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CLIMBra - Climate Change Dataset 
for Brazil
andré Simões Ballarin  1 ✉, Jullian Souza Sone  1, Gabriela Chiquito Gesualdo1, 
Dimaghi Schwamback1, alan Reis1, andré almagro  2 & Edson Cezar Wendland1

General Circulation and Earth System Models are the most advanced tools for investigating climate 
responses to future scenarios of greenhouse gas emissions, playing the role of projecting the climate 
throughout the century. Nevertheless, climate projections are model-dependent and may show 
systematic biases, requiring a bias correction for any further application. Here, we provide a dataset 
based on an ensemble of 19 bias-corrected CMIP6 climate models projections for the Brazilian territory 
based on the SSP2-4.5 and SSP5-8.5 scenarios. We used the Quantile Delta Mapping approach 
to bias-correct daily time-series of precipitation, maximum and minimum temperature, solar net 
radiation, near-surface wind speed, and relative humidity. the bias-corrected dataset is available for 
both historical (1980–2013) and future (2015–2100) simulations at a 0.25° × 0.25° spatial resolution. 
Besides the gridded product, we provide area-averaged projections for 735 catchments included in the 
Catchments Attributes for Brazil (CABra) dataset. The dataset provides important variables commonly 
used in environmental and hydroclimatological studies, paving the way for the development of high-
quality research on climate change impacts in Brazil.

Background & Summary
General Circulation and Earth System Models (GCMs/ESMs) play an important role in simulating the physics 
and dynamics of the Earth system, as well as in assessing and understanding projected changes in the global 
climate1,2. The employment of climate models along with observed meteorological data is key to inform policy 
and decision-making based on hydroclimatic modeling3–6. Nevertheless, to provide a large volume of climatic 
data at a global scale, GCMs/ESMs often present (i) coarse spatial resolution (100–300 km), hampering the 
development of reliable and detailed studies at finer scales7 and (ii) systematic biases, leading to misrepresenta-
tion of different statistical properties of observed climate variables8,9. Apart from these two limitations, these 
climate models have intrinsic uncertainties that undermine studies on climate change impacts10. In this context, 
statistical and dynamical downscaling approaches are used to bridge the inherent gap between projected and 
observed data by improving the spatial resolution of GCMs products to a finer scale. Dynamical downscaling 
is based on the integration of Regional Climate Models (RCMs) — which are able to capture local features and 
dynamics to better represent the climate of a specific and limited area — with the initial and lateral boundary 
conditions derived from GCMs11,12. Despite the improvement in GCMs resolution and the incorporation of local 
scale-effects into their projections, RCMs may still contain systematic biases that are propagated through the 
future simulations. These remaining biases, derived from the used GCMs or incorporated during the dynamical 
downscaling procedure due to limited understanding of the processes, may lead to the need of further cor-
rections of the dynamically downscaled product13–15 at a large computational effort16. On the other hand, the 
statistical downscaling is based on statistical transfer functions that adjust the probability distribution function 
of projections to resemble observed data at local/regional sites17. The statistical framework is able to correct 
systematic biases found in the original projections of both RCMs (generally referred to as “hybrid downscal-
ing”18,19) and GCMs using simple modelling structures that require less computational effort20,21. Given these 
advantages, the statistical approach is generally preferred over the dynamical for climate-based studies3,22.

Despite the importance of a dataset with historical and future data for meteorological and hydrological stud-
ies, to our knowledge there is no dataset of bias-corrected climate change data available for the Brazilian territory 
based on the recently released Sixth Assessment Report (AR6) of the Coupled Model Intercomparison Project 
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phase 6 (CMIP6). Brazil is a continental country with diverse hydroclimatic conditions, and climate-related haz-
ards have become more frequent, widespread, and interconnected23–28. Thereby, here we developed the Climate 
Change Dataset for Brazil - CLIMBra, a bias-corrected dataset comprising six important meteorological var-
iables used in hydro-climatic and economic studies related to climate change: precipitation (pr), maximum 
(tasmax) and minimum temperature (tasmin), net shortwave surface radiation (rss), near-surface wind speed 
(sfcWind) and relative humidity (hur). Besides the bias-corrected gridded daily data at a spatial resolution of 
0.25°, we provide an area-averaged, point-based scale data for 735 catchments of the Catchments Attribute 
for Brazil (CABra) large-sample dataset29. The developed dataset consists of bias-corrected historical (1980–
2013) and future (2015–2100) simulations of 19 GCMs/ESMs, forced by the CMIP6 SSP2-4.5 and SSP5-8.5 
scenarios. Our product is of paramount importance to support climate change assessment in the context of the 
water-energy-food nexus and hence inform policy and decision-making.

