the tables’ HTML sequence as the topology structure prediction, while
the TGRNet model formulates the TSR task as a classification problem for each graph node and outputs the Table
Graph as the prediction result. In other words, TableMaster and TGRNet represent two different categories of
methods to deal with this task, i.e., sequence-based and graph-based methods. The metrics for these two kinds
of models are different. The sequence-based model uses TEDS, and the graph-based model uses classification
accuracy of the logical properties. As illustrated in Tab. 16, TGRNet can achieve moderately high performance on
TSR (74.82% & 65.66%). TableMaster with fine-tuning can achieve much higher TSR performance than without
fine-tuning (55.52%→ 93.13%, 2.974%→ 11.00%). These experiment results are strong evidence of usability for
the TSR sub-task. TableMaster without pre-training has a TEDS score of 16.61%, which reveals the challenge of our
dataset for sequence-based methods on topology structure recognition. Note that the performances of TableMaster
for spatial structure recognition are low (2.974%, 0.3524% and 11.00%) because TableMaster belongs to the
regression-based method, which cannot precisely predict the cell location when the table has a large distortion.

CDeC-Net27 is used to verify the usability of our dataset for the TD task. Table 6 illustrates that the Average
Precision26 (AP) is high enough (92.8%) to prove the usability for table detection and segmentation.

Usage Notes
The data is organized as shown in Fig. 10. We provide a Python script to load the samples from TabRecSet and
organize them in a proper data structure. For deep learning research, it is suggested to combine and mix differ-
ent types or scenarios of tables at first, according to the task needs, and divide the mixed datasets into training,
validation, and testing sets for model training, validating, and testing.

Code availability
A link to the dataset, along with Python codes that are used to create the dataset, statistical analysis and plots, is
released and publicly available at https://github.com/MaxKinny/TabRecSet.

Received: 11 October 2022; Accepted: 24 January 2023;
Published: xx xx xxxx

References
 1. Shahab, A., Shafait, F., Kieninger, T. & Dengel, A. An open approach towards the benchmarking of table structure recognition

systems. In International Workshop on Document Analysis Systems, 113–120, https://doi.org/10.1145/1815330.1815345 (2010).
 2. Göbel, M., Hassan, T., Oro, E. & Orsi, G. ICDAR 2013 table competition. In International Conference on Document Analysis and

Recognition (ICDAR), 1449–1453, https://doi.org/10.1109/ICDAR31910.2013 (2013).
 3. Gao, L., Yi, X., Jiang, Z., Hao, L. & Tang, Z. ICDAR 2017 competition on page object detection. In International Conference on

Document Analysis and Recognition (ICDAR), 1417–1422, https://doi.org/10.1109/ICDAR.2017.231 (2017).
 4. Siegel, N., Lourie, N., Power, R. & Ammar, W. Extracting scientific figures with distantly supervised neural networks. In Joint

Conference on Digital Libraries (JCDL), 223–232, https://doi.org/10.1145/3197026.3197040 (2018).
 5. Zhong, X., Tang, J. & Jimeno-Yepes, A. PubLayNet: largest dataset ever for document layout analysis. In International Conference on

Document Analysis and Recognition (ICDAR), 1015–1022, https://doi.org/10.1109/ICDAR.2019.00166 (2019).
 6. Chi, Z. et al. Complicated table structure recognition. Preprint at https://doi.org/10.48550/arXiv.1908.04729 (2019).
 7. Deng, Y., Rosenberg, D. S. & Mann, G. Challenges in end-to-end neural scientific table recognition. In International Conference on

Document Analysis and Recognition (ICDAR), 894–901, https://doi.org/10.1109/ICDAR.2019.00148 (2019).
 8. Li, M. et al. TableBank: table benchmark for image-based table detection and recognition. In Language Resources and Evaluation

Conference (LREC), 1918–1925 (2020).
 9. Zhong, X., ShafieiBavani, E. & Jimeno-Yepes, A. Image-based table recognition: data, model, and evaluation. In Eur. Conf. Comput.

Vision (ECCV), 564–580, https://doi.org/10.1007/978-3-030-58589-1_34 (2020).
 10. Desai, H., Kayal, P. & Singh, M. TabLeX: a benchmark dataset for structure and content information extraction from scientific tables.

In International Conference on Document Analysis and Recognition (ICDAR), 554–569, https://doi.org/10.1007/978-3-030-86331-
9_36 (2021).

