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Eco-ISEA3H, a machine learning 
ready spatial database for 
ecometric and species distribution 
modeling
Michael F. Mechenich  1 ✉ & Indrė Žliobaitė  1,2

We present the Eco-ISEA3H database, a compilation of global spatial data characterizing climate, 
geology, land cover, physical and human geography, and the geographic ranges of nearly 900 large 
mammalian species. The data are tailored for machine learning (ML)-based ecological modeling, and 
are intended primarily for continental- to global-scale ecometric and species distribution modeling. 
Such models are trained on present-day data and applied to the geologic past, or to future scenarios 
of climatic and environmental change. Model training requires integrated global datasets, describing 
species’ occurrence and environment via consistent observational units. The Eco-ISEA3H database 
incorporates data from 17 sources, and includes 3,033 variables. The database is built on the 
Icosahedral Snyder Equal Area (ISEA) aperture 3 hexagonal (3H) discrete global grid system (DGGS), 
which partitions the Earth’s surface into equal-area hexagonal cells. Source data were incorporated 
at six nested ISEA3H resolutions, using scripts developed and made available here. We demonstrate 
the utility of the database in a case study analyzing the bioclimatic envelopes of ten large, widely 
distributed mammalian species.

Background & Summary
Human activity is rapidly altering the Earth system1, with grave consequences for biotic and human commu-
nities2. In the Anthropocene epoch, it is increasingly important to understand the complex interdependencies 
of environment and species distributions, and to predict ecosystem response to changing conditions. In this 
context, we increasingly look to assess and describe the condition of the global Earth system, and to model the 
relationships among system components in normal as well as exceptional circumstances.

Ecometric modeling3–5 quantifies relationships between the functional traits of communities of organisms 
and their environments. This quantitative modeling approach relies on understanding certain phenotypic traits 
as an adaptive response to environmental conditions, an understanding also used qualitatively to reconstruct 
past climates6,7. Classical statistical and state-of-the-art machine learning techniques are commonly utilized. 
Ecometric models are trained on present species distribution and environmental datasets; studies variably focus 
on prediction in the present8–13, or on quantitatively reconstructing climatic and environmental conditions of 
the past14–18, including the context of early human evolution19,20. However, in all cases ecometric models are 
intended to be transferable to the geologic past, by utilizing traits which persist in faunal communities for 20 to 
30 million years, and which preserve in the fossil record.

Methods of ecometric modeling closely relate to those of species distribution modeling (SDM)21–24, also 
known as environmental or ecological niche modeling. Species distribution modeling is a general term referring 
to computational modeling for quantifying associations between organisms and their environments. Classical 
species distribution modeling aims at predicting the probability of species occurrence as a function of environ-
mental conditions. While species distribution modeling has traditionally focused on local or regional scales, 
analyses at increasingly large scales are gaining popularity. Machine learning methods are becoming the leading 
tools for such analyses25–28.
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Developing ecometric and species distribution models requires similar large-scale, integrated datasets, 
describing species’ occurrences and traits, and the environmental context of those occurrences. The results of 
many global mapping efforts are already available; examples include the Map of Life29, describing species’ geo-
graphic distributions, and WorldClim30,31, describing climatic averages and extremes. These datasets provide 
essential variables for monitoring changes in climate32 and biodiversity33. However, spatial datasets are often 
published in differing coordinate reference systems, spatial resolutions, geographic data models, and file for-
mats. Before proceeding to ecometric or species distribution modeling, an interested researcher must invest 
considerable effort in integrating these datasets, mapping them to shared spatial units of analysis. Many eco-
metric and SDM studies require the same global datasets and the same data preprocessing, even if the ultimate 
modeling goals vary considerably.

Our aim was to develop a unified spatial database, built on consistent spatial units of observation and analy-
sis, which may be used directly in continental- to global-scale ecometric and species distribution modeling. To 
this end, we utilized the Icosahedral Snyder Equal Area (ISEA) aperture 3 hexagonal (3H) discrete global grid 
system (DGGS)34. A DGGS is a hierarchical system by which the Earth’s surface is divided into observational 
units: it is discrete, in that it discretizes the surface into areal cells; it is global in spatial scope; and it is a grid 
system, in that it defines regular grids of cells at a number of spatial resolutions35. Finally, it is hierarchical, in 
that a systematic relationship exists between grid cells at one resolution, and those at the next coarser or finer 
resolution.

DGGSs are an essential component of the Digital Earth (DE) vision; such systems provide a regular, system-
atic spatial framework with which we may integrate the rapidly growing, multiple-source compendium of geo-
spatial data available today36. We selected the ISEA3H DGGS because it partitions the Earth’s surface into regular 
grids of equal-area hexagonal cells. These observational units have uniform topology with neighbors, each shar-
ing an edge with six adjacent cells, and are maximally compact, minimizing within-unit variability in expectation.

The resulting Eco-ISEA3H database37 includes the geographic distributions of extant and recently extinct 
large mammalian species in the orders Artiodactyla, Perissodactyla, Primates, and Proboscidea, as well as the 
environmental context of their presence and absence, characterized by climate, geology, land cover, and physi-
cal and human geography. Source datasets are sampled and summarized by the hexagonal cells of the ISEA3H 
DGGS, at six nested levels of resolution.

We intended this to be a resource for students and researchers in the life and computational sciences, to be 
used without advanced knowledge of geospatial data processing required. Component datasets are preprocessed 
and provided in a plain-text, tabular format, allowing interested researchers to focus attention on computational 
analysis and modeling. The database may also be used as a benchmark dataset for systematic comparison of 
differing computational modeling approaches. Finally, we include scripts for mapping source spatial datasets to 
the ISEA3H grid system.

Methods
Our objective in developing the Eco-ISEA3H database37 was to compile a coordinated, global set of tabular 
data, characterizing environmental conditions and the geographic distributions of large mammalian species. 
The database was built on the ISEA3H DGGS, a multi-resolution system of global grids, each grid dividing the 
Earth’s surface into discrete, equal-area hexagonal cells. These cells constitute areal units of observation, uni-
formly resampling data provided in different coordinate reference systems, spatial resolutions, geographic data 
models, and file formats. We included data at six consecutive ISEA3H resolutions, in which cell centroid spacing 
ranges from 29 kilometers to approximately 450 kilometers.

Eco-ISEA3H themes and variables were derived from 17 geospatial data sources, and represent 3,033 features 
to be used for ML-based predictive modeling. Source datasets were published in raster or vector format, data mod-
els built on fundamentally different representations of spatial phenomena. Raster datasets comprise regular arrays 
of pixels, each pixel holding a value, while vector datasets comprise point, line, and polygon features, each feature 
defined by one or more (x, y) coordinate pairs and attributed with one or more values. Our task was to integrate 
these disparate source datasets, resampling and summarizing the values of raster pixels and vector features via 
the discrete, equal-area cells of the ISEA3H global grid system. The hexagonal cells on which the Eco-ISEA3H 
database37 is built thus serve as unifying observational units for SDM and ecometric analysis and modeling.

From the statistical and ML perspective, each areal observational unit is characterized by (1) a set of envi-
ronmental variables, representing climatic conditions, soil and near-surface lithology, land cover, and physical 
geography; and (2) a set of occurrence variables, representing the present and estimated natural distributions of 
large mammalian species. Predictive modeling tasks for statistical and ML modeling can be formulated in two 
directions: predicting species’ occurrences as a function of climatic and other environmental conditions (as in 
SDM studies), or predicting climatic and other environmental conditions as a function of species’ occurrences 
and functional traits (as in ecometric studies).

Spatial units of observation. To study continuous spatial phenomena over a region of interest, it is often 
necessary to divide the region into a number of discrete, areal observational units, which may be used in statis-
tical summaries and/or modeling. Machine learning methods for ecometric and species distribution modeling 
require discrete observational units, each characterized by two sets of variables, one describing environmental 
conditions, the other species’ geographic distributions. A major question in data representation concerns the 
form of these units; defining discrete spatial units of observation constitutes a well-known problem in geography, 
termed the modifiable areal unit problem (MAUP)38. As we change the size of proposed observational units, or 
change the boundaries between units while holding unit areas constant, measures of interest within these units - 
and derived summary statistics and model parameters - may differ; these are termed the “scale” and “zone” effects, 
respectively38.
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Our objective in utilizing the ISEA3H DGGS34 was to implement a robust spatial division of the Earth’s sur-
face. The grid cells of the DGGS discretize the Earth’s sphere, forming, at each DGGS resolution, a global set of 
areal observational units with which to sample and summarize source datasets. To be optimally effective in the 
observation, simulation, and visualization of spatial phenomena, such a grid must meet certain structural crite-
ria. We propose, modifying the Goodchild Criteria39, the DGGS grid must contain (1) contiguous, (2) equivalent 
observational units, (3) minimizing intra-unit variability, (4) having uniform topology with neighboring units, 
and (5) being visually effective, facilitating interpretation and communication. Each criterion will be discussed 
in detail; further, we will argue the ISEA3H DGGS selected for this study satisfies these criteria.

Contiguity & congruency. We suggest that a regular tiling maximally satisfies the criteria of (1) contiguity and 
(2) equivalence. A tiling is simply a set of shapes which cover a plane without gaps or overlaps40. A regular tiling 
is one of a class of tilings in which the tiles - our observational units - are highly equal; such tilings are monohe-
dral, and composed of congruent, regular (equiangular and equilateral) polygons. Thus, regular tilings are also 
highly symmetrical, being vertex-, edge-, tile-, and flag-transitive. Three regular polygons may be used to create 
a regular tiling: the equilateral triangle, the square, and the regular hexagon40.

With this suggestion, we follow common convention; in ecology, grids of square (or rectangular) cells are 
most often utilized, motivated in part by the use of raster datasets41, made of rectilinear rows and columns of 
pixels. However, it should be noted that while the square cells of these grids are equal in the coordinate reference 
system in which they are defined, such cells are rarely congruent, or indeed even square, on the Earth’s surface. 
The properties of the ISEA projection selected for this DGGS - area preservation, and relatively low angular 
distortion - serve to retain considerable congruency when inversely projecting grid cells to the spherical surface 
of the Earth.

Compactness. To accurately represent the spatially continuous phenomena of the Earth system, the grid cells 
of a DGGS - the areal observational units used in summarizing, modeling, and visualizing - must effectively dis-
cretize these phenomena. Thus, the DGGS must be structured such that (3) intra-unit variability is minimized, 
and inter-unit variability is maximized. In this way, patterns of variation among units more accurately represent 
patterns of variation inherent in the phenomena.

Intra-unit variability may be minimized, in expectation, by compact observational units. Tobler’s oft-cited 
first law of geography serves as explanation: “everything is related to everything else, but near things are more 
related than distant things”42. Thus, compact units, in which all portions of the interior are nearer each other, are 
expected to contain less interior variability than elongated units, in which portions of the interior may be more 
distant. Given these properties, compact units are optimal in the context of DGGS development, elongated units 
in the context of efficient ecological sampling.

Regular hexagons are the most compact of the three polygons - the equilateral triangle, square, and regular 
hexagon - admitting regular tilings. This compactness may be expressed in several related and complementary 
ways. First, of any equal-area tiling, regular hexagons have the minimum possible ratio of perimeter to area43. In 
minimizing perimeter length per unit area, regular hexagons are thus the most circle-like of the polygons admit-
ting equal-area tilings. Relatedly, regular hexagonal packing is the highest-density arrangement of equal-area 
circles on a plane44.

Finally, a regular hexagonal lattice optimally quantizes a plane; of the polygons admitting regular tilings, 
regular hexagons minimize the mean squared distance of any point to the nearest polygon centroid45. This dis-
tance, or “dimensionless second moment,” quantifies the more qualitative notion of interior nearness discussed 
in relation to Tobler’s Law.

Topology. In addition to maximally satisfying the (3) compactness criterion, regular hexagons have a topologi-
cal advantage over equilateral triangles and squares. Of these three regular polygons, hexagons have the simplest 
relationship with neighbors in a tiling or grid, each (4) uniformly sharing an edge with the six adjacent hexagons 
forming its first-order neighborhood. Triangles and squares, in contrast, share only a single vertex with three or 
four neighbors, respectively, and an edge with three or four neighbors, complicating the definition of neighbor-
hood in these grids.

It follows that hexagonal topology has greater angular resolution than edge-based triangular or square topol-
ogies; movement may be simulated between cells in six directions, rather than in three or four, respectively. 
These properties - neighborhood simplicity and angular resolution - were confirmed by Golay46, in the context 
of pattern transformation operations on two-dimensional arrays. Further, these properties likely account for 
the widespread use of hexagonal grids in strategy board games, since these grids were introduced in the early 
1960s47.