Methods
Datasets. To generate the bias-corrected product, we used observed data covering the historical period 
(1980–2013) and simulated data covering both historical and future (2015–2100) periods. As observed data, 
we adopted the meteorological dataset developed by Xavier et al.30, which includes gridded daily series with 
0.25° × 0.25° spatial resolution for the six meteorological variables evaluated in this study. This dataset uses data 
from 3,625 ground-based rain gauges and 735 weather stations provided by the National Institute of Meteorology 
(INMET), National Water and Sanitation Agency (ANA), and the Water and Electric Power Department of São 
Paulo (DAEE/SP) as input to produce interpolations. Six different interpolation techniques were evaluated: arith-
metic averaging, thin plate spline, natural neighbor, inverse distance weighting, angular distance weighting, and 
ordinary point kriging. In general, the dataset shows a good performance in describing the weather station obser-
vations and is widely applied in hydrological and climatological studies in Brazil31,32, and also as the ground truth 
to GCMs/RCMs projections assessment and impact studies33,34.

For historical and future projections, we used daily data from 19 CMIP6 GCMs\ESMs (Table 1). The models 
were selected based on the following criteria: (1) availability of daily data for the evaluated climate variables 
under the r1i1p1f1 variant, and (2) nominal spatial resolution up to 250 km. For relative humidity (hur), wind 
speed (sfcWind), and net solar radiation (rss), only 10 GCMs were available at the stipulated conditions. For 
future projected changes, we considered two Shared Socioeconomic Pathways: the middle of the road (SSP2-
4.5) and the fossil-fueled development (SSP5-8.5). The latter scenario represents the high end of future path-
ways with enough emissions to achieve a radiative forcing of 8.5 W.m−2 by 2100, whilst SSP2-4.5 represents the 
medium part of the range of future pathways. The two scenarios are an update of the previous Representative 
Concentration Pathways (RCPs) from the CMIP535,36. The SSPs include mitigation and adaptation efforts based 
on economic and social changes, such as societal-economic development37. There are two underlying reasons 
behind considering these scenarios: (1) since they represent the intermediate (SSP2-4.5) and extreme (SSP5-
8.5) future climate change conditions, they are able to represent a wide range of expected changes in global 
climate dynamics, encompassing other scenarios, such as the SSP3-7.0, which were not available for all evaluated 
CMIP6 GCMs/ESMs at the time of the pre and post-processing tasks; (2) they are the most used future scenar-
ios in Brazilian climate change studies12,33,34,38. The main climatological institute of the country, the National 
Institute for Space Research (INPE), provides RCM-simulated future data for the country considering the two 

Model Country/Region Resolution Reference

MRI-ESM2* Japan 1.12° × 1.12° 60

EC-EARTH3* Europe 0.7° × 0.7° 61

CMCC-ESM2* Europe 0.9° × 1.25° 62

INM-CM4-8* Russia 1.5° × 2.0° 63

NorESM2-MM* Norway 0.9° × 1.25° 64

MPI-ESM1.2-HR* Germany 0.9° × 0.9° 65,66

INM-CM5* Russia 1.5° × 2.0° 67

ACCESS-ESM1-5* Australia 1.87° × 1.25° 68,69

TaiESM1 Taiwan 1.9° × 1.25° 70

NESM3 China 1.9° × 1.9° 71

KIOST-ESM South Korea 1.87° × 1.87° 72

K-ACE South Korea 1.87° × 1.25° 73

GFDL-CM4 USA 1.0° × 1.25° 74

GFDL-ESM4 USA 1.0° × 1.25° 75

ACCESS-CM2 Australia 1.87° × 1.25° 76

HadGEM3-GC31-LL UK 1.87° × 1.25° 77

IPSL-CM6A* France 2.5° × 1.3° 78

UKESM1.0 UK 1.87° × 1.25° 79

MIROC6* Japan 1.4° × 1.4° 80

Table 1. CMIP6-GCMs\ESMs used in our dataset. *Simulations available for all evaluated variables.
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forcing-equivalent CMIP5 RCPs scenarios (RCP4.5 and RCP8.5)11. Therefore, the use of these scenarios here 
may enable future CMIP5-CMIP6 comparison studies.