Model Support Tasks
Pre-traininig
set Training set Testing set

TEDS-S
(%)

TEDS-All
(%)

TSR(-)
Acc. (%)

P-Cell
(%)

AP-Table
(%)

EDD9 TSR(−)+TCR
—

PubTabNet

TabRecSet

72.34 50.93

NA

NA

NA

TabRecSet
51.75 17.04

PubTabNet 90.68 70.70

TableMaster25 TSR
—

PubTabNet

TabRecSet

55.52

NA

2.974

TabRecSet
16.61 0.3524

PubTabNet 93.13 11.00

TGRNet19 TSR
—

TabRecSet TabRecSet
NA

65.66 74.82

CDeC-Net27 TD TabRecSet NA 92.80

Table 6. Evaluation results of state-of-the-art methods on TabRecSet. TSR(-): Table topology structure recognition
without detecting the cell spatial locations. TEDS: Tree-Edit-Distance-based Similarity9 (TEDS) metric for the
topology structure or content recognition. TEDS-S: The TEDS result for TSR(-). TEDS-All: The TEDS result
for both TSR and TCR. TSR(-) Acc.: The classification accuracy of logical properties for TSR(-). P-Cell: The
precision26 (P) of cell detection. AP-Table: Average Precision26 (AP) of table segmentation. NA: Not applicable.

https://doi.org/10.1038/s41597-023-01985-8
https://github.com/MaxKinny/TabRecSet
https://doi.org/10.1145/1815330.1815345
https://doi.org/10.1109/ICDAR31910.2013
https://doi.org/10.1109/ICDAR.2017.231
https://doi.org/10.1145/3197026.3197040
https://doi.org/10.1109/ICDAR.2019.00166
https://doi.org/10.48550/arXiv.1908.04729
https://doi.org/10.1109/ICDAR.2019.00148
https://doi.org/10.1007/978-3-030-58589-1_34
https://doi.org/10.1007/978-3-030-86331-9_36
https://doi.org/10.1007/978-3-030-86331-9_36

1 4Scientific Data | (2023) 10:110 | https://doi.org/10.1038/s41597-023-01985-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

 11. Smock, B., Pesala, R. & Abraham, R. PubTables-1M: towards comprehensive table extraction from unstructured documents. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4634–4642, https://doi.org/10.1109/
CVPR52688.2022.00459 (2022).

 12. Gao, L. et al. ICDAR 2019 competition on table detection and recognition (cTDaR). In International Conference on Document
Analysis and Recognition (ICDAR), 1510–1515, https://doi.org/10.1109/ICDAR.2019.00243 (2019).

 13. Long, R. et al. Parsing table structures in the wild. In IEEE Int. Conf. Comput. Vision (ICCV), 924–932, https://doi.org/10.1109/
ICCV48922.2021.00098 (2021).

 14. Journal of Refrigeration Editorial Board. Tables requirements. Website of Journal of Refrigeration http://www.zhilengxuebao.com/
zlxben/ch/common_item.aspx?parent_id=20180124025943634 menu_id=20180124035950729 (2022).

 15. Gao, L. et al. A survey on table recognition technology. Journal of Image and Graphics 27, 1898–1917, https://doi.org/10.11834/
jig.220152 (2022).

 16. Bug, S. ImageAssistant. Website of Pullywood https://www.pullywood.com/ImageAssistant (2022).
 17. MindGems Team. Duplicate image finder. Website of MindGems https://www.mindgems.com/products/VS-Duplicate-Image-

Finder/VSDIF-About.htm (2022).
 18. Russell, B. C., Torralba, A., Murphy, K. P. & Freeman, W. T. LabelMe: a database and web-based tool for image annotation.

International Journal of Computer Vision 77, 157–173, https://doi.org/10.1007/s11263-007-0090-8 (2008).
 19. Xue, W., Yu, B., Wang, W., Tao, D. & Li, Q. TGRNet: a table graph reconstruction network for table structure recognition. In IEEE

Int. Conf. Comput. Vision (ICCV), https://doi.org/10.1109/ICCV48922.2021.00133 (2021).
 20. Keller, W. & Borkowski, A. Thin plate spline interpolation. J Geod 93, 1251–1269, https://doi.org/10.1007/s00190-019-01240-2

(2019).
 21. Weisstein, E. W. Affine transformation. MathWorld-A Wolfram Web Resource https://mathworld.wolfram.com/

AffineTransformation.html (2022).
 22. Minaee, S. et al. Image segmentation using deep learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence

44, https://doi.org/10.1109/TPAMI.2021.3059968 (2020).
 23. Yang, F. & Hu, L. TabRecSet: a large scale dataset for end-to-end table recognition in the wild. Figshare https://doi.org/10.6084/

m9.figshare.20647788 (2022).
 24. Lou, J. & Wang, G. List of Commonly Used Modern Chinese Characters (Beijing Education Press, 1987).
 25. Ye, J. et al. Pingan-vcgroup’s solution for ICDAR 2021 competition on scientific literature parsing task B: table recognition to HTML.