Differing grid topologies affect the results of ecological models simulating dispersal. White and Kiester48, for 
example, found the topology of the network of communities in a neutral community ecology model - in which 
simulated communities had hexagonal neighborhoods, or von Neumann, Moore, or Margolus neighborhoods - 
affected modeled species abundances and diversities, but in complex ways, which differed given different model 
parameter values. (Note that the four neighbors with which a square cell shares an edge are termed its rook, or von 
Neumann neighborhood, and these plus the four neighbors with which it shares a single vertex its queen, or Moore 
neighborhood.)

Visualization. Finally, in addition to these gains in representational accuracy, (5) hexagonal tilings are more 
visually effective than square tilings. Whether used in cartography or other two-dimensional data visualization, 
tilings inevitably create visual lines, artifacts of the lattice of shared edges between tiles49. Given our “sense of 
gravitational balance,” Carr et al.49 argue the horizontal and vertical lines of square tilings strongly distract the 
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human eye, obscuring data-driven patterns in a dataset so visualized. The non-orthogonal lines of hexagonal 
tilings, however, feature less prominently, and thus distract less from patterns of interest49.

Note that this is not an issue of aesthetics only: maps are often essential tools in scientific reasoning and com-
munication, and effective visualization is important. Indeed, Carr et al.49 suggest this visual advantage makes a 
stronger case for hexagonal tilings than the representational advantages discussed previously.

DGGS sampling workflows. The set of scripted workflows developed to incorporate spatial datasets into 
the Eco-ISEA3H database37 utilize published spatial libraries and packages for Python and R, and include several 
validation steps, intended to verify the integrity of source datasets and the fidelity of the transfer to the DGGS. 
Workflows developed for raster datasets are presented in Fig. 1, and workflows for vector datasets in Fig. 2.

To begin, one general principle guides each workflow: each source dataset is processed in its native coordinate 
reference system. In all cases, a representation of the DGGS is developed in the coordinate reference system of 
the source dataset, and used in summarizing that dataset. The guiding premise here is that the spatial dataset is 
as the authors intended it in the coordinate reference system in which it is published and distributed.

This is especially relevant for vector polygon datasets. Consider, for example, certain species’ range polygons 
published by the IUCN Red List50; these polygons are defined only roughly, having relatively few, widely spaced 
vertices, connected by arcs many hundreds of kilometers in length. These arcs are “straight” in the plate carrée 
projection with which the dataset’s WGS84 latitude/longitude coordinates are visualized by default. If vertex 
coordinates were projected into another coordinate reference system, the arcs would be similarly “straight” in 
this new system, and thus potentially trace very different paths across the Earth’s surface. Absent information to 
the contrary, we assume the arcs are as intended in the reference system in which the data are distributed.

The spatial structure of raster datasets depends similarly on each dataset’s coordinate reference system; rasters 
are made of rows and columns of pixels, rectilinear and orthogonal only in the raster’s native coordinate reference 
system. We assume raster pixels are “atomic” units, each indivisible and representative of the area it natively cov-
ers. Thus, we query the DGGS at each pixel’s centroid, and assign the pixel wholly to the coincident DGGS cell.

raster dataset processing. If necessary, source raster datasets were first converted to the GeoTIFF file for-
mat, so that the files were readable in the open-source GIS software used later in the processing workflow. GeoTIFF 
files are simply Tag Image File Format (TIFF) image files with embedded georeferencing information, describing 
the dataset’s spatial extent and coordinate reference system. Hierarchical Data Format Release 4 (HDF4) files were 
converted to GeoTIFF format using the Geospatial Data Abstraction Library (GDAL) translate utility51.

Next, raster tiles containing ISEA3H hexagon identification (HID) indexing numbers were generated; these 
integer HIDs uniquely identify each cell at a given ISEA3H resolution. A set of HID raster tiles was required for 

Fig. 1 Workflow developed to incorporate raster datasets into the ISEA3H DGGS.
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each source raster dataset, for each ISEA3H resolution, because (1) GeoTIFF rasters are able to hold only a single 
value at each pixel; and (2) HIDs sequentially number cells at a given ISEA3H resolution, from 1 to the number 
of cells present at that resolution. Thus, HIDs are not unique between resolutions; HID 84, for example, identifies 
a cell at each ISEA3H resolution 2 and higher.

The HID raster tiles generated for a source raster dataset matched that dataset’s grid resolution, extent, and 
coordinate reference system precisely; thus, there was a one-to-one correlation between the pixels of the HID 
raster tiles and the source raster dataset tiles. For each tile, pixel centroid coordinates were passed to the dggridR 
package52 for R, which returned the ISEA3H cell identification number for that location. In this way, the pixels of 
the source raster were treated as indivisible units, assigned wholly to a particular HID on the basis of each pixel’s 
centroid. HID rasters were written in GeoTIFF format using the raster package53 for R.

In equal-area projected coordinate reference systems, simple counts of the number of raster pixels assigned 
to each HID were sufficient to determine each ISEA3H cell’s total area. In all other cases - for example, for raster 
datasets using the World Geodetic System 1984 (WGS84) coordinate reference system - raster tiles contain-
ing pixel areas were generated. These areas were calculated by passing each pixel’s corner coordinates to the 
GeographicLib library54 for Python.

Finally, source raster dataset tiles, HID raster tiles, and area raster tiles (for source rasters using non-authalic coor-
dinate reference systems) were superimposed to generate summary tabular files, describing the features of the source 
raster dataset by ISEA3H cell. The specifics of this process, which utilized functions of the raster package53 for R, 
depended on whether the source raster contained discrete, categorical values, or continuous, real-numbered values.

Discrete themes. For each source raster dataset containing discrete pixel values, one or more of the following 
summary statistics were calculated. While the centroid attribute requires a simple point sample, the fraction and 
mode attributes are area-integrated, and involve a multiple-step sampling process. For rasters using an authalic 
coordinate reference system, the raster package’s crosstab function53 was used to generate a contingency table 
for each tile; applied to source raster and HID raster tiles, the function tallied the number of pixels of each class 
coincident with each HID, for each tile. These tile-specific tables were then summed, to obtain total counts of 
pixels of each class within each HID.

Fig. 2 Workflow developed to incorporate vector datasets into the ISEA3H DGGS.
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For rasters using a non-authalic coordinate reference system, area raster tiles were required as well. For each tile, 
a vector of classes present in the source raster was assembled. For each of these classes in turn, a mask raster tile was 
generated, retaining pixels belonging to the class, and screening pixels belonging to all other classes. This mask was 
applied to the area raster tile, and retained pixels were summed within each HID using the raster package’s zonal 
function53. Thus, a contingency table was compiled for each raster tile, containing the area of each class within each 
HID. Finally, these tile-specific tables were summed, to obtain the total area of each class within each HID.

•	 Centroid. The centroid attribute records the categorical value occurring at each ISEA3H cell’s centroid. Where the 
source raster dataset contains a null value at a centroid, the cell is assigned a flag signifying no value is available.

•	 Fraction. The fraction attributes record the proportion of each ISEA3H cell’s area covered by each categorical 
value. For example, the Köppen-Geiger climate classification system, as implemented by Beck et al.55, includes 
30 classes, listed in Table 4. Thus, each ISEA3H cell has an associated set of 30 fraction attributes for this data-
set, recording the proportions of the cell’s area covered by the 30 categorical values, from tropical rainforest 
(Af) to polar tundra (ET).

•	 Mode. The mode attribute records the categorical value covering the greatest proportion of each ISEA3H cell’s 
area. For example, if an ISEA3H cell had a fraction value of 0.4 for some hypothetical categorical value A, 0.3 
for B, and 0.3 for C, it would be assigned a mode value of A. A mode attribute is specified for cells in which the 
sum of the fraction attributes is greater than or equal to 0.2; where fraction attributes total less than 0.2, a flag 
signifying no value is assigned.

Continuous variables. For each source raster dataset containing continuous pixel values, one or more of the 
following summary statistics were calculated. Again, the centroid attribute requires only a simple point sample, 
while the mean attribute is area-integrated, requiring area raster tiles for source rasters using a non-authalic 
coordinate reference system.

•	 Centroid. The centroid attribute records the continuous value occurring at each ISEA3H cell’s centroid. Where the 
source raster dataset contains a null value at a centroid, the cell is assigned a flag signifying no value is available.

•	 Mean. The mean attribute records the area-weighted arithmetic mean of the continuous values of raster pixels 
within each ISEA3H cell. For raster datasets in authalic coordinate reference systems, the area-weighted mean 
is equivalent to the simple mean of the values of raster pixels within each cell; however, in all other cases, 
pixel values are weighted by pixel areas per the equation below, in which wi and xi indicate the area and value, 
respectively, of each pixel i within an ISEA3H cell containing n pixels.
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For each tile, source raster values and area values were multiplied, pixel by pixel, using the raster package’s * arith-
metic operator53. The resulting product raster tile, as well as the area raster tile, were then summed within each HID 
using the raster package’s zonal function53. Finally, these tile-specific tables were summed, to obtain both the numera-
tor (summed product values) and denominator (summed area values) for the above equation, for each HID.

Vector dataset processing. Source vector datasets incorporated into the Eco-ISEA3H database37 contain 
polygon features, discrete areas assigned a categorical value. A dataset may (1) contain polygons of several dif-
ferent classes; for example, the vector shapefile published by Olson et al.56 contains ecoregion polygons, each 
assigned to one of several biogeographic realms. Alternatively, a dataset may (2) represent a single class, with 
polygons indicating class presence; for example, the shapefiles published by the IUCN Red List50 each represent 
a species’ geographic range, with polygons indicating regions the species is present. In both cases, the summary 
statistics discussed in reference to raster datasets containing discrete values may be calculated.

Prior to inclusion in the Eco-ISEA3H database37, source vector datasets were preprocessed. To simplify the 
geographic representation of the class(es) of interest - that is, to remove unnecessary polygon boundaries - 
dataset polygons were dissolved, either on the class attribute in case (1), or globally in case (2), using the QGIS 
open-source desktop GIS application. The geodesic areas of dissolved polygons were then calculated using the 
GeographicLib library54. Finally, the geometries of dissolved polygons were checked for conformance with the 
OGC Simple Feature Access standard57 using the Shapely library58 for Python, ensuring these features served as 
valid input in the processing workflow to follow.

The intersection of source dataset polygons and ISEA3H cell polygons is central to the vector processing 
workflow. Source polygons result from the preliminary simplification and verification steps just discussed; cell 
polygons result from polygonizing a set of HID raster tiles for the ISEA3H resolution of interest. The polygo-
nizing procedure utilized the open-source GDAL command-line tools polygonize and ogrmerge51, as well as the 
GeographicLib54 and Shapely58 libraries. Polygonizing HID raster tiles of the appropriate coordinate reference 
system (specifically, the system matching that of the source polygon dataset) ensured HID polygon boundaries 
displayed both proper geodesic curvature and the shape distortion induced by the ISEA map projection.

Intersection is a set-theoretic operation, returning polygons representing each coincident class/HID com-
bination. The operation was implemented via the Shapely library58, and the geodesic areas of intersected poly-
gons were calculated via the GeographicLib library54. Note that the scripted intersection tools developed for the 
Eco-ISEA3H database37 allow limiting the ISEA3H cells included in a single tool run, to break the processing 
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of large datasets into manageable pieces. Runs may be limited to a user-specified range of HIDs. Additionally, if 
cells at the next coarser or finer ISEA3H resolution have been intersected with the source dataset, cells retained 
by the operation may be used as a spatial index; a list of coincident HIDs at the ISEA3H resolution of interest 
may be generated, and used to limit tool runs.

An output shapefile is written, containing intersected polygons attributed with the geodesic area, the HID, 
and in case (1), the source class. Next, an additional verification of the geometries of these intersected polygons 
is performed. Each intersected polygon is superimposed over the original ISEA3H cell polygon having the same 
HID. If intersected polygons have too few vertices to be valid, or are not contained by the original cell polygon 
from which each was derived, these polygons are flagged for review and revision. This step was implemented to 
catch geometry errors observed early in the development of the Eco-ISEA3H intersection tools.

Finally, the geodesic areas of intersected polygons are totaled, and the total area of each class within each 
HID is calculated. Dividing by the geodesic areas of the original ISEA3H cell polygons, these class totals are 
expressed as fractions of each cell’s total area. In two final verification steps, (1) the total intersected area of each 
class, across all HIDs, is compared to the area of the same class in the source dataset; and (2) class fraction values 
are confirmed to be less than or equal to unity within each HID. Deviations are flagged for review and revision.