Pre and post-processing. Given the coarse and different spatial resolutions of the CMIP6 GCMs/ESMs, 
we performed a bilinear interpolation following previous studies (e.g.3,6,10,39) to regrid all models to a common 
0.25° spatial grid. Moreover, to obtain a multi-model ensemble seeking to encompass different representations 
and uncertainties of all evaluated models, the GCMs outputs need to be in the same spatial grid resolution40,41. 
It is worth mention that regridding may severely impact the statistical properties of meteorological variables, 
especially those linked to extreme events42. Hence, such limitation should be considered in future studies using 
our dataset.

Besides the coarse spatial resolution exhibited by GCM/ESMs, they also show an inherent inability to sim-
ulate the present-day climate conditions leading to systematic errors that are propagated for future simula-
tions43. Thus, climate products often require bias correction. Here, we used the Quantile Delta Mapping (QDM) 
approach20 since it explicitly preserves relative or absolute changes in quantiles between historical and future 
simulations44. This method is based on two widely used correction procedures: the quantile delta change and the 
detrend quantile mapping45,46. According to Cannon et al.20, the QDM can be performed in three steps. First, all 
the individual future projected quantiles are detrended. Then, the detrended quantiles are bias-corrected using 
the quantile mapping technique. Lastly, the projected changes are then superimposed on the bias-corrected out-
puts. Let denote o and p as observed and projected data, and h and f as historical and future periods, respectively. 
The definition of the non-exceedance probability of observed (xh,o) and projected historical (xh,p) data, and future 
data (xf,p) are accounted as:

=p t F x t( ) ( ( )) (1)f p f p, ,

p t F x t( ) ( ( ))h p h p, ,=

p t F x t( ) ( ( ))h o h o, ,=

where p and F respectively denote the non-exceedance probability associated with a specific value at time t and 
the empirical cumulative distribution function (ECDF). We adopted the non-parametric probability distribu-
tions as they showed better performance over the parametric ones when downscaling both RCMs and GCMs\
ESMs outputs17. Also, it is easier to apply it to different meteorological variables, despite their different underly-
ing distributions3. Then, we computed a change factor (Eq. 2), which associates the historical simulation output 
with that of the future period:
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where F−1 indicates the inverse ECDF; and ΔM(t) and ΔA(t) are respectively the multiplicative and the additive 
change factor between simulated quantiles of the historical and future periods. The former is suitable for pre-
cipitation variables preserving relative changes between quantiles, whereas the latter preserves absolute changes 
in projected quantiles, suitable for temperature-derived variables20,44. For precipitation, a frequency adaptation 
suggested by Themeßl et al.47 was also applied in order to account for a methodological problem that arises when 
the frequency of modelled dry days is greater than the frequency of observed dry days, resulting in a systematic 
wet bias. Moreover, we used a wet-day threshold of 1 mm/day following previous studies3,17,48 to minimize driz-
zle effects.

The bias-corrected projected data are computed according to Eq. 3, following the (i) quantile-mapping tech-
nique, which statistically transforms the distribution of the projected data to resemble the distribution of the 
observed data; and (ii) the change factor approach, which superimposes relative (or absolute) changes between 
historical and future projected values:
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We considered the entire observed period (1980–2013) to correct the future projections (2015–2100) with 
the QDM algorithm. Both pre and post-processing tasks, depicted in Fig. 1, were carried out using the down-
scaleR package, which is an R-based framework developed to address the needs of different climate impact stud-
ies within the Climate4R project18,49. Despite the wide range of applications of QDM in climate change impact 
assessments, we must point out the main limitations and uncertainties related to its usage. In general, the QDM 
(1) shows high sensitivity to the historical reference data used for calibration and (2) may be affected by the 
downscaling process due to a resolution mismatch between the model simulations and observations50. To reduce 
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this uncertainty, high-quality reference data are required. Therefore, we used a high-resolution meteorological 
gridded dataset30 that comprises the largest number of ground-based observations in Brazil. We also highlight 
our effort to mitigate the introduction of more uncertainty and overcome some methodological limitations for 
the development of a reliable product for climate change assessment in this country. Nevertheless, it is known 
that the use of bias-correction methods is controversial51 as they are not able to retain spatial and intervariable 
dependencies52. Lastly, bias-corrections methods may produce physically unrealistic values and also hind some 
fundamental models deficiencies50,51.

