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a benchmark dataset for binary 
segmentation and quantification of 
dust emissions from unsealed roads
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the generation of reference data for machine learning models is challenging for dust emissions due to 
perpetually dynamic environmental conditions. We generated a new vision dataset with the goal of 
advancing semantic segmentation to identify and quantify vehicle-induced dust clouds from images. 
We conducted field experiments on 10 unsealed road segments with different types of road surface 
materials in varying climatic conditions to capture vehicle-induced road dust. A direct single-lens reflex 
(DSLR) camera was used to capture the dust clouds generated due to a utility vehicle travelling at 
different speeds. A research-grade dust monitor was used to measure the dust emissions due to traffic. 
A total of ~210,000 images were photographed and refined to obtain ~7,000 images. These images were 
manually annotated to generate masks for dust segmentation. the baseline performance of a truncated 
sample of ~900 images from the dataset is evaluated for U-Net architecture.

Background
Unsealed roads are the largest component of the road network in many countries, including Australia, New 
Zealand and South Africa, where unsealed roads amount to approximately 60%, 40%1 and 75%2 of all roads, 
respectively. Dust emission from these roads is a serious issue, as it has adverse health and environmental 
impacts3,4. Furthermore, the generated dust cloud reduces road visibility5 leading to traffic hazards6,7. Dust is 
essentially the loss of material from the road surface, which is an indication of the degree of deterioration of an 
unsealed road8. In order to determine the most appropriate maintenance strategy and minimise dust emissions, 
the dust generated needs to be quantified. Multiple methods exist to measure dust emissions from unsealed 
roads. The AP-42 dust model developed by the United States Environmental Protection Agency (USEPA) 
estimates the quantity of particles with diameters less than or equal to 10 µm (PM10)9; however, this empirical 
model shows discrepancies with in-situ dust measurements10. There are various field-based methods for phys-
ical measurement of dust in terms of mass or volumetric density. These methods vary from vacuum pumps to 
light-scattering systems11–14. Recently, several research groups have investigated the performance of different 
machine learning (ML) methods in detecting dust in large-scale dust events observed by satellites utilising dif-
ferent dust spectrum signatures such as empirical thresholds, dust false colour imaging, dust index15–17, deep 
blue algorithm18 and K-means clustering19. However, the applicability of these methods to localised dust events, 
such as dust emissions from unsealed roads is still questionable. Further, the sensitivity of these methods to 
spectral bands used during training has not yet been examined. In a recent study, encoder-decoder ML models 
were used to perform dust segmentation for satellite images of dust storms on Mars20. However, more advanced, 
recently-developed ML models with more components than encoder-decoder models could be used for more 
accurate dust segmentation. Another study used smartphones to gather images of dust emissions from unsealed 
roads and collected visual indicators for further image analysis using different filters; however, only dust classifi-
cation and dust severity were reported, and the dataset is not publicly available21. Researchers have also explored 
different classification methods for dust detection in satellite data, such as vector machines and random forests22, 
and found that the algorithms perform better than the statistical techniques23. Further, a classification study was 
carried out on dust emissions in a coal preparation plant by localising particle overlapping regions and feature 
learning through a discriminatory network24. Unlike classification techniques, semantic segmentation has an 
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advantage as it could distinguish the boundary of the object and the object area that requires identification, 
providing semantic segmentation with an upper hand on quantification problems. A reliable dust measure-
ment technique should be able to recognise different sizes of particles. Image processing and analysis cannot do 
this directly, as most particle sizes are too small to capture in a single pixel. However, if the particles combine 
together (e.g. in a dust cloud), pixel-wise dust detection of an image becomes possible25. Past studies have used 
supervised machine learning methods to recognise dust pixels in satellite images. Trained models are then used 
to determine whether an observed pixel on the satellite image is dust26–28.

The application of supervised machine learning tools for the detection of dust from unsealed roads is still 
very new. The major limitation of supervised machine learning is the requirement of a large training set of 
images29 from unsealed roads in which dust pixels are labelled. The manual pixel-wise labelling of images is 
labour-intensive and very time-consuming30. However, a dataset consisting of raw and labelled images remains 
essential for use in machine learning techniques to accurately identify and quantify dust. Our dataset offers 
~7,000 ground truth images and ~7,000 annotated images in a benchmark set, enabling its use for training deep 
learning models to recognise the dust pixels on unsealed roads.