Data sources & themes. The Eco-ISEA3H database37 incorporates 17 source datasets, characterizing the 
Earth’s climate, geology, land cover, and physical geography, as well as human population density and the geo-
graphic ranges of nearly 900 large mammalian species. Data sources are listed in Table 1. We first present a brief 
overview of these sources, and describe sources and themes in greater detail in the following sections.

Climate is characterized primarily by temperature- and precipitation-based averages and extremes, summa-
rized over the past 50 to 70 years, and forecasted for 40 to 60 years in the future under the RCP 8.5 climate change 
scenario59; data sources include WorldClim30,31, ENVIREM60, and the ETCCDI extremes indices derived by 
Sillmann et al.61,62 from ERA-4063 and CCSM464. Additionally, present climate is classified via the Köppen-Geiger 
climate classification system, from GLOH2O55. Geological data include soil types, from the Digital Soil Map of 
the World (DSMW)65; near-surface rock types, from the Global Lithological Map (GLiM)66; and sedimentary 
basin types67. Human geography is quantified by human population density, from the Gridded Population of 
the World (GPW)68. Land cover is described by the International Geosphere-Biosphere Programme (IGBP) 
cover classification scheme, from MCD12Q169; and by percent tree, non-tree, and non-vegetated cover, from 
MOD44B70. The Earth’s physical geography is characterized by continental and island landmasses, from Natural 
Earth; lakes and wetlands, from the Global Lakes and Wetlands Database (GLWD)71; biogeographic realms56; 
and terrestrial topography and ocean bathymetry, from ENVIREM60 and SRTM30_PLUS72. Finally, distribu-
tional data include the present and estimated natural ranges of large mammalian species, from the IUCN Red 
List50 and the Phylogenetic Atlas of Mammal Macroecology (PHYLACINE)73,74.

Climate. 
•	 ENVIREM. The ENVIREM (ENVIronmental Rasters for Ecological Modeling) dataset60 contains 16 climatic 

variables derived from WorldClim v1.4 monthly temperature and precipitation30, and extraterrestrial radi-
ation. These are intended to compliment the WorldClim v1.4 bioclimatic variables30, capturing additional 
environmental features directly relevant to floral and faunal physiology and ecology60. Source rasters at 30 
arc-second resolution were summarized by area-weighted mean at ISEA3H resolutions 8 and 9. Variable 
codes, descriptions, and units are listed in Table 2. Title and Bemmels60, and references therein, provide full 
definitions and calculation methods for these variables.

•	 ETCCDI. A comprehensive set of 27 climate extremes indices was defined by the Expert Team on Climate 
Change Detection and Indices (ETCCDI); these generally capture “moderate” extremes, having recurrence 
intervals of a year or shorter, and are based on observed/simulated daily temperature and precipitation61,62. 
Sillmann et al.61,62 derive these indices from results of a number of global climate models and atmospheric 
reanalyses, several of which were incorporated in the Eco-ISEA3H database37. Given the relatively low-reso-
lution grids used in modeling and reanalysis, these source rasters were interpolated to ISEA3H cell centroids 
by inverse (geodesic) distance weighting (IDW). Variable codes, descriptions, and units are listed in Table 3. 
Sillmann et al.61 provide full definitions and calculation methods for these indices.
The Eco-ISEA3H database37 includes ETCCDI variables based on results of the ERA-40 reanalysis63, produced by 

the European Centre for Medium-Range Weather Forecasts (ECMWF). The reanalysis combines past meteorological 
observations with a weather forecasting model, producing a global representation of the state of the atmosphere for 
each reanalysis time step, usually a six-hour interval63. These were averaged for the period 1958 to 2001, the 44 full 
years for which the ERA-40 reanalysis was conducted, and were interpolated to ISEA3H resolutions 5 to 9.

Additionally, the database includes ETCCDI variables based on results of the Community Climate System 
Model v4 (CCSM4), a global climate model developed for CMIP564. These were averaged for the period 1950 to 
2000, to match the approximate period covered by WorldClim v1.4, and for the period 2061 to 2080, to match 
the final interval for which CCSM4 model results were downscaled/debiased using WorldClim v1.430. Variables 
were interpolated to ISEA3H resolution 9.

ETCCDI variables for this latter period represent conditions under Representative Concentration Pathway 
(RCP) 8.5, the RCP resulting in the highest radiative forcing (8.5 W/m2) by 210059. This scenario was selected 
such that future conditions maximally different from the present might be considered; in RCP 8.5, rapid popula-
tion growth, and relatively slow growth in per capita income and technological development, lead to high energy 
demand without associated climate mitigation policies, resulting in greenhouse gas emissions and atmospheric 
concentrations increasing significantly in the coming decades59.
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Dataset Source
Spatial 
Resolution Version Scenario Theme Theme Type

Climate

Community Climate System 
Model Version 4 (CCSM4)

Sillmann  
et al.61,62 . . Historical Expert Team on Climate Change Detection & Indices 

(ETCCDI) Climate Extremes Indices Continuous

Hijmans et al.30 . . RCP 8.5 Bioclimatic Variables (BIO) Continuous
European Centre for Medium-
Range Weather Forecasts 
(ECMWF)

Sillmann et al.61,62 . ERA-40 . Expert Team on Climate Change Detection & Indices 
(ETCCDI) Climate Extremes Indices Continuous

ENVIronmental Rasters 
for Ecological Modeling 
(ENVIREM)

Title & Bemmels60 30 Arc-Second 1.0 . Climatic Variables Continuous

GLOH2O Beck et al.55 . 1.0 . Köppen-Geiger Climate Classification Discrete

WorldClim

Hijmans et al.30 30 Arc-Second 1.4 . Bioclimatic Variables (BIO) Continuous

Fick & Hijmans31 30 Arc-Second 2.0 .

Bioclimatic Variables (BIO) Continuous
Monthly Precipitation (PREC) Continuous
Monthly Solar Radiation (SRAD) Continuous
Monthly Mean Temperature (TAVG) Continuous
Monthly Minimum Temperature (TMIN) Continuous
Monthly Maximum Temperature (TMAX) Continuous
Monthly Vapor Pressure (VAPR) Continuous
Monthly Wind Speed (WIND) Continuous

Geology
Digital Soil Map of the World 
(DSMW)

Food & Agriculture 
Organization (FAO)65 . 3.6 . Soil Units Discrete

Global Lithological Map 
(GLiM) Hartmann & Moosdorf66 . 1.1 . Lithology Discrete

Sedimentary Basins Nyberg & Howell67 . . . Structure Discrete
Human Geography

Gridded Population of the 
World (GPW)

Center for International 
Earth Science Information 
Network (CIESIN)68

30 Arc-Second 4.11 . Population Density Continuous

Land Cover

MCD12Q1 Friedl & Sulla-Menashe69 . 6.0 . International Geosphere-Biosphere Programme 
(IGBP) Land Cover Classification Discrete

MOD44B DiMiceli et al.70 . 6.0 . Vegetation Continuous Fields (VCF) Continuous
Physical Geography
ENVIronmental Rasters 
for Ecological Modeling 
(ENVIREM)

Title & Bemmels60 30 Arc-Second 1.0 . Topographic Variables Continuous

Natural Earth (NE) . 1:10 M 4.1.0 .

Lakes Discrete
Land Discrete
Minor Islands Discrete
Terra Discrete

SRTM30-PLUS Becker et al.72 . 11 . Elevation Continuous
World Wildlife Fund (WWF) 
Terrestrial Ecoregions (TE) Olson et al.56 . 2.0 . Biogeographic Realms Discrete

World Wildlife Fund (WWF) 
Global Lakes & Wetlands 
Database (GLWD)

Lehner & Döll71 . 1.0 . Level 3 Discrete

Species Ranges

Red List (RL) of Threatened 
Species

International Union for 
Conservation of Nature 
(IUCN)50

. 2019.1 .

Artiodactyla: Antilocapridae, Bovidae, Camelidae, 
Cervidae, Giraffidae, Hippopotamidae, Moschidae, 
Suidae, Tayassuidae, Tragulidae

Discrete

Perissodactyla: Equidae, Rhinocerotidae, Tapiridae Discrete
Primates: Aotidae, Atelidae, Callitrichidae, Cebidae, 
Cercopithecidae, Cheirogaleidae, Daubentoniidae, 
Galagidae, Hominidae, Hylobatidae, Indriidae, 
Lemuridae, Lepilemuridae, Lorisidae, Pitheciidae, 
Tarsiidae

Discrete

Proboscidea: Elephantidae Discrete

Phylogenetic Atlas of Mammal 
Macroecology (PHYLACINE) Faurby et al.73,74 . 1.2.1

Present

Artiodactyla Discrete
Perissodactyla Discrete
Primates Discrete
Proboscidea Discrete

Present Natural

Artiodactyla Discrete
Perissodactyla Discrete
Primates Discrete
Proboscidea Discrete

Table 1. Source datasets and themes included in the Eco-ISEA3H database37. Each dataset is described by 
full and abbreviated name, source, spatial resolution (for datasets published/distributed at more than one 
resolution), version, and scenario. Each theme is described by full and abbreviated name and type (whether it 
contains discrete, categorical values or continuous, real-valued variables).
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•	 Köppen-Geiger Climate Classification. As implemented by Beck et al.55, the Köppen-Geiger system classifies 
the Earth’s terrestrial climates into five primary classes, and further into 30 subclasses, based on a set of threshold 
criteria referencing monthly mean temperature and precipitation. These climate classes are ecologically signifi-
cant, as regions within each class support floral communities sharing common characteristics. Beck et al.55 utilize 
four climatic datasets, including WorldClim v1.x and v2.x, adjusted to the period 1980 to 2016, to define the pres-
ent-day classes incorporated in the Eco-ISEA3H database37. The source raster at 30 arc-second resolution was 
summarized by fraction and mode at ISEA3H resolution 9. Variable codes and descriptions are listed in Table 4.

•	 WorldClim v1.4. The first-generation WorldClim dataset30 contains four monthly themes, each with 12 var-
iables, characterizing monthly temperature and precipitation; additionally, it contains 19 bioclimatic varia-
bles, derived from the monthly variables, capturing biologically relevant seasonal and annual features of the 
climate system. These bioclimatic variables, first developed for the BIOCLIM species distribution modeling 
(SDM) package75, are used extensively in SDM studies; a recent synthesis found most were included in more 
than 1,000 published MaxEnt SDMs (of 2,040 reviewed)76.
WorldClim monthly temperature and precipitation rasters are interpolated from weather station observa-

tions averaged for the approximate period 1950 to 2000. The interpolation was done using thin plate smoothing 
splines, with latitude, longitude, and elevation as predictor variables30. These rasters characterize present-day 
climate, and further served as an observational baseline with which the predictions of CMIP5 global climate 
models were downscaled and bias-corrected.

The 19 bioclimatic variables, for both present-day and future conditions (the latter averaged for the period 
2061 to 2080, from the CCSM4 RCP 8.5 simulation), were incorporated into the Eco-ISEA3H database37; source 
rasters at 30 arc-second resolution were summarized by area-weighted mean at ISEA3H resolution 9. Variable 
codes, descriptions, and units are listed in Table 5. O’Donnell and Ignizio77 provide full definitions and calcula-
tion methods for these variables.
•	 WorldClim v2.0. The second-generation WorldClim dataset31 contains seven monthly themes, each with 12 varia-

bles, characterizing monthly temperature, precipitation, solar radiation, wind speed, and vapor pressure; addition-
ally, it contains the standard set of 19 bioclimatic variables, derived from monthly temperature and precipitation.
As in the first-generation dataset, monthly rasters were interpolated from weather station observations, 

averaged here for the approximate period 1970 to 200031. Again, thin plate smoothing splines were used in 
the interpolation, but with additional covariates included for one or more interpolated features: distance to 
coast, computed extraterrestrial radiation, and three satellite-derived observations - cloud cover, and maximum 
and minimum land surface temperature, from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
instrument.

The 12 source rasters for each of the seven monthly themes, at 30 arc-second resolution, were summarized 
by centroid at ISEA3H resolutions 5 to 10. Additionally, the 19 source bioclimatic rasters, at 30 arc-second res-
olution, were summarized by centroid at ISEA3H resolutions 5 to 10, and by area-weighted mean at ISEA3H 
resolutions 6 to 9. Codes, descriptions, and units for the bioclimatic variables are listed in Table 5.

Geol10ogy. 
•	 DSMW. The Digital Soil Map of the World (DSMW)65 describes the geographic distribution and physical and 

chemical properties of the world’s soils. The DSMW was digitized from the FAO-UNESCO Soil Map of the 
World, printed at 1:5,000,000 scale. Each digitized mapping unit is assigned a number of soil attributes; here 
we classify units via the DOMSOI attribute, the dominant soil or land unit code. The DSMW includes 117 
soils in 26 major soil groupings, as well as six other land units, for a total of 123 DOMSOI classes. The source 
vector dataset was summarized by fraction and mode at ISEA3H resolutions 5, 6, and 9. Variable codes and 
descriptions are listed in Table 6.