Catchment-scale dataset. The development of a regional gridded meteorological dataset aims at advancing 
hydro-climate studies in Brazil. Nevertheless, working with gridded climate variables is not a trivial task, often 
requiring high computation effort. Therefore, we also developed a catchment-scale version of the dataset in order 
to assist climate-change impact studies/applications (Fig. 1) for both scientific and technical fields. To this end, we 
rescaled our gridded dataset to match the catchments in the CABra large-sample dataset29. CABra includes a set of 
more than 100 observed climate, hydrological, and physiographic attributes for 735 Brazilian catchments (Fig. 2).

For each CABra’s catchment, we generated a gridded meteorological daily series comprising its extension. 
In sequence, we spatially averaged the grid-cell time series within the catchment boundaries. This process was 
conducted for each variable and climate change scenario. Given the continental extensions of Brazil, the country 
shows a large range of catchment areas. Thus, for some catchments, the daily time series were obtained using only 
one grid and, for others, averaging more than 50 grids. Moreover, our gridded dataset only comprises the Brazilian 
territory, and hence the averaged daily time-series only accounted for the catchments’ area within the country 
boundaries. To compute the spatial averaged daily time series, we weighted the grids according to their latitude, 
as, for regular grids, the grid cell’s area changes as you move towards the poles. It is also worth noting that the 
averaged time-series may hinder extreme events in large catchments since extreme high or low events recorded in 
a specific grid may be smoothed by non-extreme events recorded in neighboring grids when taking the average.

Data Records
The present study describes a gridded dataset (0.25° × 0.25°) and a spatially averaged dataset at a 
catchment-scale. The first includes raw and bias-corrected gridded (netCDF) daily time-series (pr, tasmax, tas-
min, rss*, sfcWind*, and hur*) of 19 (10*) CMIP6 GCMs/ESMs (Table 1) for both the historical (1980–2013) 
and future (2015–2100) periods. For the future period, two CMIP6 SSP-scenarios were considered: SSP2-4.5 and 

Fig. 1 Flowchart representing the core steps used to generate the CLIMBra’s products. Step 1 and 2 represent 
the regrid and bias-correction tasks, respectively. Step 3 represents the framework required to rescaled the 
gridded dataset to the CABra’s catchments.
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SSP5-8.5. The second part of the dataset consists of a point-based (.csv) daily time-series derived from the afore-
mentioned bias-corrected gridded dataset for 735 Brazilian catchments in the CABra dataset29. The time-series 
from this dataset were also generated considering the two SSP scenarios simulated by the 19 (10) CMIP6 GCMs\
ESMs. Both datasets are freely available (CC0 license) at Ballarin et al.53.

technical Validation
Bias-correction performance. Mean and extreme values. To get a preliminary overview of the bias-cor-
rection performance in describing the observed data, we computed the relative bias between the estimated and 
observed long-term means for the historical period (Fig. 3). We used absolute bias for the variables tasmax and 
tasmin since the denominator approaches to zero in many catchments, resulting in very high relative bias values. 
For both raw and bias corrected datasets, we estimated the long-term mean for each individual model and then 
computed the multi-model ensemble. We repeated this process for all validation analyses of the study. The bias 
correction significantly improved the performance of the historical simulations in describing observed long-term 
mean values for all the meteorological variables by reducing the bias to approximately zero.

We found the largest bias for sfcWind and hur when analyzing the ensemble data prior to bias correction. For 
sfcWind, overestimations of more than 30% were observed throughout the country. The same was noted in hur, 
but with the opposite signal. In general, the raw simulations were unable to capture long-term mean maximum 
and minimum temperatures. Similar to the findings of Mishra et al.3, the raw multi-model ensemble exhibited 
an overall cold bias (−1.70 °C) for tasmax and a warm bias (0.87 °C) for tasmin. Regarding the long-term mean 
precipitation, we observed an overall wet relative bias over the country (11.74%), except in the Amazon and 
Pampa biomes (northern and southern of Brazil, respectively) where we noted a relative dry bias. In general, the 
CMIP6 models exhibited good performance in estimating the long-term mean rss, showing a smaller mean bias 
(−4.34%) compared with the deviations found for the other variables.