Preprint at https://arxiv.org/abs/2105.01848 (2021).
 26. Liu, L. et al. Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128, 261–318, https://doi.org/10.1007/s11263-

019-01247-4 (2020).
 27. Agarwal, M., Mondal, A. & Jawahar, C. V. CDeC-Net: composite deformable cascade network for table detection in document

images. In International Conference on Pattern Recognition (ICPR), 9491–9498, https://doi.org/10.1109/ICPR48806.2021.9411922
(2020).

acknowledgements
The research is partially supported by National Nature Science Foundation of China (No. 62176093, 61673182),
Key Realm R & D Program of Guangzhou (No. 202206030001), Guangdong Basic and Applied Basic Research
Foundation (No. 2021A151501h2282).

author contributions
Fan Yang originated the concept of this study, designed the study, wrote the codes, annotated the data, and wrote
the manuscript. Lei Hu helped with the study designing, data annotating and coding. Xinwu Liu reviewed and
revised the manuscript. Shuangping Huang reviewed and revised the manuscript and supervised the study.
Zhenghui Gu reviewed and revised the manuscript.

Competing interests
The authors declare no competing interests.

additional information
Correspondence and requests for materials should be addressed to S.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41597-023-01985-8
https://doi.org/10.1109/CVPR52688.2022.00459
https://doi.org/10.1109/CVPR52688.2022.00459
https://doi.org/10.1109/ICDAR.2019.00243
https://doi.org/10.1109/ICCV48922.2021.00098
https://doi.org/10.1109/ICCV48922.2021.00098
http://www.zhilengxuebao.com/zlxben/ch/common_item.aspx?parent_id=20180124025943634
http://www.zhilengxuebao.com/zlxben/ch/common_item.aspx?parent_id=20180124025943634
https://doi.org/10.11834/jig.220152
https://doi.org/10.11834/jig.220152
https://www.pullywood.com/ImageAssistant
https://www.mindgems.com/products/VS-Duplicate-Image-Finder/VSDIF-About.htm
https://www.mindgems.com/products/VS-Duplicate-Image-Finder/VSDIF-About.htm
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.1109/ICCV48922.2021.00133
https://doi.org/10.1007/s00190-019-01240-2
https://mathworld.wolfram.com/AffineTransformation.html
https://mathworld.wolfram.com/AffineTransformation.html
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.6084/m9.figshare.20647788
https://doi.org/10.6084/m9.figshare.20647788
https://arxiv.org/abs/2105.01848
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1109/ICPR48806.2021.9411922
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A large-scale dataset for end-to-end table recognition in the wild
	Background & Summary
	Methods
	Data collection.
	Data cleaning.
	Data annotation.
	Annotation format.
	Annotation tool.
	TSR Auto-annotating algorithm.
	Annotation step.

	Border-incomplete table generation.
	Summary of tools.

	Data Records
	Directory structure of TabRecSet.
	Statistics of TabRecSet.

	Technical Validation
	Cross-check.
	Proofreading.
	Usability validation.

	Usage Notes
	Acknowledgements
	Fig. 1 Some representative samples in TabRecSet.
	Fig. 2 The creation flow chart of TabRecSet.
	Fig. 3 An intuitive illustration of the data annotation step showed in Fig.
	Fig. 4 Three annotation instances in the cell-wise annotation format.
	Fig. 5 The main interface of TableMe.
	Fig. 6 The table image rectification algorithm.
	Fig. 7 The key steps of our logical property computing algorithm on the rectified table image.
	Fig. 8 The key steps of erasing a target cell edge.
	Fig. 9 Generated three-line table examples.
	Fig. 10 Structure of the data included in TabRecSet dataset.
	Fig. 11 Statistics data of TabRecSet.
	Table 1 A statistical summary and comparison between our TabRecSet dataset and the existing datasets.
	Table 2 Fields of LabelMe format framework.
	Table 3 The sub-fields of the “shapes” field.
	Table 4 Summary of the tools we used during the dataset creation procedure.
	Table 5 Occurring frequency of the most commonly used characters.
	Table 6 Evaluation results of state-of-the-art methods on TabRecSet.