Methods
Field experiments were designed to gather images of vehicle-induced road dust with their corresponding 
dust concentrations. Ten unsealed road segments in Victoria, Australia were selected for the conduct of the 
experiments.

test locations. Figure 1 provides details about the roads and a picture of the surface of each road segment.

test setups. Data were collected in mobile and stationary test set-ups for vehicle speeds ranging from 
10 km/h to 90 km/h depending on safety considerations and the local road rules.

In the stationary set-up, the camera and the dust monitor were mounted on the side of the road. Two indi-
vidual test configurations were applied, depending on the positioning of the camera. The camera either had a 
longitudinal view of the road or a side view of the road as the test vehicle was driven past it. The two test config-
urations are shown schematically in Fig. 2a,b. The actual experimental set-ups for the stationary configuration 
are shown in Fig. 3a,b.

In the mobile set-up, the vehicle was driven along the roads with the camera and the dust monitor attached 
to the rear, capturing the background of the rear view. The schematic and the actual test set-ups are shown in 
Figs. 2c, 3c, respectively.

Dust measurement. A research-grade real-time dust monitor, the DustTrakTM DRX Aerosol Monitor 8533 
from TSI, was used in this study. It is able to simultaneously measure both mass and size fraction continuously 
every second using the light-scattering laser photometric method31. Dust measurements in terms of particulate 

Fig. 1 Details of the test road segments and the nature of the surface of each road segment. Images from 
Hughes Road, Muir Road, Wallace Road, Ryan’s Lane and Finchs Road were used for training and the images 
from Peak School Road, Sandy Creek Road, Toynes Road, Box Forest Road-1 and Box Forest Road-2 were used 
to produce maximum dust clouds.
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matter (PMx) of different sizes such as PM1, PM2.5, PM4, PM10 and total particulate matter were obtained from 
the dust monitor for each experiment. (Note: PMx refers to particulate matter less than or equal to x microns). In 
future studies, these dust measurements will be used in conjunction with image data to develop a pragmatic tool 
to quantify vehicle-induced dust from images.

test vehicle. An Isuzu D-Max or a Nissan Navara ST was used for field experiments, and their cross-sections 
are provided in Fig. 432–35. Other characteristics of the test vehicles are provided in Table 1.

image collection. The images were collected from videos captured by a Canon EOS 200D direct single-lens 
reflex (DSLR) camera mounted on a tripod at fixed focal length and 25 frames per second (fps). The camera was 
positioned according to the test set-up. Multiple angles and positions for the camera were selected to capture 
most of the dust cloud before it dispersed as well as background features. The dust monitor was placed in the 
wind-dominant direction so that the dust cloud reached the sampling inlet of the dust monitor. Video recording 

Fig. 2 Schematic diagram of test set-ups. (a) shows stationary set-up with camera capturing longitudinal view 
of the road, (b) shows stationary set-up with camera capturing side view of the road, and (c) shows mobile 
set-up with camera attached to vehicle capturing rear view while in motion.

Fig. 3 Real arrangement of instruments at sites. (a) shows stationary set-up with camera capturing longitudinal 
view of the road, (b) shows stationary set-up with camera capturing side view of the road, and (c) shows mobile 
set-up with camera attached to vehicle to capture rear view while in motion.

(a) (b)

Fig. 4 Cross-sections of the test vehicles used for field experiments. (a) Isuzu D-Max, (b) Nissan Navara ST. All 
dimensions are in millimeters.
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was started prior to the vehicle beginning to move in order to capture the environment before the dust cloud 
formed. Therefore, the dataset includes images of the emergence, dissipation and disappearance of the dust cloud, 
capturing the entire phenomenon. The inclusion of images without dust avoids over-fitting of the dataset.

image selection. The videos were captured at 25 fps. We selected one image from every 25 frames in a given 
second and attributed the selected image to that particular second. The image was selected in order to have a 
unique data point based on the quality of the image by visual inspection. Images with issues such as blur due to 
motion, etc. were discarded.

annotation. The task of annotation of an image requires that each pixel of the image be labelled as belong-
ing to dust or non-dust. The annotation process starts with converting the selected RGB image to a gray-scale 
image, dust is then labelled in white and everything else is labelled in black, generating an image with black and 
white pixels in different shades. Care was taken to detect very minor to stark differences in dust clouds and accu-
rately annotate them, including transparent regions such as the dust cloud boundary and background. Pixel-wise 
annotation was performed by two mid-level engineers and verified by a senior engineer and a senior academic 
supervisor. The annotated images were also reviewed by a senior engineer, who is an expert in dust monitoring 
in unsealed road environments, representing road contractors. It is apparent that there is no definite boundary 
for dust clouds; however, in the annotation process, we demarcated the boundary visible in the image. The overall 
annotation process took 1500 + hours.

image post-processing. To make manually-annotated images more machine learning-friendly, the images 
need to be binarized based on pixel intensities. This was done using Otsu’s thresholding method30 to generate a 
new binary image known as a segmentation mask.