In the remainder of this section, we discuss the dataset’s performance considering our catchment-scale prod-
uct, which is the main product of this study, since it provides ready-for-use meteorological time-series required 
for most hydrological studies and climate change impacts simulation. Nevertheless, similar conclusions can 
be drawn for the gridded dataset, which was the basis for the development of the catchment-scale product. To 
explore the models’ performance beyond the characterization of mean values, we also computed the bias in 
the variables’ long-term extreme properties: 90th (and/or 10th) percentiles and maximum (and/or minimum) 
records (Figs. 4, 5). It is worth mentioning that the spatial distribution of the bias in the long-term mean for the 
gridded (Fig. 3) and catchment-scale datasets is alike (the first column in Figs. 4, 5, plots a, d, and g), corrobo-
rating their equivalence in terms of performance. That is, although we spatially averaged the gridded dataset, the 
catchment-scale product is able to maintain the spatial distribution of relative bias.

In general, the CMIP6 models exhibited poor performance in simulating extreme values. The raw 
multi-model ensemble showed an overall warm bias (overestimation) for the long-term 10th percentile of tas-
min and a cold bias (underestimation) for the long term 90th percentile of tasmax. For the long-term maximum 
tasmax and minimum tasmin, we found an overall warm bias with a more heterogeneous spatial distribution 
than those observed in the long-term extreme percentiles. Interestingly, tasmax and tasmin showed a contrast-
ing spatial distribution of bias respectively for the maximum and minimum values. This highlights that the raw 
output of the CMIP6 models fails to capture both extreme values and the temperature’s amplitude.
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Fig. 2 (a) Streamflow gauge coordinates of CABra’s catchments, colored according to their mean elevation  
and sized by their area. (b) Histogram of catchments’ area. (c) Distribution of catchments per Brazilian biome. 
(d) Six main Brazilian biomes.
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Raw simulations of precipitation (pr) presented an absolute relative bias of up to 60% and 40% for the 
long-term 90th percentile and maximum values, respectively (Fig. 4), corroborating with the findings of Pereima 
et al.54. Similar to tasmax and tasmin, the spatial distribution of the precipitation’s relative biases in the long-term 
extreme percentile was alike to those found for the long-term mean: dry biases in the Amazon and Pampa 
biomes and an overall wet bias in the rest of the country. The long-term maximum precipitation did not show 
a clear spatial pattern. Such as observed in the mean long-term, the climate models were not able to character-
ize the extreme values of hur and sfcWind. For the former, underestimations of more than 20% and 50% were 
respectively found for the 90th and 10th percentiles. For the latter, the errors were even more significant, with 
relative biases of around 80% and 100% for the 90th and 10th percentiles, respectively. Again, the simulations 
of rss exhibited the best performance with relative biases of nearly 10% of magnitude and a tendency to slightly 
underestimate the observations.

Fig. 3 Biases in long-term mean precipitation, maximum and minimum temperature, net shortwave surface 
radiation, relative humidity, and near surface wind speed considering the gridded dataset in both raw and  
bias-corrected conditions. The limits of Brazilian biomes are indicated in black borderlines.
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It is clear that the bias correction procedure significantly improved the estimations (Fig. 5), successfully 
removing most of the bias in both long-term mean and extreme values for almost all variables, except for the 
long-term maximum precipitation, where the improvement was not so perceptible. After the correction, the bias 
reduced to nearly 0% in all catchments (see histograms in Fig. 5). This is true even for hur and sfcWind, which 
were significantly misrepresented by the raw GCMs/ESMs. These results indicate that the QDM was able to 
overcome one of the main limitations of commonly used bias-correction methods: correcting systematic errors 

Fig. 4 Biases in the long-term mean and extreme values of precipitation, maximum and minimum temperature, 
net shortwave surface radiation, relative humidity, and near surface wind speed (catchment-scale dataset) for 
the raw simulations. Histograms in each of the panels indicate the frequency of occurrence of bias.
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in different quantiles of the probability distributions of raw simulations, such as biases present in the mean and 
in the tail of the GCMs probability distribution52.