Code Description Units

AnnualPET Annual Potential Evapotrans. mm/Year

AridityIndexThornthwaite Thornthwaite Aridity Index —

ClimaticMoistureIndex Climatic Moisture Index —

Continentality Mean Temp. Warmest Coldest °C

EmbergerQ Emberger Pluviothermic Quotient —

GrowingDegDays0 Sum Mean Temp. 0 °C Days —

GrowingDegDays5 Sum Mean Temp. 5 °C Days —

MaxTempColdest Max. Temp. Coldest Month 0.1 °C

MinTempWarmest Min. Temp. Warmest Month 0.1 °C

MonthCountByTemp10 Months Mean Temp. 10 °C Months

PETColdestQuarter Mean PET Coldest Quarter mm/Month

PETDriestQuarter Mean PET Driest Quarter mm/Month

PETSeasonality PET Seasonality mm/Month

PETWarmestQuarter Mean PET Warmest Quarter mm/Month

PETWettestQuarter Mean PET Wettest Quarter mm/Month

ThermicityIndex Compensated Thermicity Index °C

Table 2. Codes, descriptions, and units for the 16 ENVIREM climatic variables, from Title and Bemmels60.
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•	 GLiM. The Global Lithological Map (GLiM)66 represents the rock and unconsolidated sediments at or near 
the Earth’s terrestrial surface; this geological material is a source of geochemical flux to the Earth’s soils, bio-
sphere, and hydrosphere. Hartmann and Moosdorf66 compiled the map and accompanying database from 92 
regional geological maps and 318 literature sources. Rock was classified into 16 first-level lithological classes; 
12 second-level and 14 third-level subclasses further describe specific mineralogical and physical properties.
The source vector dataset was summarized by centroid at ISEA3H resolution 9. Variable codes and descriptions 

are listed in Table 7. The attribute assigned each ISEA3H cell takes the form xxyyzz; underscore characters (_) in  
the yy and/or zz slots indicate the second- and/or third-level subclasses were undefined.
•	 Sedimentary Basins. Sedimentary basins are areas of subsidence in the Earth’s crust, in which sediments 

eroded from uplands are deposited and potentially preserved for a million or more years67, thus entering 
the planet’s long-term geological record. Nyberg and Howell67 delineate active sedimentary basins, covering 
both the Earth’s terrestrial surface and marine areas over continental crust. The authors operationally defined 
basins as low-relief areas containing Quaternary Period sediments, and further classified the basins by tec-
tonic setting, identifying backarc, forearc, foreland, extensional, intracratonic, passive margin, and strike-slip 
basins on the basis of published literature and geological maps67.
Terrestrial basins were incorporated in the Eco-ISEA3H database37. Note that no terrestrial backarc basins 

were delineated. The source vector dataset was summarized by fraction and mode at ISEA3H resolution 9.

Human geography. 
•	 GPW. Human population density is one of several measures of human presence and activity which together 

define the human “footprint,” associated with profound, adverse effects on natural systems78. Given this 
pervasive impact, data characterizing degree of human influence are used as predictors in some ecological 
models, including SDMs28. The Gridded Population of the World (GPW)68 density dataset represents the 
global distribution of human population density, developed using census records, population registers, and 
the administrative boundaries of approximately 13.5 million national and subnational units. Density, meas-
ured by population count per square kilometer, was estimated every five years, from 2000 to 2020, inclusive.  
The source raster dataset for each year, at 30 arc-second resolution, was summarized by area-weighted mean 
at ISEA3H resolutions 6 to 9.

Code Description Units

CDD Max. Length Dry Spell Days

CSDI Cold Spell Duration Index Days

CWD Max. Length Wet Spell Days

DTR Daily Temp. Range °C

FD Frost Days Days

GSL Growing Season Length Days

ID Icing Days Days

PRCPTOT Annual Precip. mm

R1MM Annual Days Precip. ≥1MM Days

R10MM Annual Days Precip. ≥10MM Days

R20MM Annual Days Precip. ≥20MM Days

R95P Annual Sum Daily Precip. > 95th mm

R99P Annual Sum Daily Precip. > 99th mm

RX1DAY Max. 1-Day Precip. mm

RX5DAY Max. Consec. 5-Day Precip. mm

SDII Simple Precip. Intensity Index mm/Day

SU Summer Days Days

TN10P % Days TN < 10th Percentile Percent

TN90P % Days TN > 90th Percentile Percent

TNN Min. Daily Min. Temp. °C

TNX Max. Daily Min. Temp. °C

TR Tropical Nights Days

TX10P % Days TX < 10th Percentile Percent

TX90P % Days TX > 90th Percentile Percent

TXN Min. Daily Max. Temp. °C

TXX Max. Daily Max. Temp. °C

WSDI Warm Spell Duration Index Days

Table 3. Codes, descriptions, and units for the 27 ETCCDI climate extremes indices, from Sillmann et al.61,62.
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Land cover. 
•	 MCD12Q1. The Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type (MCD12Q1) 

dataset69 describes land cover globally, via six different classification schemes. The Eco-ISEA3H database37 
includes land cover classified via the International Geosphere-Biosphere Programme (IGBP) scheme, initially 
developed for the DISCover dataset79; the IGBP scheme includes 16 land cover classes, 13 natural and three 
anthropogenically modified. The MCD12Q1 dataset is derived from reflectance data collected by the MODIS 
instruments aboard the Terra and Aqua satellites; the two instruments observe the entirety of the Earth’s  
surface every one to two days, recording reflectance in 36 spectral bands.
MCD12Q1 land cover is estimated annually. For each year, reflectance time-series data are smoothed and 

gap-filled via smoothing splines; derived spectro-temporal features are used as input to a random forest clas-
sifier; and output land cover classifications are post-processed, to incorporate prior knowledge and reduce 
inter-annual variability69. The source raster dataset for 2001 and 2014 to 2018, inclusive, at approximately 500 
meter resolution, was summarized by centroid, fraction, and mode at ISEA3H resolutions 5 to 10. Variable codes 
and descriptions are listed in Table 8.

MOD44B. The MODIS vegetation continuous fields (VCF) dataset (MOD44B)70 describes global land cover 
quantitatively, as fractions of three cover components: tree canopy, non-tree canopy, and non-vegetated, barren 
cover. Note that canopy cover, as defined here, indicates the area over which light is intercepted; this differs from 
crown cover, which indicates the area covered by a plant’s crown regardless of light interception/penetration. The 
MOD44B dataset is derived from reflectance data collected by the MODIS instrument aboard the Terra satel-
lite; for each annual VCF estimate, reflectance time-series data are used as input to a bagged ensemble of linear 
regression trees70. The source raster dataset for 2018, at approximately 250 meter resolution, was summarized by 
area-weighted mean at ISEA3H resolution 9.

Physical geography. 
•	 Biogeographic Realms. As defined by Olson et al.56, the eight terrestrial biogeographic realms are the broadest 

divisions of the Earth’s terrestrial flora and fauna; these may be further subdivided into biomes and ecoregions, 
the latter containing distinct natural communities. Olson et al.56 developed this hierarchical system primarily 
for global and regional conservation planning. Realm, biome, and ecoregion delineations are based on expert 
knowledge, contributed by more than 1,000 scientists working in relevant fields; these divisions thus incorporate 

Code Class

Af Tropical, Rainforest

Am Tropical, Monsoon

Aw Tropical, Savannah

BWh Arid, Desert, Hot

BWk Arid, Desert, Cold

BSh Arid, Steppe, Hot

BSk Arid, Steppe, Cold

Csa Temperate, Dry Summer, Hot Summer

Csb Temperate, Dry Summer, Warm Summer

Csc Temperate, Dry Summer, Cold Summer

Cwa Temperate, Dry Winter, Hot Summer

Cwb Temperate, Dry Winter, Warm Summer

Cwc Temperate, Dry Winter, Cold Summer

Cfa Temperate, w/o Dry Season, Hot Summer

Cfb Temperate, w/o Dry Season, Warm Summer

Cfc Temperate, w/o Dry Season, Cold Summer

Dsa Cold, Dry Summer, Hot Summer

Dsb Cold, Dry Summer, Warm Summer

Dsc Cold, Dry Summer, Cold Summer

Dsd Cold, Dry Summer, Very Cold Winter

Dwa Cold, Dry Winter, Hot Summer

Dwb Cold, Dry Winter, Warm Summer

Dwc Cold, Dry Winter, Cold Summer

Dwd Cold, Dry Winter, Very Cold Winter

Dfa Cold, w/o Dry Season, Hot Summer

Dfb Cold, w/o Dry Season, Warm Summer

Dfc Cold, w/o Dry Season, Cold Summer

Dfd Cold, w/o Dry Season, Very Cold Winter

ET Polar, Tundra

EF Polar, Frost

Table 4. Codes and descriptions for the 30 Köppen-Geiger climate classes, from Beck et al.55.
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knowledge of endemic taxa, unique species assemblages, and local geological and biogeographical history56. 
Realms were included in the Eco-ISEA3H database37 to provide a high-level classification of the Earth’s bioge-
ography, from a source frequently cited in the scientific literature. The source vector dataset was summarized by 
fraction and mode at ISEA3H resolutions 5 to 9. Variable codes and descriptions are listed in Table 9.

•	 ENVIREM. In addition to the climatic variables discussed previously, the ENVIREM dataset60 contains two 
topographic variables, derived from SRTM30_PLUS. These two indices characterize terrain roughness, a 
measure of variability in local elevation; and topographic wetness, a function of slope and upgradient contrib-
uting area. Source rasters at 30 arc-second resolution were summarized by area-weighted mean at ISEA3H 
resolutions 8 and 9. Variable codes, descriptions, and units are listed in Table 10.

•	 GLWD. The Global Lakes and Wetlands Database (GLWD)71, Level 3, represents the maximum extent of 
lakes, reservoirs, rivers, and a number of wetland types, comprising 12 waterbody classes in total. Lehner and 
Döll71 compiled the three levels of the GLWD by combining seven source map and attribute datasets, and 
suggest Level 3 may be useful as input in global hydrologic and climatic modeling. The source raster dataset at 
30 arc-second resolution was summarized by fraction and mode at ISEA3H resolution 9. Variable codes and 
descriptions are listed in Table 11.

•	 Natural Earth. Natural Earth is a public-domain collection of raster and vector datasets developed for pro-
duction cartography. Three vector themes describing physical geography were incorporated: Land, which 
includes continents and major islands; Islands, which includes additional minor islands; and Lakes, which 
includes lakes and reservoirs. Source vector datasets at 1:10,000,000 scale were summarized by fraction at 
ISEA3H resolutions 5 to 9. Further, fractions for a Terra theme were calculated, by adding per-cell Land and 
Islands, and subtracting Lakes. The Terra theme may be thresholded (for example, at a fraction value ≥0.5) to 
identify terrestrial ISEA3H cells, excluding cells covered primarily by ocean or freshwater habitat.

•	 SRTM30_PLUS. The SRTM30_PLUS dataset72 is a global digital elevation model (DEM), representing the 
Earth’s terrestrial topography and ocean bathymetry. A number of elevation sources were incorporated in 
developing the DEM; terrestrial topography was derived from the Shuttle Radar Topography Mission (SRTM) 
at latitudes between ±60°, from GTOPO30 in the Arctic, and from GLAS/ICESat in the Antarctic. Ocean 
bathymetry was derived from satellite radar altimetry, calibrated on 298 million corrected ship-based depth 
soundings, gathered from several sounding sources72. The source raster dataset at 30 arc-second resolution 
was summarized by area-weighted mean at ISEA3H resolutions 6 to 10.

Species ranges. From the Red List and the Phylogenetic Atlas, the geographic ranges of species belonging to 
four mammalian orders were sampled: Artiodactyla (even-toed ungulates), Perissodactyla (odd-toed ungu-
lates), Primates, and Proboscidea (elephants). These species are primarily large-bodied herbivores, and as such 
are frequently the subject of dental ecometrics research; for example, averaged dental traits of communities of 
these mammals have been used to predict measures of local precipitation, at both global3 and regional11 scales.