Let X Y Z( , , )i i i i
n

1X = =  be a labelled set with n number of samples, where each sample (Xi, Yi, Zi) consists of an 
image Xi ∈ℝC × H × W, the corresponding annotated image Yi ∈{0, 1}C × H × W and its thresholded image Zi ∈{0, 1}H × W. 
Each Xi is resized so that the height (H) = 1024 pixels, the width (W) = 1024 pixels and the class (C) = 3 for RGB 
images. Pixels with 0 and 1 represent the non-dust and dust pixels, respectively. Then, Zi = Otsu(Yi) where Otsu() is 
the Otsu’s thresholding function.

Data Records
The URDE dataset is available from Figshare (https://doi.org/10.6084/m9.figshare.20459784)36. In the repository, 
there are three folders, RandomDataset_897, SequentialDataset_7k and Dust Readings. SequentialDataset_7k 
folder has all the images from the experiments and a Google search. RandomDataset_897 folder has two fold-
ers containing 800 images in the Training folder and 97 images in the Validation folder. The original dataset 
is SequentialDataset_7k. RandomDataset_897 is a sub-sample of SequentialDataset_7k, selected based on the 
similarity of consecutive images. To minimise undesirable over-fitting phenomena in machine learning and 
reduce bias, visually similar consecutive images were removed. RandomDataset_897 is a representative of the 
larger dataset SequentialDataset_7k and it is sufficiently large to segment road dust with high accuracy and pro-
duce optimal results. The Dust readings folder has dust images corresponding to the maximum dust cloud and 
a spreadsheet containing the maximum dust concentrations corresponding to that dust cloud. We currently use 
the dust concentration data to develop a practical dust prediction model for use in the maintenance of unsealed 
roads. For each image in the folder, an annotated image and a segmentation mask exist in respective sub-folders. 
RandomDataset_897 was included so that any researcher could reproduce our results or reduce unnecessarily 
longer training time upon checking for the trainability of new ML models. SequentialDataset_7k is included for 
future works, in particular, where sequential images are advantageous. Figure 5 illustrates the file structure of 
the repository.

technical Validation
The original images, annotated images and produced secondary images were validated for quality and traina-
bility using the U-net architecture. U-net was selected as it performs moderately well for binary segmentation 
tasks across multidisciplinary datasets, and it is the root architecture for many modern architectures such as 
DenseUNet37. In Fig. 6, we present qualitative results for our dataset with baseline variables of the architecture 
and hyper-parameters. We conducted a comprehensive analysis of the dataset for multiple state-of-the-art ML 
algorithms, and the results showed that the accuracy of segmentation of dust by different ML models increases 
from the pioneering vanilla Unet to more advanced architectures such as DeepLabV3.

Segmentation performance evaluation. To characterise the results of our experiments, we chose the 
Dice Similarity Coefficient (DSC)38 (Eq. 1) and the Loss. The two parameters are plotted against the number of 

Property Isuzu D-Max Nissan Navara ST

Ground clearance unladen (mm) 235 225

Kerb weight (kg) 1860 1944

Overall length (mm) 5295 5120

Aerodynamic drag coefficient 0.47 0.37

Table 1. Properties of test vehicles.
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Unsealed Road Dust Emissions (URDE)
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Fig. 5 Data repository structure.
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Fig. 6 Visualisation of segmentation. (a) Original images from the dataset, (b) Manually annotated images, 
(c) Images segmented using Otsu’s thresholding, (d) Dust cloud predicted by U-Net. Dust cloud boundary is 
demarcated by yellow dotted lines in all images.
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epochs for the training as shown in Fig. 7. Table 2 shows the quantitative results and hyper-parameters from eval-
uation. The training platform used for evaluation is described in Table 3.
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⋅ + +
DSC A B

A B
A B
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TP FP FN

( , )
2 2
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where, A and B are sets of voxels of ground truth and the segmented images, respectively. TP, FP and FN are the 
total number of true positive voxels, false positive voxels and the false negative voxels, respectively.