Seasonality. We assessed the intra-annual variability of pr, tasmax, and tasmin in each Brazilian biome (Figs. 6, 7  
for raw and bias-corrected datasets, respectively). The intra-annual performance of the other variables is avail-
able in the accompanying Supplementary Material (Figures S1, S2 – Supplementary File 1) since these variables 
are not available in all 19 CMIP6 climate models. This investigation seeks to confirm if the simulations are able 

Fig. 5 Biases in the long-term mean and extreme values of precipitation, maximum and minimum temperature, 
net shortwave surface radiation, relative humidity, and near surface wind speed (catchment-scale dataset) for 
the bias-corrected simulations. Histograms in each of the panels indicate the frequency of occurrence of bias.
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to reproduce the intra-annual cycle of the evaluated variables, an important aspect to assess especially for hydro-
logical modelling purposes. Overall, both the raw and bias products exhibited good performance in reproducing 
the seasonal cycle of pr, tasmax, and tasmin (Figs. 6, 7). The confidence intervals, defined by the minimum and 
maximum values found in the 19 GCMs\ESMs, encompassed the observed pattern of the three variables in all 
biomes.

The smallest uncertainties, indicated by the confidence intervals, were found for tasmin followed by pr and 
tasmax. The models showed excellent performance in reproducing the intra-annual variability of tasmin, with a 
narrowed confidence interval and an ensemble mean close to the observations. Despite the large hydroclimatic 
variability in the country, we noted a clear seasonal pattern in pr. Both the raw and bias-corrected datasets 
exhibited a larger uncertainty in the characterization of the rainy season (October to March), as indicated by 
wider confidence intervals and a large difference between the ensemble mean and observations. Similar results 
were also found by Almazroui et al.55 when evaluating the performance of CMIP6 models in characterizing 
mean properties of rainfall and temperature in South America. In fact, more extreme rainfall events, which were 
significantly misrepresented by the models (Figs. 3, 4), are more likely to be experienced in the rainy season. In 
contrast, in the dry period, the ensemble mean approaches the observation showing also narrower confidence 
intervals. The exception here is the Pampa, where we did not find a clear pattern in both rainy and dry seasons 
since they are not well-defined in this biome33. An opposite situation was found for tasmax: larger confidence 
intervals in the dry period when the highest temperature amplitude and, consequently, climatic variability occur 
in Brazil56. In all biomes, raw models showed a slight underestimation of tasmax.

The bias-corrected simulations exhibited, again, excellent performance in characterizing the observed data 
(Fig. 7). They were able to significantly reduce the average biases approaching the observed and simulated 
monthly cycles, in addition to reducing the uncertainties expressed by narrower confidence intervals. Despite 
this, the limitations present in the raw simulations remained (Fig. 6), albeit with a less clear pattern: greater 
uncertainties in the simulation of pr and tasmax in the rainy and dry seasons, respectively. Similar conclusion 
can be drawn for rss, hur, and sfcWind (Figures S1, S2 - Supplementary File 1). Although not as significantly as 
observed for the tasmax, tasmin and pr, the bias correction improved the performance of the raw simulations in 

Fig. 6 Long-term (1980–2013) monthly mean of precipitation and maximum and minimum temperature in 
each Brazilian biome. Highlighted lines represent the intra-annual cycle simulated by the raw multi-model 
ensemble. Dashed lines indicate the observed mean intra-annual cycle. Confidence intervals represent the 
maximum and minimum values simulated by the raw 19 CMIP6 GCMs/ESMs.
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describing the monthly cycles of these variables, which showed smaller uncertainties and better accuracy. This 
can be explained by the fact that the GCMs/ESMs showed a lower performance in the characterization of the 
seasonality of these three variables (Figure S1 – Supplementary File 1), especially sfcWind and hur.

Projected changes. Mean and extreme values. To analyze projected changes simulated by the 
bias-corrected CMIP6 models, we computed relative changes between the historical (1980–2013) and distant 
future (2070–2100) periods considering the long-term mean and extremes properties for both SSP2-4.5 and 
SSP5-8.5 scenarios (Figs. 8, 9, respectively). For tasmax and tasmin, we computed absolute changes (°C) to avoid 
extremely high values of relative changes due to denominator values close to zero. Projected changes simulated 
by the raw models are shown in the Supplementary Material (Figures S3, S4, respectively). It is worth noting that 
the projected changes were similar for both raw and corrected simulations (Fig. 8 and S3 for SSP2-4.5 and Fig. 9 
and S4 for SSP5-8.5), indicating that the QDM method was capable to overcome another limitation of commonly 
used bias correction methods: it did not deteriorate trends and/or relative changes projected by the models, which 
may hamper the fully understanding of climate change effects57,58.