•	 IUCN Red List. The International Union for Conservation of Nature’s (IUCN) Red List of Threatened Spe-
cies50 comprises global assessments of the conservation status of nearly 150,000 floral, faunal, and fungal 
species. The Red List includes expert-delineated geographic ranges for most of these species, including most 
extant mammalian species. For each species, portions of the range for which the species’ presence was coded 

Code Description Units (v1.4) Units (v2.0)

BIO01 Annual Mean Temp. 0.1 °C °C

BIO02 Mean Diurnal Range 0.1 °C °C

BIO03 Isothermality Percent Percent

BIO04 Temp. Seasonality 0.001 °C 0.01 °C

BIO05 Max. Temp. Warmest Month 0.1 °C °C

BIO06 Min. Temp. Coldest Month 0.1 °C °C

BIO07 Annual Temp. Range 0.1 °C °C

BIO08 Mean Temp. Wettest Quarter 0.1 °C °C

BIO09 Mean Temp. Driest Quarter 0.1 °C °C

BIO10 Mean Temp. Warmest Quarter 0.1 °C °C

BIO11 Mean Temp. Coldest Quarter 0.1 °C °C

BIO12 Annual Precip. mm mm

BIO13 Precip. Wettest Month mm mm

BIO14 Precip. Driest Month mm mm

BIO15 Precip. Seasonality Percent Percent

BIO16 Precip. Wettest Quarter mm mm

BIO17 Precip. Driest Quarter mm mm

BIO18 Precip. Warmest Quarter mm mm

BIO19 Precip. Coldest Quarter mm mm

Table 5. Codes, descriptions, and units for the 19 WorldClim bioclimatic variables, from v1.430 and v2.031.

https://doi.org/10.1038/s41597-023-01966-x


13Scientific Data |           (2023) 10:77  | https://doi.org/10.1038/s41597-023-01966-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

extant, and for which its origin was coded native or reintroduced, were sampled. Source vector datasets were 
summarized by fraction at ISEA3H resolutions 8 to 9 (Artiodactyla and Perissodactyla), 9 (Primates), and  
7 to 9 (Proboscidea).

•	 PHYLACINE. The Phylogenetic Atlas of Mammal Macroecology (PHYLACINE)73,74 includes trait, phylog-
eny, and geographic range data for all mammalian species known from the last interglacial period (approx-
imately 130,000 years ago) to the present, both extant and recently extinct. PHYLACINE includes species’ 
ranges under two scenarios, both of which were incorporated: present-day ranges, from the IUCN v2016.3; 
and “present-natural” ranges, for which each species’ present-day range was modified to estimate its distribu-
tion under current climatic conditions, but absent anthropogenic pressure. This included, among eight mod-
ification categories, reconnecting fragmented ranges, by filling suitable intervening habitat; and expanding 
ranges reduced by human activity, by filling suitable adjacent habitat. Present-natural range modifications 
are documented for each species in PHYLACINE’s metadata, and intended to mitigate human impact on the 
results of macroecological analysis and modeling. Source rasters at approximately 100 kilometer resolution 
were summarized by centroid at ISEA3H resolution 9.

Code Class Code Class Code Class

Af Ferric Acrisols Hh Haplic Phaeozems RK Rock Debris or Desert 
Detritus

Ag Gleyic Acrisols Hl Luvic Phaeozems Rc Calcaric Regosols

Ah Humic Acrisols I Lithosols Rd Dystric Regosols

Ao Orthic Acrisols J Fluvisols Re Eutric Regosols

Ap Plinthic Acrisols Jc Calcaric Fluvisols Rx Gelic Regosols

Bc Chromic Cambisols Jd Dystric Fluvisols S Solonetz

Bd Dystric Cambisols Je Eutric Fluvisols ST Salt Flats

Be Eutric Cambisols Jt Thionic Fluvisols Sg Gleyic Solonetz

Bf Ferralic Cambisols K Kastanozems Sm Mollic Solonetz

Bg Gleyic Cambisols Kh Haplic Kastanozems So Orthic Solonetz

Bh Humic Cambisols Kk Calcic Kastanozems Th Humic Andosols

Bk Calcic Cambisols Kl Luvic Kastanozems Tm Mollic Andosols

Bv Vertic Cambisols L Luvisols To Ochric Andosols

Bx Gelic Cambisols La Albic Luvisols Tv Vitric Andosols

C Chernozems Lc Chromic Luvisols U Rankers

Cg Glossic Chernozems Lf Ferric Luvisols V Vertisols

Ch Haplic Chernozems Lg Gleyic Luvisols Vc Chromic Vertisols

Ck Calcic Chernozems Lk Calcic Luvisols Vp Pellic Vertisols

Cl Luvic Chernozems Lo Orthic Luvisols W Planosols

DS Dunes or Shifting Sands Lp Plinthic Luvisols WR Inland Water or Ocean

Dd Dystric Podzoluvisols Lv Vertic Luvisols Wd Dystric Planosols

De Eutric Podzoluvisols Mg Gleyic Greyzems We Eutric Planosols

Dg Gleyic Podzoluvisols Mo Orthic Greyzems Wh Humic Planosols

E Rendzinas ND No Data Wm Mollic Planosols

Fa Acric Ferralsols Nd Dystric Nitosols Ws Solodic Planosols

Fh Humic Ferralsols Ne Eutric Nitosols X Xerosols

Fo Orthic Ferralsols Nh Humic Nitosols Xh Haplic Xerosols

Fp Plinthic Ferralsols O Histosols Xk Calcic Xerosols

Fr Rhodic Ferralsols Od Dystric Histosols Xl Luvic Xerosols

Fx Xanthic Ferralsols Oe Eutric Histosols Xy Gypsic Xerosols

G Gleysols Ox Gelic Histosols Y Yermosols

GL Glacier Pg Gleyic Podzols Yh Haplic Yermosols

Gc Calcaric Gleysols Ph Humic Podzols Yk Calcic Yermosols

Gd Dystric Gleysols Pl Leptic Podzols Yl Luvic Yermosols

Ge Eutric Gleysols Po Orthic Podzols Yt Takyric Yermosols

Gh Humic Gleysols Pp Placic Podzols Yy Gypsic Yermosols

Gm Mollic Gleysols Qa Albic Arenosols Z Solonchaks

Gp Plinthic Gleysols Qc Cambic Arenosols Zg Gleyic Solonchaks

Gx Gelic Gleysols Qf Ferralic Arenosols Zm Mollic Solonchaks

Hc Calcaric Phaeozems Ql Luvic Arenosols Zo Orthic Solonchaks

Hg Gleyic Phaeozems R Regosols Zt Takyric Solonchaks

Table 6. Codes and descriptions for the 123 DSMW soil and land units, from the FAO65.
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Data records
The Eco-ISEA3H database37 and accompanying metadata are available at Fairdata.fi, a digital preservation service 
of the Finnish Ministry of Education and Culture, produced by the Finnish IT Center for Science (CSC). The data-
base may be accessed via the following DOI: https://doi.org/10.23729/37d3e51e-3bf0-453a-a2ab-ed1a935ccaf8.

Eco-ISEA3H themes & variables. The Eco-ISEA3H database37 contains 3,033 variables, derived from 
source dataset themes and component classes and/or variables characterizing climate, geology, land cover, phys-
ical and human geography, and the geographic ranges of large mammalian species. Eco-ISEA3H themes and 
variables are summarized in Table 12.

Code Class

1st Level (xx)

ev Evaporites

ig Ice and Glaciers

mt Metamorphics

nd No Data

pa Acid Plutonic Rocks

pb Basic Plutonic Rocks

pi Intermediate Plutonic Rocks

py Pyroclastics

sc Carbonate Sedimentary Rocks

sm Mixed Sedimentary Rocks

ss Siliciclastic Sedimentary Rocks

su Unconsolidated Sediments

va Acid Volcanic Rocks

vb Basic Volcanic Rocks

vi Intermediate Volcanic Rocks

wb Water Bodies

2nd Level (yy)

ad Alluvial Deposits

am Mafic Metamorphics Mentioned

ds Dune Sands

gr Greenstone Mentioned

la Laterites

lo Loess

mx Mixed Grain Size

or Organic Sediment

pu (Pure) Carbonate

py Pyroclastics Mentioned

sh Fine Grained

ss Coarse Grained

3rd Level (zz)

bs Black Shale Mentioned

ch Chert Mentioned

cl Fossil Plant Organic Material Mentioned

ev Subordinate Evaporites Mentioned

fe Reduced-Iron Minerals Mentioned

gl Glacial Influence Mentioned

mt Metamorphic Influence Mentioned

ph Phosphorous-Rich Minerals Mentioned

pr Subordinate Plutonics Mentioned

pt Pyrite Mentioned

sr Subordinate Sedimentary Rocks Mentioned

su Subordinate Unconsolidated Sediments Mentioned

vr Subordinate Volcanics Mentioned

we Intensive Weathering

Table 7. Codes and descriptions for the 16 first-level, 12 second-level, and 14 third-level GLiM lithological 
classes, from Hartmann and Moosdorf66.
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Note that while several source datasets represent the present-day generally, others represent a specific tem-
poral period, and have a set temporal resolution. Such datasets, and Eco-ISEA3H variables derived from these 
datasets, fall into three categories. Certain source climatic datasets represent (1) single-value summaries over 
a multi-year period, and were incorporated as such: ENVIREM climate variables60, Köppen-Geiger climate 
classes55, and WorldClim v1.430 and v2.031 variables (both historical interpolations and downscaled CCSM4 
projections). Certain other source datasets represent (2) a time-series of annual observations, and were incor-
porated as such: GPW human population density68, MCD12Q1 land cover classes69, and MOD44B vegetation 
variables70. Finally, certain source climatic datasets again represent (3) a time-series of annual observations, but 
were incorporated as multi-year summaries: ETCCDI extremes indices61,62 from CCSM464 and ECMWF63. The 
periods over which CCSM4 annual results were summarized were selected to match the multi-year summary 
periods of WorldClim v1.4.

Further note that several source datasets contain no-data regions, primarily over the world’s oceans; 
WorldClim v1.430 and v2.031, for example, are clipped to the Earth’s terrestrial surface. Summary statistics in 
ISEA3H cells over these regions are similarly null, and must be assigned a value indicating missing data, outside 
the range of values taken by the theme or variable. Where necessary, these null values are listed in Table 12.  
The proportion of data values to null values in these datasets is less than or equal to the proportion of land to 
ocean, approximately 3:7.

Directory structure & file naming convention. To facilitate use by a wide range of researchers in the 
biological, geological, and computational sciences, development of the Eco-ISEA3H database37 was guided by 
FAIR principles for scientific data stewardship80. To maximize interoperability, the database comprises plain-text, 
tab-delimited files, organized within a regular directory structure. The names of folders, files, and column head-
ers within files follow a standard format, each a concatenation of regular components separated by underscores.

Code Class

01 Evergreen Needleleaf Forests

02 Evergreen Broadleaf Forests

03 Deciduous Needleleaf Forests

04 Deciduous Broadleaf Forests

05 Mixed Forests

06 Closed Shrublands

07 Open Shrublands

08 Woody Savannas

09 Savannas

10 Grasslands

11 Permanent Wetlands

12 Croplands

13 Urban and Built-up Lands

14 Cropland/Natural Vegetation Mosaics

15 Permanent Snow and Ice

16 Barren

Table 8. Codes and descriptions for the 16 IGBP land cover classes, from Friedl and Sulla-Menashe69.

Code Class

AA Australasia

AN Antarctic

AT Afrotropic

IM Indo-Malay

NA Nearctic

NT Neotropic

OC Oceania

PA Palearctic

Table 9. Codes and descriptions for the eight biogeographic realms, from Olson et al.56.

Code Description Units

TRI Terrain Roughness Index —

TopoWet Topographic Wetness Index —

Table 10. Codes, descriptions, and units for the two ENVIREM topographic variables, from Title and Bemmels60.
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At the root of the Eco-ISEA3H directory structure, each ISEA3H resolution has an associated folder. Within 
these is a folder for each source dataset sampled at that resolution, named following the format:

[Source Dataset]_V[Version Number]

Within each dataset folder are one or more text files, each containing data related to one of the dataset’s 
scientific themes. Discrete themes comprise one or more classes, continuous themes one or more real-valued 
variables. Text files, each containing a per-cell statistical summary of a theme or its components, are named 
following the format:

ISEA3H[Resolution]_[Source Dataset]_V[Version Number]_Y[Year]_[Theme]_
[Summary Statistic]

Filenames may include zero, one, or two consecutive Y[Year] components, based on the temporal scope 
of the source dataset. For datasets without a defined temporal period (for example, the Global Lithological 
Map66), or averaged over a single, standard period (for example, WorldClim v2.031), no Y[Year] components are 
required. A single Y[Year] component indicates the single year represented by the source dataset, two compo-
nents the temporal range, inclusive, represented.