For training, the batch size and number of epochs were selected to be 4 and 500, respectively. The batch size 
of 4 means that four images are processed before the internal model parameters are updated. By making the 
number of epochs 500, the model does 500 complete iterations through the training dataset. The input layer of 
the ML model accepts an RGB image vector with 256 × 256 resolution. We selected 256 × 256 resolution con-
servatively to get the best performance without having a bulkier ML model because high input resolutions expo-
nentially increase the model parameters and subsequently the model size without any added benefit to precision.

precision and repeatability of data. In the annotation process, randomly sampled images from the data-
set were annotated independently by two annotators. The annotated images were reviewed independently by 
a senior engineer and a senior academic supervisor. Similar image sets annotated by the two annotators were 
checked for trainability using U-Net architecture, and the DSC was evaluated for comparison to ensure all sec-
ondary data are repeatable.

Limitations. Several limitations of the proposed method were identified as follows:

 1. The dataset contains images where the background or the road in the image does not complement the ap-
pearance of the dust cloud due to its visual similarity. This results in a “camouflage effect” where the model 
is unable to distinguish between the dust cloud and the background or the road. Therefore, a part of the 
background or the road may be misrecognised as dust.

 2. A majority of the images in RandomDataset_897 folder includes ~800 images collected from experiments 
conducted in Victoria, Australia. The 897 images include 85 copyright-free images from Google, 189 images 
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Fig. 7 DSC and Loss.

Segmentation 
model Validation DSC

No. of 
Epochs Learning rate

Batch 
size

Model input 
resolution

U-net 0.906 500 5 × e-4 4 256 × 256

Table 2. Quantitative results and Hyper-parameters.

GPU Video-RAM System-RAM

Platform Nvidia 3080 
mobile 16GB 32GB

Usage Fully 5.2GB 11.5GB

Table 3. Training Platform.
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from Hughes road, 219 images from Muir road, 209 images from Wallace road, 112 images from Ryans lane 
and 83 images from Finch road, respectively. The 85 copyright-free images were added to increase varia-
bility. However, due to the disproportion between the number of images from experiments and the images 
from Google, the model currently fits best for unsealed roads in Australia.

 3. In the binarizing step, the regions where the dust cloud was transparent are identified as dust pixels leading 
to over-estimation of dust cloud from the image.

 4. To ensure the precision and repeatability of the data collected in field experiments, we established experi-
mental parameters and boundary conditions shown in Fig. 8. The Canon EOS 200D DSLR camera was set 
to auto-focus the oncoming vehicle (Isuzu D-Max or a Nissan Navara ST). The camera position and field of 
view were selected so that 100 to 200 meters of road length is visible in the video. The dust monitoring de-
vice (DustTrakTM DRX Aerosol Monitor 8533 from TSI) was positioned 10 to 15 meters from the camera. 
The resolution of the video and image was set to 1920 × 1080 pixels. The traffic-induced dust emission in 
unsealed roads is affected by many factors, which include wind speed and direction, condition of the sur-
face material, vehicle tire type and its condition, etc.; however, similar data could be reproduced if the field 
experiments are conducted with the experimental parameters and boundary conditions shown in Fig. 8.

Limitations 1 and 2 may be resolved by expanding the URDE dataset, which is publicly available at https://
doi.org/10.6084/m9.figshare.20459784. Limitation 3 may be resolved using a different thresholding technique.

Usage Notes
The dataset includes original images, manually-annotated images and the corresponding binary images gener-
ated by Otsu’s thresholding method. The binary images generated from Otsu’s method can be obtained using the 
Python-based tool included at https://github.com/RajithaRanasinghe/Automatic_Thresholding. The set of orig-
inal images together with their corresponding binary images may be used in conjunction with machine learning 
architectures to train the dataset and predict dust in an image. The dust measurements from the dust monitor 
may be used to correlate the dust cloud with actual dust readings. The process may be extended to videos and 
real-time dust prediction applications.

code availability
All the Python scripts used to generate the secondary data (binary images by Otsu’s thresholding) are provided at 
https://github.com/RajithaRanasinghe/Automatic_Thresholding.
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