As expected, the changes simulated by the SSP5-8.5 scenario exhibited greater magnitude than those simu-
lated by the SSP2-4.5. Among the six evaluated variables, tasmax, tasmin, pr, and sfcWind presented significant 
changes (>10%) between historical and future simulations in most parts of the Brazilian territory considering 
both scenarios. For hur and rss, the projected changes showed a smaller magnitude (<10%). Long-term mean 
precipitation and the 90th percentile exhibited similar spatial patterns of change over the country. A reduction 
in projected long-term mean pr was observed in the Amazon, Caatinga, and part of the Cerrado biomes. This 
expected reduction also corroborates the findings of Du et al.59. In the Pampa and Atlantic Forest biomes, a 
slight increase is expected. Similar conclusions can be drawn for the 90th percentile of precipitation. This pat-
tern of change is more evident considering the SSP5-8.5 scenario (Fig. 9). Regarding the long-term maximum 
pr, a significant increase was observed (>10% for the SSP2-4.5 scenario and >20% for the SSP5-8.5 scenario) 
throughout the country, even in the biomes where a reduction in mean precipitation was projected (Figs. 8, 9).

Fig. 7 Long-term (1980–2013) monthly mean of precipitation and maximum and minimum temperature in 
each Brazilian biome. Highlighted lines represent the intra-annual cycle simulated by the bias-corrected multi-
model ensemble. Dashed lines indicate the observed mean intra-annual cycle. Confidence intervals represent the 
maximum and minimum values simulated by the bias-corrected 19 CMIP6 GCMs/ESMs.
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In general, an increase in both tasmax and tasmin was observed in the two scenarios in Brazil. The projected 
increase in the long-term maximum temperature is slightly higher in the Amazon, Pantanal, and part of the 
Cerrado biomes than in the others. Furthermore, the positive magnitude of change in extreme values is larger 
than that projected for the long-term mean values. That is, both scenarios projected changes with greater mag-
nitude in the extreme characteristics of tasmax (maximum and the 90th percentile) than in its mean values This 
is also valid for tasmin, but with a lower difference between magnitudes of change.

The projected changes in rss and hur showed smaller magnitude when compared with the other variables. 
For the former, an average increase in the long-term mean of about 2% and 4% is projected in the SSP2-4.5 and 

Fig. 8 Relative changes in the long-term mean and extreme values of precipitation, maximum and minimum 
temperature, net shortwave solar radiation, relative humidity, and near surface wind speed between the 
historical (1980–2013) and distant future (2070–2100; SSP2-4.5) periods (bias-corrected catchment-scale 
dataset). Histograms in each panel indicate the frequency of occurrence of relative changes.
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SSP5-8.5, respectively. Unlike pr, tasmax, and tasmin, there is no clear difference between the expected changes 
in mean and extreme values of rss, except the 10th percentile in the SSP5-8.5 scenario that shows a negative 
variation in the Pampa biome and in part of the Atlantic Forest biome and a positive variation in the central 
region of the country. The hur variable also showed a similar pattern of projected changes in the long-term mean 
and extreme values across the country, indicating a slight increase of <2.5% in the SSP2-4.5. For the SSP5-8.5 
scenario, we noted slightly larger changes (<5%) in both the mean and extreme values. Interestingly, the 10th 
and 90th percentiles showed an opposite spatial distribution in the SSP5-8.5 scenario, in which we found larger 
increases in the 90th percentile and smaller increases in the 10th percentile of hur. Lastly, large increases in 

Fig. 9 Relative changes in the long-term mean and extreme values of precipitation, maximum and minimum 
temperature, net shortwave solar radiation, relative humidity, and near surface wind speed between the 
historical period (1980–2013) and the distant future (2070–2100; SSP5-8.5) (bias-corrected catchment-scale 
dataset). Histograms in each of the panels indicate the frequency of occurrence of relative changes.
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the sfcWind of 15% in SSP2-4.5 and 25% in SSP5-8.5 are expected especially in the Pampa (South region) and 
Atlantic Forest biomes (Southeast region). In the other regions, smaller increases were noted. It was also not 
possible to distinguish different spatial patterns between the changes in mean and extreme events.