The hexagon ID, or HID, is included in all text files, and serves as primary key for the Eco-ISEA3H data-
base37. HIDs uniquely identify each hexagonal cell within each ISEA3H resolution, and may be used to link 
records associated with each cell among the database’s spatial and tabular files; see the vignette for an example of 
linking via the merge function in R.

Discrete themes. Summary values of discrete, categorical themes are named following the format:

[Theme or Class]_[Summary Statistic]

Alternatively, for themes containing classes identified only by a sequential, integer indexing number, the 
theme may be added as a prefix, to assemble more informative column headers:

[Theme]_[Class]_[Summary Statistic]

For example, GLOH2O contains a number of scientific themes, one of which, the Köppen-Geiger climate 
classification55, was included in the Eco-ISEA3H database37. The theme contains 30 discrete climate classes, each 
of which was summarized by the fraction attribute. Further, the theme as a whole was summarized by the mode 
attribute. Thus, the column containing the first of 30 fraction values, indicating the proportion of each ISEA3H 
cell’s area covered by the tropical rainforest climate class (referenced by the code Af), was headed Af_Fraction. 
The column containing the theme’s mode value, indicating the class covering the greatest proportion of each 
cell’s area, was headed KoppenGeiger_Mode.

Continuous variables. Summary values of the component variables of continuous, real-numbered themes are 
named following the format:

[Variable]_[Summary Statistic]

For example, WorldClim v2.031 contains eight scientific themes, all of which were included in the 
Eco-ISEA3H database37. Monthly precipitation (referenced by the code PREC) is one of these. The theme con-
tains a variable for each month, named by appending the month numbers 01 to 12 to the theme’s code. Each of 
these 12 variables was summarized by the centroid attribute. Thus, the variable containing January precipitation 
was named PREC01, and the column containing the PREC01 variable’s centroid value, indicating January precip-
itation at each ISEA3H cell’s centroid, was headed PREC01_Centroid.

Code Class

01 Lake

02 Reservoir

03 River

04 Freshwater Marsh, Floodplain

05 Swamp Forest, Flooded Forest

06 Coastal Wetland

07 Pan, Brackish/Saline Wetland

08 Bog, Fen, Mire

09 Intermittent Wetland/Lake

10 50 - 100% Wetland

11 25 - 50% Wetland

12 Wetland Complex (0 - 25%)

Table 11. Codes and descriptions for the 12 GLWD waterbody classes, from Lehner and Döll71.
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Dataset Version Scenario Period
Source 
Resolution

Eco-ISEA3H 
Resolution Theme

Summary 
Statistic(s)

ISEA 
Resolution(s)

Null 
Value

Climate

Community Climate 
System Model 
Version 4 (CCSM4)

. Historical 1950–2000 Annual Single Summary
Expert Team on Climate 
Change Detection & 
Indices (ETCCDI) Climate 
Extremes Indices

IDW 9 .

. RCP 8.5 2061–2080 Single Summary Single Summary Bioclimatic Variables (BIO) Mean 9 −1000

European Centre 
for Medium-Range 
Weather Forecasts 
(ECMWF)

ERA-40 . 1958–2001 Annual Single Summary
Expert Team on Climate 
Change Detection & 
Indices (ETCCDI) Climate 
Extremes Indices

IDW 5–9 .

ENVIronmental 
Rasters for 
Ecological Modeling 
(ENVIREM)

1.0 . 1950–2000 Single Summary Single Summary Climatic Variables Mean 8–9 −1000

GLOH2O 1.0 . 1980–2016 Single Summary Single Summary Köppen-Geiger Climate 
Classification Fraction, Mode 9 NA

WorldClim

1.4 . 1950–2000 Single Summary Single Summary Bioclimatic Variables (BIO) Mean 9 −1000

2.0 . 1970–2000 Single Summary Single Summary

Bioclimatic Variables (BIO) Mean 6–9 −100

Bioclimatic Variables (BIO)

Centroid 5–10

−100

Monthly Precipitation 
(PREC) −1

Monthly Solar Radiation 
(SRAD) −1

Monthly Mean Temperature 
(TAVG) −100

Monthly Minimum 
Temperature (TMIN) −100

Monthly Maximum 
Temperature (TMAX) −100

Monthly Vapor Pressure 
(VAPR) −1

Monthly Wind Speed 
(WIND) −1

Geology

Digital Soil Map of 
the World (DSMW) 3.6 . . . . Soil Units Fraction, Mode 5–6, 9 −1

Global Lithological 
Map (GLiM) 1.1 . . . . Lithology Centroid 9 —

Sedimentary Basins . . . . . Structure Fraction 9 .

Human Geography

Gridded Population 
of the World (GPW) 4.11 .

2000, 2005, 
2010, 2015, 
2020

Annual Annual Population Density Mean 6–9 −1

Land Cover

MCD12Q1 6.0 . 2001, 
2014–2018 Annual Annual

International Geosphere-
Biosphere Programme 
(IGBP) Land Cover 
Classification

Centroid, 
Fraction, Mode 5–10 −1

MOD44B 6.0 . 2018 Annual Annual Vegetation Continuous 
Fields (VCF) Mean 9 −1

Physical Geography

ENVIronmental 
Rasters for 
Ecological Modeling 
(ENVIREM)

1.0 . . . . Topographic Variables Mean 8–9 −1000

Natural Earth (NE) 4.1.0 . . . .

Lakes

Fraction 5–9 .
Land

Minor Islands

Terra

SRTM30-PLUS 11 . . . . Elevation Mean 6–10 .

World Wildlife Fund 
(WWF) Terrestrial 
Ecoregions (TE)

2.0 . . . . Biogeographic Realms Fraction, Mode 5–9 −1

World Wildlife Fund 
(WWF) Global Lakes 
& Wetlands Database 
(GLWD)

1.0 . . . . Level 3 Fraction, Mode 9 −1

Continued
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Technical Validation
To validate the operability of the Eco-ISEA3H database37, we present a case study in which we assess the bioclimatic 
envelopes of ten large, widely distributed mammalian species. In ecometric and SDM studies, species’ environ-
mental niches are frequently defined by extracting the values of raster-based environmental variables at locations 
each species is known or estimated to occur. We assess the degree to which species’ niches may be misrepresented 
if sampling locations are not equivalent and directly comparable. We contrast our DGGS-based approach, in which 
environmental conditions are sampled via equal-area hexagonal grid cells, with a baseline approach, in which con-
ditions are sampled via raster pixels of differing geodesic areas. Results of the study highlight differences in perceived 
niches as measured by the two methods, and support the use of equal-area cells like those of the ISEA3H DGGS.

case study: bioclimatic niches. Intuitively, a species’ niche describes its place in the environment, the 
conditions under which it thrives. As operationalized in quantitative ecology, the environment is frequently 
abstracted, represented by a multi-dimensional environmental space, the axes of which are defined by independ-
ent, functionally relevant, often scenopoetic environmental variables81. A species’ niche is then the region of this 
multi-dimensional space (the n-dimensional hypervolume82) in which the species’ intrinsic rate of population 
growth is positive81. SDMs utilize this niche concept; these models predict species’ occurrence or abundance on 
the basis of such variables (often climatic and/or topographic76), using statistical or ML methods to estimate the 
species’ response in n-dimensional environmental space28.

The environmental variables used for SDM training and prediction often derive from raster datasets, com-
monly developed and distributed in non-authalic coordinate reference systems. In such systems, raster pixels 
vary in area when inversely projected to the Earth’s ellipsoidal surface. For example, WorldClim raster datasets 
are distributed in the WGS84 coordinate reference system, at 30 arc-second resolution; while raster pixels uni-
formly measure 30 × 30 arc-seconds, the pixels vary in geodesic area with latitude. Thus, these pixels are not 
equivalent, directly comparable units of observation.

If non-authalic pixel counts are used for niche analysis or modeling - for example, to determine a species’ 
probability of occurrence in environmental space, or to quantify changes in a species’ predicted geographic range 
- results may be considerably biased. However, this is often ignored83. To address this problem, the Eco-ISEA3H 
database37 utilizes an equal-area DGGS; at each resolution, the Earth’s surface is partitioned into a set of 
equal-area hexagonal cells. Here we compare measures of central tendency in species’ niches, as measured by (1) 
authalic Eco-ISEA3H cells, and (2) a baseline approach, based on the non-authalic pixels of raster datasets in the 
WGS84 coordinate reference system. We find substantial differences in median bioclimatic values for some large 
mammalian species, demonstrating the importance of using equal observational units in analysis and modeling.

Dataset Version Scenario Period
Source 
Resolution

Eco-ISEA3H 
Resolution Theme

Summary 
Statistic(s)

ISEA 
Resolution(s)

Null 
Value

Species Ranges

Red List (RL) of 
Threatened Species 2019.1 . . . .

Artiodactyla: 
Antilocapridae, Bovidae, 
Camelidae, Cervidae, 
Giraffidae, Hippopotamidae, 
Moschidae, Suidae, 
Tayassuidae, Tragulidae

Fraction 8–9 .

Perissodactyla: Equidae, 
Rhinocerotidae, Tapiridae Fraction 8–9 .

Primates: Aotidae, 
Atelidae, Callitrichidae, 
Cebidae, Cercopithecidae, 
Cheirogaleidae, 
Daubentoniidae, Galagidae, 
Hominidae, Hylobatidae, 
Indriidae, Lemuridae, 
Lepilemuridae, Lorisidae, 
Pitheciidae, Tarsiidae

Fraction 9 .

Proboscidea: Elephantidae Fraction 7–9 .

Phylogenetic 
Atlas of Mammal 
Macroecology 
(PHYLACINE)

1.2.1

Present . . .

Artiodactyla

Centroid 9 .
Perissodactyla

Primates

Proboscidea

Present Natural . . .

Artiodactyla

Centroid 9 .
Perissodactyla

Primates

Proboscidea

Table 12. Summary statistics compiled for the Eco-ISEA3H database37. Each is described by the source dataset 
name, version, and scenario from which it was derived; the temporal period it represents, as well as the temporal 
resolution of the source dataset and derived statistic; the source theme from which it was derived; the statistic(s) 
and ISEA3H resolution(s) by which the source theme, classes, and/or variables were summarized; and finally 
the null value used to indicate missing data. 
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Methods & materials. For this case study, we selected large mammalian species for which the difference 
between these two approaches was expected to be most extreme. Bias was expected to be greatest where raster 
pixels having the greatest range of geodesic areas were summarized as if they were equivalent observational 
units. Budic et al.84, in a similar SDM study, selected species with northernmost geographic distributions, as 
projection-induced area distortion is greatest at high latitudes. However, we note that area distortion varies 
only with latitude; if a species’ range falls within a narrow range of latitude, all raster pixels within the range are 
distorted similarly, and the pixels are again equivalent. Instead, we sought species with geographic distributions 
covering the greatest range of latitude, and with distribution centroids most distant from the Equator - equiva-
lently, species with distributions covering the greatest range of projection-induced area distortion.

Area distortion was quantified as follows. First, working in the plate carrée map projection (in which 
WorldClim raster pixels are equal-area), a small circle centered at 0° latitude was drawn, and its geodesic area 
calculated using the GeographicLib library54. This represented the maximum possible geodesic area for a circle 
of this radius, in this projected coordinate reference system. Next, a circle of equal radius was drawn at each 
ISEA3H09 cell centroid, and its geodesic area calculated. The area of each of these circles, expressed as a frac-
tion of the area of the 0° reference circle, served as the measure of area distortion with latitude assigned to each 
ISEA3H09 cell. These fractions, which vary from near 1.0 at the Equator (indicating low distortion) to near 0.0 
at the poles (indicating high distortion), are mapped in Fig. 3.

Ranges from the IUCN Red List50 were used to characterize the geographic distributions of all species in the 
four mammalian orders Artiodactyla, Perissodactyla, Primates, and Proboscidea; species were defined as pres-
ent in ISEA3H09 cells in which the species’ fraction attribute was greater than or equal to 0.5. For each species, 
a vector of the area distortion values of the ISEA3H09 cells in which it was present was compiled, and distortion 
percentiles, from 0 to 100 by 10, were calculated. Finally, species were sorted by the range between the 10th and 
90th percentiles. The 10 species having the greatest 10th-90th percentile ranges are listed in Table 13; these species 
were selected for comparison of bioclimatic envelopes derived from DGGS cells and raster pixels.

For each selected species, bioclimatic conditions within the species’ range were characterized. The median 
values of the 19 bioclimatic variables (from WorldClim v2.031) within each range were calculated using two 
different approaches. In the pixel-based, baseline approach, values of the WorldClim raster pixels within each 
species’ range were used to calculate bioclimatic medians (using the raster package53 for R). In the DGGS-based 
approach, centroid values of the ISEA3H09 cells in which each species was present were used to calculate bio-
climatic medians. Differences between the two sets of medians, for temperature- and precipitation-related bio-
climatic variables, are shown in Fig. 4. Niche distortion was quantified by subtracting ISEA3H09 medians from 
raster pixel medians; thus negative values indicate pixel-based medians are colder or drier, while positive values 
indicate pixel-based medians are warmer or wetter.

Results & discussion. All selected species are widely-distributed members of the order Artiodactyla, represent-
ing the families Cervidae (the white-tailed deer, mule deer, reindeer, roe deer, Siberian roe deer, and moose), 
Suidae (the wild boar), Camelidae (the guanaco), and Bovidae (the muskox and bighorn sheep).

The white-tailed deer (Odocoileus virginianus) exhibits the greatest 10th-90th percentile distortion range; 
area distortion values range from 0.633 (indicating northernmost raster pixels within the species’ range have 
approximately two-thirds the area of pixels at the Equator), to 0.993 (indicating nearly no projection-induced 
area distortion in the southernmost portion of the species’ range). O. virginianus is distributed across North and 
Central America and northernmost South America, from southern Canada to Peru, absent only in the American 

Fig. 3 The area of raster pixels in the WGS84 coordinate reference system, expressed as a fraction of pixel area 
at the Equator. Fractional pixel area decreases with latitude to nearly 0.0 at ±90°, and serves as the measure of 
projection-induced area distortion used in this case study.
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Southwest. The species also exhibits the greatest shifts in median bioclimatic conditions; pixel-based absolute 
temperature estimates are uniformly lower, and temperature seasonality and range estimates uniformly higher, 
reflecting the over-representation of northern conditions. The pixel-based mean temperature of the driest quarter  
(BIO09) measures approximately 7.6 °C cooler.

This pattern of distortion in temperature-related bioclimatic variables is evident for the other species as 
well, with the exception of the bighorn sheep (Ovis canadensis). This species is present in a highly fragmented 
range across western North America, from the Columbia Mountains and Interior Plateau of Canada’s British 
Columbia, to the southern end of Mexico’s Baja California peninsula. The less than 1 °C differences observed 
in most temperature-related variables for the species likely result from edge effects, as ISEA3H09 cells are large 
relative to the species’ range fragments.

In principle, we expect environmental phenomena exhibiting a latitudinal gradient to suffer more from the 
biasing effect of projection-induced area distortion. Consider a phenomenon which is effectively random with 
respect to latitude; the over-representation of higher-latitude regions would not, in expectation, skew summary 
statistics in any systematic direction. Thus, we see more of an effect in temperature-related bioclimatic variables 
than in precipitation-related variables, as the latitudinal gradient in temperature is more pronounced: all but 12 
of the 70 absolute differences in precipitation measure less than 10 millimeters.

Binomial Name Common Name

ISEA3H Lat-Long Raster Pixel Proportions

Cell Count Q10 Q50 Q90 Q10-Q90 Range

Odocoileus virginianus White-Tailed Deer 5584 0.633 0.808 0.993 0.360

Sus scrofa Wild Boar 10787 0.622 0.781 0.940 0.318

Odocoileus hemionus Mule Deer 2443 0.562 0.733 0.856 0.294

Lama guanicoe Guanaco 631 0.665 0.792 0.939 0.274

Rangifer tarandus Reindeer 7160 0.332 0.466 0.599 0.268

Capreolus capreolus Roe Deer 2466 0.487 0.652 0.752 0.264

Capreolus pygargus Siberian Roe Deer 4617 0.543 0.645 0.806 0.263

Alces alces Moose 8876 0.408 0.542 0.661 0.253

Ovibos moschatus Muskox 625 0.172 0.330 0.425 0.253

Ovis canadensis Bighorn Sheep 140 0.631 0.765 0.869 0.238

Table 13. The 10 large mammalian species with geographic distributions covering the greatest 10th-90th 
percentile range of latitude-longitude raster pixel area distortion.
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Odocoileus virginianus (White-Tailed Deer)  -2.6 0.0 -2.4 0.5 -1.5 -3.7 1.3 -1.2 -7.6 -1.2 -3.4 -68 -6 -1 -0.8 -14 -5 -5 -12

Sus scrofa (Wild Boar)  -1.4 0.0 -1.3 0.4 -1.0 -1.6 1.1 -0.4 -4.2 -0.9 -1.7 -23 -7 1 -6.2 -16 3 -5 2

Odocoileus hemionus (Mule Deer)  -0.9 -0.5 -1.3 0.1 -1.5 -0.9 0.1 -0.5 -1.9 -0.9 -1.0 11 1 1 -1.1 3 3 6 4

Lama guanicoe (Guanaco)  -0.2 -0.2 -0.4 0.0 -0.1 0.0 0.0 -0.6 0.0 -0.1 -0.1 0 -1 1 -4.3 -3 2 -2 2

Rangifer tarandus (Reindeer)  -1.8 -0.3 -0.9 0.1 -0.8 -0.9 -0.4 -0.8 -2.0 -0.7 -1.5 -44 -7 -1 0.7 -20 -5 -19 -4

Capreolus capreolus (Roe Deer)  -0.5 -0.1 -0.7 0.1 -0.4 -0.7 0.2 -0.2 -0.5 -0.3 -0.6 -2 0 0 0.4 0 -1 2 -1

Capreolus pygargus (Siberian Roe Deer)  -0.5 0.0 -0.5 0.2 -0.4 -0.4 0.3 -0.3 -0.4 -0.4 -0.5 -2 -2 1 -4.2 -5 2 -5 3

Alces alces (Moose)  -0.6 -0.1 -0.3 0.1 -0.3 -0.4 0.2 -0.4 -0.2 -0.3 -0.6 -13 -3 0 0.4 -6 -1 -6 -2

Ovibos moschatus (Muskox)  -1.3 -1.0 -0.5 -0.3 -3.3 -0.2 -1.4 -2.9 -0.5 -2.5 -0.5 -11 -1 0 0.6 -3 -2 -3 -2

Ovis canadensis (Bighorn Sheep)  0.8 0.5 0.5 0.2 0.8 0.3 1.7 0.7 0.3 1.1 1.4 -23 -4 1 -0.8 -8 -6 -6 -3

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 -80 -60 -40 -20 0 20 40 60 80

Precipitation (mm)

Fig. 4 Differences in the median values of the 19 bioclimatic variables within each species’ geographic range, 
calculated via two approaches: the baseline, raster-based approach versus the ISEA3H DGGS approach.
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While the difference of 2.6 °C in annual mean temperature (BIO01) observed over the range of O. virginianus 
may seem small, we note that a global increase of even 1.5 °C, the target of the Paris Agreement, is expected to have 
major impacts on species’ ranges85. These small but significant differences, primarily in temperature-related bio-
climatic variables, demonstrate that the use of an equal-area grid may notably reduce niche distortion in species  
distribution and ecometric modeling, relative to the use of unequal latitude-longitude raster pixels.

Eco-ISEA3H applications. Components of the Eco-ISEA3H database37 have been validated in several 
global macroecological studies. MCD12Q1 land cover classes and WorldClim bioclimatic variables were used to 
predict human activity, as evidenced by human-modified land cover, on the basis of present climatic conditions86. 
The PHYLACINE present-natural range of the Asian elephant (Elephas maximus), WorldClim bioclimatic vari-
ables, and CCSM4-based ETCCDI extremes indices were used to model global habitat suitability for E. maximus 
under present and future climatic conditions, to assess the species’ potential for conservation translocation87. 
Finally, biogeographic realms were used in a study of the sensitivity of ecometric estimates of present climate 
to the discovery of large, herbivorous mammal species over the past several centuries88. Results of these studies 
confirmed the biogeographic integrity of these component datasets; however, this is the first publication of the full 
Eco-ISEA3H database product and development methodology.

Usage Notes
ISEA3H resolutions. The Eco-ISEA3H database37 includes six consecutive, nested resolutions of the ISEA3H 
DGGS34, from resolution 5 to 10. Hexagonal grid cell areas range from approximately 210,000 square kilometers 
at resolution 5, to approximately 900 square kilometers at resolution 10; with each stepwise increase in resolution, 
average cell area is reduced to a third the value of the previous resolution. The average distance between grid cell 
centroids and first-order neighboring centroids ranges from approximately 450 kilometers at resolution 5, to  
29 kilometers at resolution 10. Cell counts, areas, and spacings for each resolution are listed in Table 14.

Most studies in which ecometric traits are prototyped8,10, or in which ecometric models are developed for 
environmental prediction12,13,16,18,19 or methodological comparison89,90, utilize a continental or global point 
grid with a nominal spacing of approximately 50 kilometers. Most of these derive from an equidistant point 
grid developed by Polly8, in which points were placed along equally-spaced latitudes, with longitudinal spacing 
scaled by the sine of the latitude. In addition, first-generation ecometric models utilized a grid with 0.5° latitude/
longitude spacing9,15. While these grids maintain approximately 55.5 kilometer north-south spacing globally, 
east-west spacing varies with latitude, measuring approximately 55.5 kilometers at the Equator, 48.2 kilometers 
at ±30° latitude, and 27.9 kilometers at ±60° latitude.

To maintain consistency with previous ecometric model development, we recommend ISEA3H resolu-
tion 9 for ecometric studies utilizing the Eco-ISEA3H database37. At resolution 9, cell centroids are spaced 
approximately 50.3 kilometers. We note, however, that studies which examined the effect of grid resolution on 
ecometric model development found no significant differences in models built on 50-kilometer and coarser 
resolution grids: 50- and 75-kilometer spacing in a study of bovid locomotor traits in sub-Saharan Africa12; and  
50-, 100-, and 250-kilometer spacing in a study of phenotypic, ecological, reproductive, and dietary traits in 
North American terrestrial mammals89. Thus coarser ISEA3H resolutions may be appropriate for ecometric 
studies in which computational complexity is a limiting factor.

point vs. area-integrated sampling. The Eco-ISEA3H database37 contains source datasets sampled and 
summarized spatially, via the global, hexagonal grids of the ISEA3H DGGS. The values assigned each ISEA3H cell 
represent either point samples or area-integrated summaries of the values of these source datasets. Specifically, the 
centroid attribute records the value of a source dataset at a single point, the centroid of each hexagonal cell. The 
fraction, mode, and mean attributes summarize spatial heterogeneity in a source dataset, within each hexagonal 
cell. For raster datasets, these latter statistics summarize multiple pixel values, and for vector datasets, the attrib-
utes and geometries of polygons within the spatial bounds of each cell.

As this suggests, area-integrated summaries require multiple observations within each ISEA3H cell. These 
statistics “see” the source dataset not at a single point, but at many: at each raster pixel, or across the region of the 
Cartesian plane bounded by the vector boundaries of a hexagonal cell. As the number of observations increases, 
these summaries tend toward integrals of continuous functions. Thus, it may be useful to note the number of 
raster pixels, for example, contained within each cell, for a source dataset and ISEA3H resolution of interest. 
Consider a 30 arc-second source raster dataset (for example, WorldClim v1.430 and v2.031), sampled at ISEA3H 
resolution 9. In this case, ISEA3H09 hexagonal cells contain a minimum of 2978 raster pixels, and a median of 
3485 raster pixels.

Resolution Cells Area (Km2) Centroid Spacing (Km)

5 2432 209903.5 452.5

6 7292 69967.8 261.2

7 21872 23322.6 150.8

8 65612 7774.2 87.1

9 196832 2591.4 50.3

10 590492 863.8 29.0

Table 14. Grid specifications for ISEA3H resolutions 5 to 10.
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Point and area-integrated sampling methods produce differing summary statistics. As a general rule, 
area-integrated summaries are more averaged than point samples, and provide results characteristic of each 
ISEA3H cell as a whole. Point samples are noisier than area-integrated summaries, but are more likely to retain 
extreme values or uncommon classes. The most appropriate method depends on the research question to be 
addressed; each provides a differing, but equally correct window on the source dataset.

Land cover classification: centroid vs. mode. While differences in the results of point and area-integrated 
sampling appear in both discrete and continuous source datasets, here we examine differences in land cover  
classification as reported by the centroid and mode attributes. Consider the MODIS land cover type (MCD12Q1) 
source dataset. Eco-ISEA3H hexagonal cells, at resolution 9, contain approximately 12,070 source raster pix-
els; each of these pixels is assigned one of 16 IGBP land cover classes, or a value indicating water cover. The 
difference in sampling methods may be quantified by the rate of correspondence between the land cover class 
reported by the two attributes. Again, the centroid attribute “sees” only a single raster pixel at each cell centroid, 
while the mode attribute sees all 12,070 pixels within each cell. Rates of correspondence between centroid- and 
mode-based land cover classification are reported globally and for each biogeographic realm, for the five years 
from 2014 to 2018, in Table 15.