Seasonality. Significant changes in intra-annual cycles are also expected (Fig. 10). For better visualization, we 
only detailed the relative changes (multi-model ensemble) expected in the monthly averages of pr, tasmax, and tas-
min. The results for the other three variables are provided in the Supplementary File 1 (Figure S5). We considered 
the bias-corrected simulations of the historical (1980–2013) and ‘distant’ future (SSP5-8.5; 2070–2100) to compute 
the relative changes. However, very similar changes were observed for the simulations without bias correction.

Changes in projected precipitation’ seasonal cycles varied among the biomes (Fig. 10). For the Atlantic Forest 
and Cerrado, a shift in seasonality is projected, indicated by a large increase in precipitation in the first months 
of the dry period (April to July) and a reduction in the last months (August and September). For the Amazon, 
Caatinga, and Pantanal biomes, an overall decrease in precipitation is expected, but with the maintenance of 
seasonal cycles. Finally, a general increase in precipitation is projected in the Pampas biome, however, with a 
heterogeneous distribution throughout the year: larger variations were observed at the beginning of both dry 
(April to June) and rainy seasons (October to December). We also found positive relative changes for tasmin 
and tasmax. For the former, a more significant increase is projected between May and September in all biomes, 
especially in the Pampas, Pantanal and Atlantic Forest biomes where the increase was more significant (up to 
35%). The projected increase in tasmax is expected to be more uniform throughout the year than those projected 
for tasmin, being concentrated in the second half of the year, except for the Caatinga and Amazon biomes, which 
presented a similar rate of increase throughout the year for both tasmin and tasmax.

Usage Notes
Here, we described the CLIMBra - Climate Change Dataset for Brazil, which provides raw and bias-corrected 
daily time series of six meteorological variables at both gridded and catchment scales using simulations of up 
to 19 CMIP6 GCM/ESMs. The simulations were provided for both historical (1980–2013) and future periods 
(2015–2100) forced by two different emission scenarios: SSP2-4.5 and SSP5-8.5. CLIMBra products may be 

Fig. 10 Relative changes in the long-term mean intra-annual cycles of precipitation and maximum and 
minimum temperatures between the historical (1980–2013) and distant future (2070–2100, SSP5-8.5) periods. 
Highlighted lines represent the changes in the intra-annual cycle simulated by the bias-corrected multi-model 
ensemble.
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useful for different hydroclimatic purposes such as hydrological modeling and climate change impact assess-
ment. Moreover, CLIMBra may also be of interest to users not only in the hydrometeorological field but also in 
others such as agriculture, public health, and ecology. The high-resolution of the gridded data (0.25° × 0.25°) is 
key to developing regional assessments, providing information to decision and policy-making not only in Brazil 
but also in South America given the Brazil’s continental proportion and its role in global climate dynamics.

Our main product, the catchment-scale dataset, is provided as comma-separated values format (.csv), which 
is easier to handle and download in comparison with netCDF files. Both the gridded and catchment-scale 
datasets are freely available at the Science Data Bank (https://doi.org/10.57760/sciencedb.02316). Despite the 
importance of the developed product, it is important to highlight some of its limitations. (1) Data users should 
be aware of significant bias when using our raw database due to its weak performance in representing observa-
tions, depending on its application. Thus, a performance analysis should be conducted to investigate whether 
the raw historical data are able to simulate observations. (2) Even exhibiting a better performance than the 
raw simulations (mainly in reproducing seasonal variability and extreme properties of the evaluated varia-
bles), the bias-corrected products may present inherent uncertainties, physically unrealistic values, and hide 
some fundamental deficiencies presented by the climate models. Finally, (3) data users should consider that the 
area-averaging process used to develop the catchment-scale dataset may hinder or smooth extreme events and 
misrepresent transboundary catchments.

Code availability
Pre- and post-processing tasks were carried out using the R-packages of the Climate4R project, extensively 
described in Bedia et al.18 and Iturbide et al.49. This framework was developed to address the needs of different 
climate-impact studies and includes a roll of R-packages to access, pre- and post-process, and visualize climate 
data. All the packages and documentation, including tutorials and example-notebooks, are available through the 
following Github link: https://github.com/SantanderMetGroup/climate4R.
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