Globally, the two methods have a rate of correspondence of approximately 78%; thus, centroid- and 
mode-based land cover classification differs in approximately 22% of terrestrial ISEA3H09 cells. The highest 
rates of correspondence are recorded in the Antarctic realm, and in regions not assigned a realm by Olson  
et al.56, namely interior Greenland and Antarctica. Rates are higher than the global average in the Australasian 
and Afrotropic realms; lower than the global average in the Palearctic, Neotropic, Nearctic, and Indo-Malay 
realms; and lowest in Oceania, due to edge effects and small sample size.

Centroid- and mode-based land cover correspondence is mapped in Fig. 5. The spatial pattern of matches 
and mismatches suggests rates of correspondence are greater in regions having largely uniform cover: the per-
manent snow and ice of Antarctica and Greenland, the barrens of the Sahara Desert and Arabian Peninsula, the 
evergreen broadleaf forests of the Amazon and Congo Basins, the open shrublands of central Australia, and the 
barrens and grasslands of central Asia. As landscapes become more varied, rates of correspondence decrease.

Mode-based classification results in more contiguous land cover patches, while centroid-based classification 
results in noisier cover, in which cells differ more often from neighbors. However, uncommon land cover classes 
are better represented in centroid-based classification. These uncommon classes rarely cover the greatest area 
within summarizing ISEA3H cells, but may happen to fall at ISEA3H cell centroids. For example, consider, 
among the natural land cover classes, the deciduous needleleaf forests (IGBP03), which occur only in northeast 
Asia. In the original MCD12Q1 dataset, these covered approximately 436,100 square kilometers in 2001. For 
ISEA3H09, this class was the mode value in just 32 cells, covering approximately 82,900 square kilometers (19% 
of the original); however, this class was the centroid value in 170 cells, covering approximately 440,500 square 
kilometers (101% of the original).

Similarly, among the human-modified land cover classes, consider urban and built-up lands (IGBP13), the 
global network of built, impervious surfaces constituting human settlements and infrastructure. In MCD12Q1, 
this class covered approximately 749,100 square kilometers in 2001. For ISEA3H09, this class was the mode 
value in 100 cells, covering approximately 259,200 square kilometers (35% of the original), and the centroid 
value in 282 cells, covering approximately 730,800 square kilometers (98% of the original). Thus, if representa-
tion of uncommon classes is important to the research question to be addressed, a point sample, as provided by 
the centroid attribute, may be more appropriate than an area-integrated summary.

Vignette: predicting land cover classes. The tabular files of the Eco-ISEA3H database37 follow a rela-
tional model, in which the hexagon identification (HID) indexing number serves as primary key; at a given 
ISEA3H resolution, each cell is identified by a unique, sequential, integer HID, which may be used to link the 
records contained in any number of these tabular files. Use of the plain-text tabular files is straightforward, 
and will be illustrated in the following simple case study. Here, we will use R to predict natural land cover 

Realm

Cell Centroid vs. Mode Correspondence

Count 2014 2015 2016 2017 2018

Afrotropic 8312 81.7% 81.7% 81.6% 81.5% 81.4%

Antarctic 1312 96.8% 96.7% 96.8% 96.8% 97.0%

Australasia 3520 82.2% 82.2% 81.6% 82.2% 81.5%

Indo-Malay 3258 67.6% 67.3% 67.2% 66.7% 66.3%

Nearctic 7951 69.0% 68.8% 68.6% 68.5% 68.6%

Neotropic 7437 74.8% 74.5% 74.5% 74.4% 74.5%

None 4069 99.5% 99.5% 99.6% 99.6% 99.6%

Oceania 12 58.3% 58.3% 50.0% 50.0% 50.0%

Palearctic 20371 77.2% 77.1% 77.0% 77.2% 77.1%

Global 56242 78.2% 78.1% 78.0% 78.0% 77.9%

Table 15. Percent of ISEA3H09 grid cells for which the MCD12Q1 land cover class, as represented by the 
centroid and mode attributes, correspond. Global and per-realm rates of correspondence are reported for the 
years 2014 to 2018. 
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globally, based on bioclimatic variables, utilizing a decision tree approach to identify important climatic thresh-
olds between land cover classes. Thus, this vignette offers a simplified version of the macroecological analysis  
presented by Beigaitė et al.91.

We begin by reading the MCD12Q169 IGBP land cover classification for 2001; we use the first year for which 
these data are available, as we expect human modification of the landscape to be less extensive than in subse-
quent years. Here we read the tabular file containing the mode attribute, specifying the most common IGBP class 
within each ISEA3H cell - that is, the class covering the greatest area within each cell. Further, we use ISEA3H 
resolution 9, in which cells have an area of approximately 2,600 square kilometers, and a centroid spacing of 
approximately 50 kilometers. Note that tabular files have column headers, and are tab-delimited.

>igbp.m < - read.table(“ISEA3H09/MCD12Q1_V06/ISEA3H09_MCD12Q1_V06_Y2001_
IGBP_Mode.txt”, header = TRUE, sep = “\t”)

We now have an R data frame containing a row for each ISEA3H09 cell, 196,832 rows in total. Note that an 
IGBP_Mode value of −1 indicates less than 20% of the cell’s area was covered by land (of all classes combined), 
and that values of 12, 13, and 14 indicate human-modified land cover classes, per the descriptions in Table 8. 
Next, we will subset the data frame, retaining only those cells in which a natural class predominates, covered at 
least 20% by land.

>igbp.m < - subset(igbp.m, IGBP_Mode %in% c(1:11, 15:16))

Following the subset, we retain 53,350 cells. However, defining terrestrial cells (and by extension, the spatial scope 
of our analysis) as those cells covered 20% or more by land is likely too inclusive. The mode attribute’s 20% threshold 
was implemented such that terrestrial datasets bounded by differing coastlines might still be layered together. The 
MCD12Q1 and WorldClim datasets, for example, are both clipped to the Earth’s terrestrial surface; however, each 
bounds that realm with its own coastline. Defining terrestrial ISEA3H cells as those covered 50% or more by one 
dataset (say, WorldClim) likely requires us to include cells covered less than 50% by the other (say, MCD12Q1).

The mode attribute’s 20% threshold allows for these differences around the edges; 20% is not intended to be 
a meaningful terrestrial/aquatic threshold in itself. Here, we will define terrestrial cells as those covered 50% or 
more by the MCD12Q1 dataset. Thus, we next read the tabular file containing the MCD12Q1 fraction attribute 
for 2001.

>igbp.f < - read.table(“ISEA3H09/MCD12Q1_V06/ISEA3H09_MCD12Q1_V06_Y2001_
IGBP_Fractions.txt”, header = TRUE, sep = “\t”)

This creates a new data frame, containing the fraction of each ISEA3H cell’s area covered by each of the  
16 IGBP land cover classes, from which the mode attribute we read previously was derived. For each cell, we sum 
these 16 fractions to find the total portion of the cell covered by land. We save this result to a new Total column.

>igbp.f$Total < - apply(igbp.f[, -1], 1, sum)

Finally, we subset the fractions data frame on the new Total column, retaining cells covered 50% or more by 
land (of all classes combined). The summary function allows us to verify the distribution of Total values after 
the subset.

>igbp.f < - subset(igbp.f, Total > = 0.5, select = c(HID, Total))

Fig. 5 ISEA3H09 grid cells for which the 2018 MCD12Q1 land cover class, as determined by the centroid and 
mode attributes, correspond (white) or differ (red).
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> summary(igbp.f$Total)
Min. 1st Qu. Median Mean 3rd Qu. Max.0.5001 0.9970 1.0000 0.9745 1.0000 

1.0000

Following the subset, we retain 56,271 cells, having Total values between 50.01% and 100.00%. Now we 
merge the two data frames, containing MCD12Q1 mode and fraction attributes, using the HID as key. The merge 
function will return the intersection of the two sets: those ISEA3H cells retained in both data frames after the 
subsetting operation performed on each.

>igbp < - merge(igbp.m, igbp.f, by = “HID”)

Finally, we retain 51,047 cells, defining the spatial scope of our macroecological analysis; the new data frame 
contains both mode and fraction attributes for ISEA3H cells covered 50% or more by land, and with a natural 
land cover class predominating. The mode attribute serves as our label for each cell; next, we read the climatic 
variables we will use as predictors, the mean attribute for the 19 bioclimatic variables from WorldClim v2.031.

>bio < - read.table(“ISEA3H09/WorldClim30AS_V02/ISEA3H09_WorldClim30AS_V02_
BIO_Mean.txt”, header = TRUE, sep = “\t”)

We are ready now to assemble our global training dataset. We merge the two data frames containing labels 
and predictors, IGBP land cover classes and WorldClim bioclimatic variables.

>global.train < - merge(igbp, bio, by = “HID”)

Again, the merge function returns the intersection of the two sets; thus, our global training dataset contains 
51,047 cells, each with a label (IGBP land cover class) and 19 predictors (WorldClim bioclimatic variables). 
Given the different coastlines used to bound the MCD12Q1 and WorldClim datasets, it is best practice to ensure 
no null values (−100) were retained in the bioclimatic variables; the summary function allows us to verify the 
distribution of mean annual temperature (BIO01) values in the training dataset.

>summary(global.train$BIO01_Mean)
Min. 1st Qu. Median Mean 3rd Qu. Max.-53.669 -2.420 15.156 8.577 24.215 
32.498

The dataset is ready for use now in training a predictive model. Here we use a decision tree, as implemented 
in the rpart package92; we model the MCD12Q1 mode attribute (column 2 in our training data frame) as a func-
tion of the 19 WorldClim bioclimatic variables (columns 4 to 22). Note that we factor the mode attribute in the 
model formula, so that the rpart function fits a classification tree, rather than a regression tree on the integer 
IGBP land cover class codes.

>global.tree < - rpart(factor(IGBP_Mode) ~., data = global.train[, c(2, 
4:22)])

Fig. 6 Confusion matrix for observed and predicted IGBP land cover.
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This function returns an rpart object, containing, in this case, a fitted classification tree. This object may be 
passed to the predict function, along with the training dataset, to generate a vector of land cover predictions, one 
for each cell in the dataset. The mode attribute vector, and the vector of model predictions, may then be passed 
to the table function, to generate a confusion matrix.

>global.predict < - predict(global.tree, global.train, type = “vector”) 
> table(global.train$IGBP_Mode, global.predict)

The confusion matrix shown in Fig. 6 allows us to compare observed land cover, as defined by the MCD12Q1 
mode attribute, and predicted land cover, as provided by our decision tree. The matrix summarizes both the 
distribution of predicted classes for each observed class, and inversely, the distribution of observed classes for 
each predicted class. These two perspectives on model performance reveal, for example, that our model has 
some difficulty in distinguishing between two tropical land cover classes: evergreen broadleaf forests (IGBP02) 
and savannas (IGBP09). Reading the second row of the matrix, we see that while 4,596 of 5,182 cells (88.7%) 
observed to be evergreen broadleaf forest were correctly classified, most cells of this class which were misclas-
sified were classified as savanna (556 of 5,182 cells, 10.7%). Inversely, reading the second column of the matrix, 
we see that while 4,596 of 6,768 cells (67.9%) classified as evergreen broadleaf forest were observed to belong to 
this class, cells observed to be savanna (1,009 cells, 14.9%) constitute the largest misclassified land cover class.

Further, we can visualize the decision tree, and map the tree’s land cover classifications. The first three splits of 
the decision tree, and the spatial distribution of the predicted land cover classes, are shown in Fig. 7. At the tree’s 
root, maximum temperature of the warmest month (BIO05) below a very low threshold (approximately 6 °C)  
is used to identify permanent snow and ice (IGBP15), primarily in Antarctica and Greenland. For cells with 
a BIO05 value above the threshold, annual precipitation (BIO12) below a very low threshold (approximately 
16 cm) is used to identify barren land (IGBP16), primarily in the Sahara, Arabian Peninsula, and central Asia. 

Fig. 7 The first three splits of the IGBP land cover classification tree, and the spatial distribution of the 
predicted land cover classes.
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Finally, for cells with a BIO12 value above the threshold, BIO12 above a very high threshold (approximately 
1.6 m) is used to identify evergreen broadleaf forests (IGBP02), primarily in the Amazon and Congo Basins and 
the Malay Archipelago. Areas remaining to be classified by further splits are shown in white, and areas excluded 
due to predominantly human-modified land cover are shown in gray.

code availability
R and Python code developed for the Eco-ISEA3H database37 was committed to a public GitHub repository, and 
may be accessed via the following URL: https://github.com/mechenich/eco-isea3h.
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